1 /* $NetBSD: sha2.c,v 1.4 2006/09/09 16:22:36 manu Exp $ */
2
3 /* Id: sha2.c,v 1.6 2004/09/21 14:35:25 ludvigm Exp */
4
5 /*
6 * sha2.c
7 *
8 * Version 1.0.0beta1
9 *
10 * Written by Aaron D. Gifford <me@aarongifford.com>
11 *
12 * Copyright 2000 Aaron D. Gifford. All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the copyright holder nor the names of contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) AND CONTRIBUTOR(S) ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR(S) OR CONTRIBUTOR(S) BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 */
39
40 #include "config.h"
41
42 #include <sys/types.h>
43 #include <sys/time.h>
44 #ifndef __linux__
45 #include <machine/endian.h>
46 #endif
47 #include <crypto/sha2/sha2.h>
48 #include <openssl/evp.h>
49
50 /* get openssl/ssleay version number */
51 #include <openssl/opensslv.h>
52
53 #include <err.h>
54 #include <string.h>
55 #define bcopy(a, b, c) memcpy((b), (a), (c))
56 #define bzero(a, b) memset((a), 0, (b))
57 #define panic(a) err(1, (a))
58
59 #if OPENSSL_VERSION_NUMBER >= 0x00907000L
60 #define HAVE_EVP_097
61 #endif
62
63 /*
64 * ASSERT NOTE:
65 * Some sanity checking code is included using assert(). On my FreeBSD
66 * system, this additional code can be removed by compiling with NDEBUG
67 * defined. Check your own systems manpage on assert() to see how to
68 * compile WITHOUT the sanity checking code on your system.
69 *
70 * UNROLLED TRANSFORM LOOP NOTE:
71 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
72 * loop version for the hash transform rounds (defined using macros
73 * later in this file). Either define on the command line, for example:
74 *
75 * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
76 *
77 * or define below:
78 *
79 * #define SHA2_UNROLL_TRANSFORM
80 *
81 */
82
83 #define assert(x)
84
85
86 /*** SHA-256/384/512 Machine Architecture Definitions *****************/
87 /*
88 * BYTE_ORDER NOTE:
89 *
90 * Please make sure that your system defines BYTE_ORDER. If your
91 * architecture is little-endian, make sure it also defines
92 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
93 * equivilent.
94 *
95 * If your system does not define the above, then you can do so by
96 * hand like this:
97 *
98 * #define LITTLE_ENDIAN 1234
99 * #define BIG_ENDIAN 4321
100 *
101 * And for little-endian machines, add:
102 *
103 * #define BYTE_ORDER LITTLE_ENDIAN
104 *
105 * Or for big-endian machines:
106 *
107 * #define BYTE_ORDER BIG_ENDIAN
108 *
109 * The FreeBSD machine this was written on defines BYTE_ORDER
110 * appropriately by including <sys/types.h> (which in turn includes
111 * <machine/endian.h> where the appropriate definitions are actually
112 * made).
113 */
114 #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
115 #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
116 #endif
117
118 /*
119 * Define the followingsha2_* types to types of the correct length on
120 * the native archtecture. Most BSD systems and Linux define u_intXX_t
121 * types. Machines with very recent ANSI C headers, can use the
122 * uintXX_t definintions from inttypes.h by defining SHA2_USE_INTTYPES_H
123 * during compile or in the sha.h header file.
124 *
125 * Machines that support neither u_intXX_t nor inttypes.h's uintXX_t
126 * will need to define these three typedefs below (and the appropriate
127 * ones in sha.h too) by hand according to their system architecture.
128 *
129 * Thank you, Jun-ichiro itojun Hagino, for suggesting using u_intXX_t
130 * types and pointing out recent ANSI C support for uintXX_t in inttypes.h.
131 */
132 #if 0 /*def SHA2_USE_INTTYPES_H*/
133
134 typedef uint8_t sha2_byte; /* Exactly 1 byte */
135 typedef uint32_t sha2_word32; /* Exactly 4 bytes */
136 typedef uint64_t sha2_word64; /* Exactly 8 bytes */
137
138 #else /* SHA2_USE_INTTYPES_H */
139
140 typedef u_int8_t sha2_byte; /* Exactly 1 byte */
141 typedef u_int32_t sha2_word32; /* Exactly 4 bytes */
142 typedef u_int64_t sha2_word64; /* Exactly 8 bytes */
143
144 #endif /* SHA2_USE_INTTYPES_H */
145
146
147 /*** SHA-256/384/512 Various Length Definitions ***********************/
148 /* NOTE: Most of these are in sha2.h */
149 #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8)
150 #define SHA384_SHORT_BLOCK_LENGTH (SHA384_BLOCK_LENGTH - 16)
151 #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16)
152
153
154 /*** ENDIAN REVERSAL MACROS *******************************************/
155 #if BYTE_ORDER == LITTLE_ENDIAN
156 #define REVERSE32(w,x) { \
157 sha2_word32 tmp = (w); \
158 tmp = (tmp >> 16) | (tmp << 16); \
159 (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \
160 }
161 #define REVERSE64(w,x) { \
162 sha2_word64 tmp = (w); \
163 tmp = (tmp >> 32) | (tmp << 32); \
164 tmp = ((tmp & 0xff00ff00ff00ff00ULL) >> 8) | \
165 ((tmp & 0x00ff00ff00ff00ffULL) << 8); \
166 (x) = ((tmp & 0xffff0000ffff0000ULL) >> 16) | \
167 ((tmp & 0x0000ffff0000ffffULL) << 16); \
168 }
169 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
170
171 /*
172 * Macro for incrementally adding the unsigned 64-bit integer n to the
173 * unsigned 128-bit integer (represented using a two-element array of
174 * 64-bit words):
175 */
176 #define ADDINC128(w,n) { \
177 (w)[0] += (sha2_word64)(n); \
178 if ((w)[0] < (n)) { \
179 (w)[1]++; \
180 } \
181 }
182
183 /*** THE SIX LOGICAL FUNCTIONS ****************************************/
184 /*
185 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
186 *
187 * NOTE: The naming of R and S appears backwards here (R is a SHIFT and
188 * S is a ROTATION) because the SHA-256/384/512 description document
189 * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
190 * same "backwards" definition.
191 */
192 /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
193 #define R(b,x) ((x) >> (b))
194 /* 32-bit Rotate-right (used in SHA-256): */
195 #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b))))
196 /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
197 #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b))))
198
199 /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
200 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
201 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
202
203 /* Four of six logical functions used in SHA-256: */
204 #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x)))
205 #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x)))
206 #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x)))
207 #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x)))
208
209 /* Four of six logical functions used in SHA-384 and SHA-512: */
210 #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
211 #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
212 #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x)))
213 #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x)))
214
215 /*** INTERNAL FUNCTION PROTOTYPES *************************************/
216 /* NOTE: These should not be accessed directly from outside this
217 * library -- they are intended for private internal visibility/use
218 * only.
219 */
220 void SHA512_Last(SHA512_CTX*);
221 void SHA256_Transform(SHA256_CTX*, const sha2_word32*);
222 void SHA512_Transform(SHA512_CTX*, const sha2_word64*);
223
224
225 /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
226 /* Hash constant words K for SHA-256: */
227 const static sha2_word32 K256[64] = {
228 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
229 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
230 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
231 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
232 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
233 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
234 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
235 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
236 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
237 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
238 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
239 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
240 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
241 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
242 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
243 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
244 };
245
246 /* Initial hash value H for SHA-256: */
247 const static sha2_word32 sha256_initial_hash_value[8] = {
248 0x6a09e667UL,
249 0xbb67ae85UL,
250 0x3c6ef372UL,
251 0xa54ff53aUL,
252 0x510e527fUL,
253 0x9b05688cUL,
254 0x1f83d9abUL,
255 0x5be0cd19UL
256 };
257
258 /* Hash constant words K for SHA-384 and SHA-512: */
259 const static sha2_word64 K512[80] = {
260 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
261 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
262 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
263 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
264 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
265 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
266 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
267 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
268 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
269 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
270 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
271 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
272 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
273 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
274 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
275 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
276 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
277 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
278 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
279 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
280 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
281 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
282 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
283 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
284 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
285 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
286 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
287 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
288 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
289 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
290 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
291 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
292 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
293 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
294 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
295 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
296 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
297 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
298 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
299 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
300 };
301
302 /* Initial hash value H for SHA-384 */
303 const static sha2_word64 sha384_initial_hash_value[8] = {
304 0xcbbb9d5dc1059ed8ULL,
305 0x629a292a367cd507ULL,
306 0x9159015a3070dd17ULL,
307 0x152fecd8f70e5939ULL,
308 0x67332667ffc00b31ULL,
309 0x8eb44a8768581511ULL,
310 0xdb0c2e0d64f98fa7ULL,
311 0x47b5481dbefa4fa4ULL
312 };
313
314 /* Initial hash value H for SHA-512 */
315 const static sha2_word64 sha512_initial_hash_value[8] = {
316 0x6a09e667f3bcc908ULL,
317 0xbb67ae8584caa73bULL,
318 0x3c6ef372fe94f82bULL,
319 0xa54ff53a5f1d36f1ULL,
320 0x510e527fade682d1ULL,
321 0x9b05688c2b3e6c1fULL,
322 0x1f83d9abfb41bd6bULL,
323 0x5be0cd19137e2179ULL
324 };
325
326 /*
327 * Constant used by SHA256/384/512_End() functions for converting the
328 * digest to a readable hexadecimal character string:
329 */
330 static const char *sha2_hex_digits = "0123456789abcdef";
331
332
333 /*** SHA-256: *********************************************************/
SHA256_Init(SHA256_CTX * context)334 void SHA256_Init(SHA256_CTX* context) {
335 if (context == (SHA256_CTX*)0) {
336 return;
337 }
338 bcopy(sha256_initial_hash_value, context->state, SHA256_DIGEST_LENGTH);
339 bzero(context->buffer, SHA256_BLOCK_LENGTH);
340 context->bitcount = 0;
341 }
342
343 #ifdef SHA2_UNROLL_TRANSFORM
344
345 /* Unrolled SHA-256 round macros: */
346
347 #if BYTE_ORDER == LITTLE_ENDIAN
348
349 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
350 REVERSE32(*data++, W256[j]); \
351 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
352 K256[j] + W256[j]; \
353 (d) += T1; \
354 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
355 j++
356
357
358 #else /* BYTE_ORDER == LITTLE_ENDIAN */
359
360 #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \
361 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \
362 K256[j] + (W256[j] = *data++); \
363 (d) += T1; \
364 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
365 j++
366
367 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
368
369 #define ROUND256(a,b,c,d,e,f,g,h) \
370 s0 = W256[(j+1)&0x0f]; \
371 s0 = sigma0_256(s0); \
372 s1 = W256[(j+14)&0x0f]; \
373 s1 = sigma1_256(s1); \
374 T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \
375 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \
376 (d) += T1; \
377 (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \
378 j++
379
SHA256_Transform(SHA256_CTX * context,const sha2_word32 * data)380 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
381 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
382 sha2_word32 T1, *W256;
383 int j;
384
385 W256 = (sha2_word32*)context->buffer;
386
387 /* Initialize registers with the prev. intermediate value */
388 a = context->state[0];
389 b = context->state[1];
390 c = context->state[2];
391 d = context->state[3];
392 e = context->state[4];
393 f = context->state[5];
394 g = context->state[6];
395 h = context->state[7];
396
397 j = 0;
398 do {
399 /* Rounds 0 to 15 (unrolled): */
400 ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
401 ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
402 ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
403 ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
404 ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
405 ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
406 ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
407 ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
408 } while (j < 16);
409
410 /* Now for the remaining rounds to 64: */
411 do {
412 ROUND256(a,b,c,d,e,f,g,h);
413 ROUND256(h,a,b,c,d,e,f,g);
414 ROUND256(g,h,a,b,c,d,e,f);
415 ROUND256(f,g,h,a,b,c,d,e);
416 ROUND256(e,f,g,h,a,b,c,d);
417 ROUND256(d,e,f,g,h,a,b,c);
418 ROUND256(c,d,e,f,g,h,a,b);
419 ROUND256(b,c,d,e,f,g,h,a);
420 } while (j < 64);
421
422 /* Compute the current intermediate hash value */
423 context->state[0] += a;
424 context->state[1] += b;
425 context->state[2] += c;
426 context->state[3] += d;
427 context->state[4] += e;
428 context->state[5] += f;
429 context->state[6] += g;
430 context->state[7] += h;
431
432 /* Clean up */
433 a = b = c = d = e = f = g = h = T1 = 0;
434 }
435
436 #else /* SHA2_UNROLL_TRANSFORM */
437
SHA256_Transform(SHA256_CTX * context,const sha2_word32 * data)438 void SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) {
439 sha2_word32 a, b, c, d, e, f, g, h, s0, s1;
440 sha2_word32 T1, T2, *W256;
441 int j;
442
443 W256 = (sha2_word32*)context->buffer;
444
445 /* Initialize registers with the prev. intermediate value */
446 a = context->state[0];
447 b = context->state[1];
448 c = context->state[2];
449 d = context->state[3];
450 e = context->state[4];
451 f = context->state[5];
452 g = context->state[6];
453 h = context->state[7];
454
455 j = 0;
456 do {
457 #if BYTE_ORDER == LITTLE_ENDIAN
458 /* Copy data while converting to host byte order */
459 REVERSE32(*data++,W256[j]);
460 /* Apply the SHA-256 compression function to update a..h */
461 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
462 #else /* BYTE_ORDER == LITTLE_ENDIAN */
463 /* Apply the SHA-256 compression function to update a..h with copy */
464 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++);
465 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
466 T2 = Sigma0_256(a) + Maj(a, b, c);
467 h = g;
468 g = f;
469 f = e;
470 e = d + T1;
471 d = c;
472 c = b;
473 b = a;
474 a = T1 + T2;
475
476 j++;
477 } while (j < 16);
478
479 do {
480 /* Part of the message block expansion: */
481 s0 = W256[(j+1)&0x0f];
482 s0 = sigma0_256(s0);
483 s1 = W256[(j+14)&0x0f];
484 s1 = sigma1_256(s1);
485
486 /* Apply the SHA-256 compression function to update a..h */
487 T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
488 (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
489 T2 = Sigma0_256(a) + Maj(a, b, c);
490 h = g;
491 g = f;
492 f = e;
493 e = d + T1;
494 d = c;
495 c = b;
496 b = a;
497 a = T1 + T2;
498
499 j++;
500 } while (j < 64);
501
502 /* Compute the current intermediate hash value */
503 context->state[0] += a;
504 context->state[1] += b;
505 context->state[2] += c;
506 context->state[3] += d;
507 context->state[4] += e;
508 context->state[5] += f;
509 context->state[6] += g;
510 context->state[7] += h;
511
512 /* Clean up */
513 a = b = c = d = e = f = g = h = T1 = T2 = 0;
514 }
515
516 #endif /* SHA2_UNROLL_TRANSFORM */
517
SHA256_Update(SHA256_CTX * context,const sha2_byte * data,size_t len)518 void SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) {
519 unsigned int freespace, usedspace;
520
521 if (len == 0) {
522 /* Calling with no data is valid - we do nothing */
523 return;
524 }
525
526 /* Sanity check: */
527 assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0);
528
529 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
530 if (usedspace > 0) {
531 /* Calculate how much free space is available in the buffer */
532 freespace = SHA256_BLOCK_LENGTH - usedspace;
533
534 if (len >= freespace) {
535 /* Fill the buffer completely and process it */
536 bcopy(data, &context->buffer[usedspace], freespace);
537 context->bitcount += freespace << 3;
538 len -= freespace;
539 data += freespace;
540 SHA256_Transform(context, (sha2_word32*)context->buffer);
541 } else {
542 /* The buffer is not yet full */
543 bcopy(data, &context->buffer[usedspace], len);
544 context->bitcount += len << 3;
545 /* Clean up: */
546 usedspace = freespace = 0;
547 return;
548 }
549 }
550 while (len >= SHA256_BLOCK_LENGTH) {
551 /* Process as many complete blocks as we can */
552 SHA256_Transform(context, (const sha2_word32*)data);
553 context->bitcount += SHA256_BLOCK_LENGTH << 3;
554 len -= SHA256_BLOCK_LENGTH;
555 data += SHA256_BLOCK_LENGTH;
556 }
557 if (len > 0) {
558 /* There's left-overs, so save 'em */
559 bcopy(data, context->buffer, len);
560 context->bitcount += len << 3;
561 }
562 /* Clean up: */
563 usedspace = freespace = 0;
564 }
565
SHA256_Final(sha2_byte digest[],SHA256_CTX * context)566 void SHA256_Final(sha2_byte digest[], SHA256_CTX* context) {
567 sha2_word32 *d = (sha2_word32*)digest;
568 unsigned int usedspace;
569
570 /* Sanity check: */
571 assert(context != (SHA256_CTX*)0);
572
573 /* If no digest buffer is passed, we don't bother doing this: */
574 if (digest != (sha2_byte*)0) {
575 usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
576 #if BYTE_ORDER == LITTLE_ENDIAN
577 /* Convert FROM host byte order */
578 REVERSE64(context->bitcount,context->bitcount);
579 #endif
580 if (usedspace > 0) {
581 /* Begin padding with a 1 bit: */
582 context->buffer[usedspace++] = 0x80;
583
584 if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
585 /* Set-up for the last transform: */
586 bzero(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace);
587 } else {
588 if (usedspace < SHA256_BLOCK_LENGTH) {
589 bzero(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace);
590 }
591 /* Do second-to-last transform: */
592 SHA256_Transform(context, (sha2_word32*)context->buffer);
593
594 /* And set-up for the last transform: */
595 bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
596 }
597 } else {
598 /* Set-up for the last transform: */
599 bzero(context->buffer, SHA256_SHORT_BLOCK_LENGTH);
600
601 /* Begin padding with a 1 bit: */
602 *context->buffer = 0x80;
603 }
604 /* Set the bit count: */
605 *(sha2_word64*)&context->buffer[SHA256_SHORT_BLOCK_LENGTH] = context->bitcount;
606
607 /* Final transform: */
608 SHA256_Transform(context, (sha2_word32*)context->buffer);
609
610 #if BYTE_ORDER == LITTLE_ENDIAN
611 {
612 /* Convert TO host byte order */
613 int j;
614 for (j = 0; j < 8; j++) {
615 REVERSE32(context->state[j],context->state[j]);
616 *d++ = context->state[j];
617 }
618 }
619 #else
620 bcopy(context->state, d, SHA256_DIGEST_LENGTH);
621 #endif
622 }
623
624 /* Clean up state data: */
625 bzero(context, sizeof(*context));
626 usedspace = 0;
627 }
628
SHA256_End(SHA256_CTX * context,char buffer[])629 char *SHA256_End(SHA256_CTX* context, char buffer[]) {
630 sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest;
631 int i;
632
633 /* Sanity check: */
634 assert(context != (SHA256_CTX*)0);
635
636 if (buffer != (char*)0) {
637 SHA256_Final(digest, context);
638
639 for (i = 0; i < SHA256_DIGEST_LENGTH; i++) {
640 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
641 *buffer++ = sha2_hex_digits[*d & 0x0f];
642 d++;
643 }
644 *buffer = (char)0;
645 } else {
646 bzero(context, sizeof(*context));
647 }
648 bzero(digest, SHA256_DIGEST_LENGTH);
649 return buffer;
650 }
651
SHA256_Data(const sha2_byte * data,size_t len,char digest[SHA256_DIGEST_STRING_LENGTH])652 char* SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) {
653 SHA256_CTX context;
654
655 SHA256_Init(&context);
656 SHA256_Update(&context, data, len);
657 return SHA256_End(&context, digest);
658 }
659
660
661 /*** SHA-512: *********************************************************/
SHA512_Init(SHA512_CTX * context)662 void SHA512_Init(SHA512_CTX* context) {
663 if (context == (SHA512_CTX*)0) {
664 return;
665 }
666 bcopy(sha512_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
667 bzero(context->buffer, SHA512_BLOCK_LENGTH);
668 context->bitcount[0] = context->bitcount[1] = 0;
669 }
670
671 #ifdef SHA2_UNROLL_TRANSFORM
672
673 /* Unrolled SHA-512 round macros: */
674 #if BYTE_ORDER == LITTLE_ENDIAN
675
676 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
677 REVERSE64(*data++, W512[j]); \
678 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
679 K512[j] + W512[j]; \
680 (d) += T1, \
681 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)), \
682 j++
683
684
685 #else /* BYTE_ORDER == LITTLE_ENDIAN */
686
687 #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \
688 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \
689 K512[j] + (W512[j] = *data++); \
690 (d) += T1; \
691 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
692 j++
693
694 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
695
696 #define ROUND512(a,b,c,d,e,f,g,h) \
697 s0 = W512[(j+1)&0x0f]; \
698 s0 = sigma0_512(s0); \
699 s1 = W512[(j+14)&0x0f]; \
700 s1 = sigma1_512(s1); \
701 T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \
702 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \
703 (d) += T1; \
704 (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \
705 j++
706
SHA512_Transform(SHA512_CTX * context,const sha2_word64 * data)707 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
708 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
709 sha2_word64 T1, *W512 = (sha2_word64*)context->buffer;
710 int j;
711
712 /* Initialize registers with the prev. intermediate value */
713 a = context->state[0];
714 b = context->state[1];
715 c = context->state[2];
716 d = context->state[3];
717 e = context->state[4];
718 f = context->state[5];
719 g = context->state[6];
720 h = context->state[7];
721
722 j = 0;
723 do {
724 ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
725 ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
726 ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
727 ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
728 ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
729 ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
730 ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
731 ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
732 } while (j < 16);
733
734 /* Now for the remaining rounds up to 79: */
735 do {
736 ROUND512(a,b,c,d,e,f,g,h);
737 ROUND512(h,a,b,c,d,e,f,g);
738 ROUND512(g,h,a,b,c,d,e,f);
739 ROUND512(f,g,h,a,b,c,d,e);
740 ROUND512(e,f,g,h,a,b,c,d);
741 ROUND512(d,e,f,g,h,a,b,c);
742 ROUND512(c,d,e,f,g,h,a,b);
743 ROUND512(b,c,d,e,f,g,h,a);
744 } while (j < 80);
745
746 /* Compute the current intermediate hash value */
747 context->state[0] += a;
748 context->state[1] += b;
749 context->state[2] += c;
750 context->state[3] += d;
751 context->state[4] += e;
752 context->state[5] += f;
753 context->state[6] += g;
754 context->state[7] += h;
755
756 /* Clean up */
757 a = b = c = d = e = f = g = h = T1 = 0;
758 }
759
760 #else /* SHA2_UNROLL_TRANSFORM */
761
SHA512_Transform(SHA512_CTX * context,const sha2_word64 * data)762 void SHA512_Transform(SHA512_CTX* context, const sha2_word64* data) {
763 sha2_word64 a, b, c, d, e, f, g, h, s0, s1;
764 sha2_word64 T1, T2, *W512 = (sha2_word64*)context->buffer;
765 int j;
766
767 /* Initialize registers with the prev. intermediate value */
768 a = context->state[0];
769 b = context->state[1];
770 c = context->state[2];
771 d = context->state[3];
772 e = context->state[4];
773 f = context->state[5];
774 g = context->state[6];
775 h = context->state[7];
776
777 j = 0;
778 do {
779 #if BYTE_ORDER == LITTLE_ENDIAN
780 /* Convert TO host byte order */
781 REVERSE64(*data++, W512[j]);
782 /* Apply the SHA-512 compression function to update a..h */
783 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
784 #else /* BYTE_ORDER == LITTLE_ENDIAN */
785 /* Apply the SHA-512 compression function to update a..h with copy */
786 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++);
787 #endif /* BYTE_ORDER == LITTLE_ENDIAN */
788 T2 = Sigma0_512(a) + Maj(a, b, c);
789 h = g;
790 g = f;
791 f = e;
792 e = d + T1;
793 d = c;
794 c = b;
795 b = a;
796 a = T1 + T2;
797
798 j++;
799 } while (j < 16);
800
801 do {
802 /* Part of the message block expansion: */
803 s0 = W512[(j+1)&0x0f];
804 s0 = sigma0_512(s0);
805 s1 = W512[(j+14)&0x0f];
806 s1 = sigma1_512(s1);
807
808 /* Apply the SHA-512 compression function to update a..h */
809 T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
810 (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
811 T2 = Sigma0_512(a) + Maj(a, b, c);
812 h = g;
813 g = f;
814 f = e;
815 e = d + T1;
816 d = c;
817 c = b;
818 b = a;
819 a = T1 + T2;
820
821 j++;
822 } while (j < 80);
823
824 /* Compute the current intermediate hash value */
825 context->state[0] += a;
826 context->state[1] += b;
827 context->state[2] += c;
828 context->state[3] += d;
829 context->state[4] += e;
830 context->state[5] += f;
831 context->state[6] += g;
832 context->state[7] += h;
833
834 /* Clean up */
835 a = b = c = d = e = f = g = h = T1 = T2 = 0;
836 }
837
838 #endif /* SHA2_UNROLL_TRANSFORM */
839
SHA512_Update(SHA512_CTX * context,const sha2_byte * data,size_t len)840 void SHA512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) {
841 unsigned int freespace, usedspace;
842
843 if (len == 0) {
844 /* Calling with no data is valid - we do nothing */
845 return;
846 }
847
848 /* Sanity check: */
849 assert(context != (SHA512_CTX*)0 && data != (sha2_byte*)0);
850
851 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
852 if (usedspace > 0) {
853 /* Calculate how much free space is available in the buffer */
854 freespace = SHA512_BLOCK_LENGTH - usedspace;
855
856 if (len >= freespace) {
857 /* Fill the buffer completely and process it */
858 bcopy(data, &context->buffer[usedspace], freespace);
859 ADDINC128(context->bitcount, freespace << 3);
860 len -= freespace;
861 data += freespace;
862 SHA512_Transform(context, (sha2_word64*)context->buffer);
863 } else {
864 /* The buffer is not yet full */
865 bcopy(data, &context->buffer[usedspace], len);
866 ADDINC128(context->bitcount, len << 3);
867 /* Clean up: */
868 usedspace = freespace = 0;
869 return;
870 }
871 }
872 while (len >= SHA512_BLOCK_LENGTH) {
873 /* Process as many complete blocks as we can */
874 SHA512_Transform(context, (const sha2_word64*)data);
875 ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
876 len -= SHA512_BLOCK_LENGTH;
877 data += SHA512_BLOCK_LENGTH;
878 }
879 if (len > 0) {
880 /* There's left-overs, so save 'em */
881 bcopy(data, context->buffer, len);
882 ADDINC128(context->bitcount, len << 3);
883 }
884 /* Clean up: */
885 usedspace = freespace = 0;
886 }
887
SHA512_Last(SHA512_CTX * context)888 void SHA512_Last(SHA512_CTX* context) {
889 unsigned int usedspace;
890
891 usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
892 #if BYTE_ORDER == LITTLE_ENDIAN
893 /* Convert FROM host byte order */
894 REVERSE64(context->bitcount[0],context->bitcount[0]);
895 REVERSE64(context->bitcount[1],context->bitcount[1]);
896 #endif
897 if (usedspace > 0) {
898 /* Begin padding with a 1 bit: */
899 context->buffer[usedspace++] = 0x80;
900
901 if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
902 /* Set-up for the last transform: */
903 bzero(&context->buffer[usedspace], SHA512_SHORT_BLOCK_LENGTH - usedspace);
904 } else {
905 if (usedspace < SHA512_BLOCK_LENGTH) {
906 bzero(&context->buffer[usedspace], SHA512_BLOCK_LENGTH - usedspace);
907 }
908 /* Do second-to-last transform: */
909 SHA512_Transform(context, (sha2_word64*)context->buffer);
910
911 /* And set-up for the last transform: */
912 bzero(context->buffer, SHA512_BLOCK_LENGTH - 2);
913 }
914 } else {
915 /* Prepare for final transform: */
916 bzero(context->buffer, SHA512_SHORT_BLOCK_LENGTH);
917
918 /* Begin padding with a 1 bit: */
919 *context->buffer = 0x80;
920 }
921 /* Store the length of input data (in bits): */
922 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH] = context->bitcount[1];
923 *(sha2_word64*)&context->buffer[SHA512_SHORT_BLOCK_LENGTH+8] = context->bitcount[0];
924
925 /* Final transform: */
926 SHA512_Transform(context, (sha2_word64*)context->buffer);
927 }
928
SHA512_Final(sha2_byte digest[],SHA512_CTX * context)929 void SHA512_Final(sha2_byte digest[], SHA512_CTX* context) {
930 sha2_word64 *d = (sha2_word64*)digest;
931
932 /* Sanity check: */
933 assert(context != (SHA512_CTX*)0);
934
935 /* If no digest buffer is passed, we don't bother doing this: */
936 if (digest != (sha2_byte*)0) {
937 SHA512_Last(context);
938
939 /* Save the hash data for output: */
940 #if BYTE_ORDER == LITTLE_ENDIAN
941 {
942 /* Convert TO host byte order */
943 int j;
944 for (j = 0; j < 8; j++) {
945 REVERSE64(context->state[j],context->state[j]);
946 *d++ = context->state[j];
947 }
948 }
949 #else
950 bcopy(context->state, d, SHA512_DIGEST_LENGTH);
951 #endif
952 }
953
954 /* Zero out state data */
955 bzero(context, sizeof(*context));
956 }
957
SHA512_End(SHA512_CTX * context,char buffer[])958 char *SHA512_End(SHA512_CTX* context, char buffer[]) {
959 sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest;
960 int i;
961
962 /* Sanity check: */
963 assert(context != (SHA512_CTX*)0);
964
965 if (buffer != (char*)0) {
966 SHA512_Final(digest, context);
967
968 for (i = 0; i < SHA512_DIGEST_LENGTH; i++) {
969 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
970 *buffer++ = sha2_hex_digits[*d & 0x0f];
971 d++;
972 }
973 *buffer = (char)0;
974 } else {
975 bzero(context, sizeof(*context));
976 }
977 bzero(digest, SHA512_DIGEST_LENGTH);
978 return buffer;
979 }
980
SHA512_Data(const sha2_byte * data,size_t len,char digest[SHA512_DIGEST_STRING_LENGTH])981 char* SHA512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) {
982 SHA512_CTX context;
983
984 SHA512_Init(&context);
985 SHA512_Update(&context, data, len);
986 return SHA512_End(&context, digest);
987 }
988
989
990 /*** SHA-384: *********************************************************/
SHA384_Init(SHA384_CTX * context)991 void SHA384_Init(SHA384_CTX* context) {
992 if (context == (SHA384_CTX*)0) {
993 return;
994 }
995 bcopy(sha384_initial_hash_value, context->state, SHA512_DIGEST_LENGTH);
996 bzero(context->buffer, SHA384_BLOCK_LENGTH);
997 context->bitcount[0] = context->bitcount[1] = 0;
998 }
999
SHA384_Update(SHA384_CTX * context,const sha2_byte * data,size_t len)1000 void SHA384_Update(SHA384_CTX* context, const sha2_byte* data, size_t len) {
1001 SHA512_Update((SHA512_CTX*)context, data, len);
1002 }
1003
SHA384_Final(sha2_byte digest[],SHA384_CTX * context)1004 void SHA384_Final(sha2_byte digest[], SHA384_CTX* context) {
1005 sha2_word64 *d = (sha2_word64*)digest;
1006
1007 /* Sanity check: */
1008 assert(context != (SHA384_CTX*)0);
1009
1010 /* If no digest buffer is passed, we don't bother doing this: */
1011 if (digest != (sha2_byte*)0) {
1012 SHA512_Last((SHA512_CTX*)context);
1013
1014 /* Save the hash data for output: */
1015 #if BYTE_ORDER == LITTLE_ENDIAN
1016 {
1017 /* Convert TO host byte order */
1018 int j;
1019 for (j = 0; j < 6; j++) {
1020 REVERSE64(context->state[j],context->state[j]);
1021 *d++ = context->state[j];
1022 }
1023 }
1024 #else
1025 bcopy(context->state, d, SHA384_DIGEST_LENGTH);
1026 #endif
1027 }
1028
1029 /* Zero out state data */
1030 bzero(context, sizeof(*context));
1031 }
1032
SHA384_End(SHA384_CTX * context,char buffer[])1033 char *SHA384_End(SHA384_CTX* context, char buffer[]) {
1034 sha2_byte digest[SHA384_DIGEST_LENGTH], *d = digest;
1035 int i;
1036
1037 /* Sanity check: */
1038 assert(context != (SHA384_CTX*)0);
1039
1040 if (buffer != (char*)0) {
1041 SHA384_Final(digest, context);
1042
1043 for (i = 0; i < SHA384_DIGEST_LENGTH; i++) {
1044 *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4];
1045 *buffer++ = sha2_hex_digits[*d & 0x0f];
1046 d++;
1047 }
1048 *buffer = (char)0;
1049 } else {
1050 bzero(context, sizeof(*context));
1051 }
1052 bzero(digest, SHA384_DIGEST_LENGTH);
1053 return buffer;
1054 }
1055
SHA384_Data(const sha2_byte * data,size_t len,char digest[SHA384_DIGEST_STRING_LENGTH])1056 char* SHA384_Data(const sha2_byte* data, size_t len, char digest[SHA384_DIGEST_STRING_LENGTH]) {
1057 SHA384_CTX context;
1058
1059 SHA384_Init(&context);
1060 SHA384_Update(&context, data, len);
1061 return SHA384_End(&context, digest);
1062 }
1063
1064 /*glue*/
1065 #ifdef HAVE_EVP_097
1066
1067 /* SHA256 */
1068 #define data(ctx) ((SHA256_CTX *)(ctx)->md_data)
sha256_init(EVP_MD_CTX * ctx)1069 static int sha256_init(EVP_MD_CTX *ctx)
1070 {
1071 SHA256_Init(data(ctx));
1072 return 1;
1073 }
sha256_update(EVP_MD_CTX * ctx,const void * data,unsigned long count)1074 static int sha256_update(EVP_MD_CTX *ctx, const void *data, unsigned long count)
1075 {
1076 SHA256_Update(data(ctx), data, count);
1077 return 1;
1078 }
sha256_final(EVP_MD_CTX * ctx,unsigned char * md)1079 static int sha256_final(EVP_MD_CTX *ctx, unsigned char *md)
1080 {
1081 SHA256_Final(md, data(ctx));
1082 return 1;
1083 }
1084 #undef data
1085
1086 /* SHA384 */
1087 #define data(ctx) ((SHA384_CTX *)(ctx)->md_data)
sha384_init(EVP_MD_CTX * ctx)1088 static int sha384_init(EVP_MD_CTX *ctx)
1089 {
1090 SHA384_Init(data(ctx));
1091 return 1;
1092 }
sha384_update(EVP_MD_CTX * ctx,const void * data,unsigned long count)1093 static int sha384_update(EVP_MD_CTX *ctx, const void *data, unsigned long count)
1094 {
1095 SHA384_Update(data(ctx), data, count);
1096 return 1;
1097 }
sha384_final(EVP_MD_CTX * ctx,unsigned char * md)1098 static int sha384_final(EVP_MD_CTX *ctx, unsigned char *md)
1099 {
1100 SHA384_Final(md, data(ctx));
1101 return 1;
1102 }
1103 #undef data
1104
1105 /* SHA512 */
1106 #define data(ctx) ((SHA512_CTX *)(ctx)->md_data)
sha512_init(EVP_MD_CTX * ctx)1107 static int sha512_init(EVP_MD_CTX *ctx)
1108 {
1109 SHA512_Init(data(ctx));
1110 return 1;
1111 }
sha512_update(EVP_MD_CTX * ctx,const void * data,unsigned long count)1112 static int sha512_update(EVP_MD_CTX *ctx, const void *data, unsigned long count)
1113 {
1114 SHA512_Update(data(ctx), data, count);
1115 return 1;
1116 }
sha512_final(EVP_MD_CTX * ctx,unsigned char * md)1117 static int sha512_final(EVP_MD_CTX *ctx, unsigned char *md)
1118 {
1119 SHA512_Final(md, data(ctx));
1120 return 1;
1121 }
1122 #undef data
1123 #endif
1124
1125 static struct env_md_st sha2_256_md = {
1126 0, /*NID_sha1*/
1127 0, /*NID_sha1WithRSAEncryption*/
1128 SHA256_DIGEST_LENGTH,
1129 #ifdef HAVE_EVP_097
1130 0, /* flags */
1131 sha256_init,
1132 sha256_update,
1133 sha256_final,
1134 NULL, /* copy */
1135 NULL, /* cleanup */
1136 #else
1137 SHA256_Init,
1138 SHA256_Update,
1139 SHA256_Final,
1140 #endif
1141 NULL, NULL, {0, 0, 0, 0},
1142 SHA256_BLOCK_LENGTH,
1143 sizeof(struct env_md_st *) + sizeof(SHA256_CTX),
1144 };
1145
EVP_sha2_256(void)1146 struct env_md_st *EVP_sha2_256(void)
1147 {
1148 return(&sha2_256_md);
1149 }
1150
1151 static struct env_md_st sha2_384_md = {
1152 0, /*NID_sha1*/
1153 0, /*NID_sha1WithRSAEncryption*/
1154 SHA384_DIGEST_LENGTH,
1155 #ifdef HAVE_EVP_097
1156 0, /* flags */
1157 sha384_init,
1158 sha384_update,
1159 sha384_final,
1160 NULL, /* copy */
1161 NULL, /* cleanup */
1162 #else
1163 SHA384_Init,
1164 SHA384_Update,
1165 SHA384_Final,
1166 #endif
1167 NULL, NULL, {0, 0, 0, 0},
1168 SHA384_BLOCK_LENGTH,
1169 sizeof(struct env_md_st *) + sizeof(SHA384_CTX),
1170 };
1171
EVP_sha2_384(void)1172 struct env_md_st *EVP_sha2_384(void)
1173 {
1174 return(&sha2_384_md);
1175 }
1176
1177 static struct env_md_st sha2_512_md = {
1178 0, /*NID_sha1*/
1179 0, /*NID_sha1WithRSAEncryption*/
1180 SHA512_DIGEST_LENGTH,
1181 #ifdef HAVE_EVP_097
1182 0, /* flags */
1183 sha512_init,
1184 sha512_update,
1185 sha512_final,
1186 NULL, /* copy */
1187 NULL, /* cleanup */
1188 #else
1189 SHA512_Init,
1190 SHA512_Update,
1191 SHA512_Final,
1192 #endif
1193 NULL, NULL, {0, 0, 0, 0}, /*EVP_PKEY_RSA_method*/
1194 SHA512_BLOCK_LENGTH,
1195 sizeof(struct env_md_st *) + sizeof(SHA512_CTX),
1196 };
1197
EVP_sha2_512(void)1198 struct env_md_st *EVP_sha2_512(void)
1199 {
1200 return(&sha2_512_md);
1201 }
1202