• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // Defines Message, the abstract interface implemented by non-lite
36 // protocol message objects.  Although it's possible to implement this
37 // interface manually, most users will use the protocol compiler to
38 // generate implementations.
39 //
40 // Example usage:
41 //
42 // Say you have a message defined as:
43 //
44 //   message Foo {
45 //     optional string text = 1;
46 //     repeated int32 numbers = 2;
47 //   }
48 //
49 // Then, if you used the protocol compiler to generate a class from the above
50 // definition, you could use it like so:
51 //
52 //   std::string data;  // Will store a serialized version of the message.
53 //
54 //   {
55 //     // Create a message and serialize it.
56 //     Foo foo;
57 //     foo.set_text("Hello World!");
58 //     foo.add_numbers(1);
59 //     foo.add_numbers(5);
60 //     foo.add_numbers(42);
61 //
62 //     foo.SerializeToString(&data);
63 //   }
64 //
65 //   {
66 //     // Parse the serialized message and check that it contains the
67 //     // correct data.
68 //     Foo foo;
69 //     foo.ParseFromString(data);
70 //
71 //     assert(foo.text() == "Hello World!");
72 //     assert(foo.numbers_size() == 3);
73 //     assert(foo.numbers(0) == 1);
74 //     assert(foo.numbers(1) == 5);
75 //     assert(foo.numbers(2) == 42);
76 //   }
77 //
78 //   {
79 //     // Same as the last block, but do it dynamically via the Message
80 //     // reflection interface.
81 //     Message* foo = new Foo;
82 //     const Descriptor* descriptor = foo->GetDescriptor();
83 //
84 //     // Get the descriptors for the fields we're interested in and verify
85 //     // their types.
86 //     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87 //     assert(text_field != nullptr);
88 //     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89 //     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
90 //     const FieldDescriptor* numbers_field = descriptor->
91 //                                            FindFieldByName("numbers");
92 //     assert(numbers_field != nullptr);
93 //     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
94 //     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
95 //
96 //     // Parse the message.
97 //     foo->ParseFromString(data);
98 //
99 //     // Use the reflection interface to examine the contents.
100 //     const Reflection* reflection = foo->GetReflection();
101 //     assert(reflection->GetString(*foo, text_field) == "Hello World!");
102 //     assert(reflection->FieldSize(*foo, numbers_field) == 3);
103 //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
104 //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
105 //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
106 //
107 //     delete foo;
108 //   }
109 
110 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
111 #define GOOGLE_PROTOBUF_MESSAGE_H__
112 
113 #include <iosfwd>
114 #include <string>
115 #include <type_traits>
116 #include <vector>
117 
118 #include <google/protobuf/stubs/casts.h>
119 #include <google/protobuf/stubs/common.h>
120 #include <google/protobuf/arena.h>
121 #include <google/protobuf/descriptor.h>
122 #include <google/protobuf/generated_message_reflection.h>
123 #include <google/protobuf/message_lite.h>
124 #include <google/protobuf/port.h>
125 
126 
127 #define GOOGLE_PROTOBUF_HAS_ONEOF
128 #define GOOGLE_PROTOBUF_HAS_ARENAS
129 
130 #include <google/protobuf/port_def.inc>
131 
132 #ifdef SWIG
133 #error "You cannot SWIG proto headers"
134 #endif
135 
136 namespace google {
137 namespace protobuf {
138 
139 // Defined in this file.
140 class Message;
141 class Reflection;
142 class MessageFactory;
143 
144 // Defined in other files.
145 class AssignDescriptorsHelper;
146 class DynamicMessageFactory;
147 class MapKey;
148 class MapValueRef;
149 class MapIterator;
150 class MapReflectionTester;
151 
152 namespace internal {
153 struct DescriptorTable;
154 class MapFieldBase;
155 }
156 class UnknownFieldSet;  // unknown_field_set.h
157 namespace io {
158 class ZeroCopyInputStream;   // zero_copy_stream.h
159 class ZeroCopyOutputStream;  // zero_copy_stream.h
160 class CodedInputStream;      // coded_stream.h
161 class CodedOutputStream;     // coded_stream.h
162 }  // namespace io
163 namespace python {
164 class MapReflectionFriend;  // scalar_map_container.h
165 }
166 namespace expr {
167 class CelMapReflectionFriend;  // field_backed_map_impl.cc
168 }
169 
170 namespace internal {
171 class MapFieldPrinterHelper;  // text_format.cc
172 }
173 
174 
175 namespace internal {
176 class ReflectionAccessor;      // message.cc
177 class ReflectionOps;           // reflection_ops.h
178 class MapKeySorter;            // wire_format.cc
179 class WireFormat;              // wire_format.h
180 class MapFieldReflectionTest;  // map_test.cc
181 }  // namespace internal
182 
183 template <typename T>
184 class RepeatedField;  // repeated_field.h
185 
186 template <typename T>
187 class RepeatedPtrField;  // repeated_field.h
188 
189 // A container to hold message metadata.
190 struct Metadata {
191   const Descriptor* descriptor;
192   const Reflection* reflection;
193 };
194 
195 // Abstract interface for protocol messages.
196 //
197 // See also MessageLite, which contains most every-day operations.  Message
198 // adds descriptors and reflection on top of that.
199 //
200 // The methods of this class that are virtual but not pure-virtual have
201 // default implementations based on reflection.  Message classes which are
202 // optimized for speed will want to override these with faster implementations,
203 // but classes optimized for code size may be happy with keeping them.  See
204 // the optimize_for option in descriptor.proto.
205 class PROTOBUF_EXPORT Message : public MessageLite {
206  public:
Message()207   inline Message() {}
~Message()208   ~Message() override {}
209 
210   // Basic Operations ------------------------------------------------
211 
212   // Construct a new instance of the same type.  Ownership is passed to the
213   // caller.  (This is also defined in MessageLite, but is defined again here
214   // for return-type covariance.)
215   Message* New() const override = 0;
216 
217   // Construct a new instance on the arena. Ownership is passed to the caller
218   // if arena is a nullptr. Default implementation allows for API compatibility
219   // during the Arena transition.
New(Arena * arena)220   Message* New(Arena* arena) const override {
221     Message* message = New();
222     if (arena != nullptr) {
223       arena->Own(message);
224     }
225     return message;
226   }
227 
228   // Make this message into a copy of the given message.  The given message
229   // must have the same descriptor, but need not necessarily be the same class.
230   // By default this is just implemented as "Clear(); MergeFrom(from);".
231   virtual void CopyFrom(const Message& from);
232 
233   // Merge the fields from the given message into this message.  Singular
234   // fields will be overwritten, if specified in from, except for embedded
235   // messages which will be merged.  Repeated fields will be concatenated.
236   // The given message must be of the same type as this message (i.e. the
237   // exact same class).
238   virtual void MergeFrom(const Message& from);
239 
240   // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
241   // a nice error message.
242   void CheckInitialized() const;
243 
244   // Slowly build a list of all required fields that are not set.
245   // This is much, much slower than IsInitialized() as it is implemented
246   // purely via reflection.  Generally, you should not call this unless you
247   // have already determined that an error exists by calling IsInitialized().
248   void FindInitializationErrors(std::vector<std::string>* errors) const;
249 
250   // Like FindInitializationErrors, but joins all the strings, delimited by
251   // commas, and returns them.
252   std::string InitializationErrorString() const override;
253 
254   // Clears all unknown fields from this message and all embedded messages.
255   // Normally, if unknown tag numbers are encountered when parsing a message,
256   // the tag and value are stored in the message's UnknownFieldSet and
257   // then written back out when the message is serialized.  This allows servers
258   // which simply route messages to other servers to pass through messages
259   // that have new field definitions which they don't yet know about.  However,
260   // this behavior can have security implications.  To avoid it, call this
261   // method after parsing.
262   //
263   // See Reflection::GetUnknownFields() for more on unknown fields.
264   virtual void DiscardUnknownFields();
265 
266   // Computes (an estimate of) the total number of bytes currently used for
267   // storing the message in memory.  The default implementation calls the
268   // Reflection object's SpaceUsed() method.
269   //
270   // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
271   // using reflection (rather than the generated code implementation for
272   // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
273   // fields defined for the proto.
274   virtual size_t SpaceUsedLong() const;
275 
276   PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
SpaceUsed()277   int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
278 
279   // Debugging & Testing----------------------------------------------
280 
281   // Generates a human readable form of this message, useful for debugging
282   // and other purposes.
283   std::string DebugString() const;
284   // Like DebugString(), but with less whitespace.
285   std::string ShortDebugString() const;
286   // Like DebugString(), but do not escape UTF-8 byte sequences.
287   std::string Utf8DebugString() const;
288   // Convenience function useful in GDB.  Prints DebugString() to stdout.
289   void PrintDebugString() const;
290 
291   // Reflection-based methods ----------------------------------------
292   // These methods are pure-virtual in MessageLite, but Message provides
293   // reflection-based default implementations.
294 
295   std::string GetTypeName() const override;
296   void Clear() override;
297   bool IsInitialized() const override;
298   void CheckTypeAndMergeFrom(const MessageLite& other) override;
299 #if GOOGLE_PROTOBUF_ENABLE_EXPERIMENTAL_PARSER
300   // Reflective parser
301   const char* _InternalParse(const char* ptr,
302                              internal::ParseContext* ctx) override;
303 #else
304   bool MergePartialFromCodedStream(io::CodedInputStream* input) override;
305 #endif
306   size_t ByteSizeLong() const override;
307   void SerializeWithCachedSizes(io::CodedOutputStream* output) const override;
308 
309  private:
310   // This is called only by the default implementation of ByteSize(), to
311   // update the cached size.  If you override ByteSize(), you do not need
312   // to override this.  If you do not override ByteSize(), you MUST override
313   // this; the default implementation will crash.
314   //
315   // The method is private because subclasses should never call it; only
316   // override it.  Yes, C++ lets you do that.  Crazy, huh?
317   virtual void SetCachedSize(int size) const;
318 
319  public:
320   // Introspection ---------------------------------------------------
321 
322 
323   // Get a non-owning pointer to a Descriptor for this message's type.  This
324   // describes what fields the message contains, the types of those fields, etc.
325   // This object remains property of the Message.
GetDescriptor()326   const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
327 
328   // Get a non-owning pointer to the Reflection interface for this Message,
329   // which can be used to read and modify the fields of the Message dynamically
330   // (in other words, without knowing the message type at compile time).  This
331   // object remains property of the Message.
332   //
333   // This method remains virtual in case a subclass does not implement
334   // reflection and wants to override the default behavior.
GetReflection()335   const Reflection* GetReflection() const { return GetMetadata().reflection; }
336 
337  protected:
338   // Get a struct containing the metadata for the Message. Most subclasses only
339   // need to implement this method, rather than the GetDescriptor() and
340   // GetReflection() wrappers.
341   virtual Metadata GetMetadata() const = 0;
342 
343 
344  private:
345   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
346 };
347 
348 namespace internal {
349 // Forward-declare interfaces used to implement RepeatedFieldRef.
350 // These are protobuf internals that users shouldn't care about.
351 class RepeatedFieldAccessor;
352 }  // namespace internal
353 
354 // Forward-declare RepeatedFieldRef templates. The second type parameter is
355 // used for SFINAE tricks. Users should ignore it.
356 template <typename T, typename Enable = void>
357 class RepeatedFieldRef;
358 
359 template <typename T, typename Enable = void>
360 class MutableRepeatedFieldRef;
361 
362 // This interface contains methods that can be used to dynamically access
363 // and modify the fields of a protocol message.  Their semantics are
364 // similar to the accessors the protocol compiler generates.
365 //
366 // To get the Reflection for a given Message, call Message::GetReflection().
367 //
368 // This interface is separate from Message only for efficiency reasons;
369 // the vast majority of implementations of Message will share the same
370 // implementation of Reflection (GeneratedMessageReflection,
371 // defined in generated_message.h), and all Messages of a particular class
372 // should share the same Reflection object (though you should not rely on
373 // the latter fact).
374 //
375 // There are several ways that these methods can be used incorrectly.  For
376 // example, any of the following conditions will lead to undefined
377 // results (probably assertion failures):
378 // - The FieldDescriptor is not a field of this message type.
379 // - The method called is not appropriate for the field's type.  For
380 //   each field type in FieldDescriptor::TYPE_*, there is only one
381 //   Get*() method, one Set*() method, and one Add*() method that is
382 //   valid for that type.  It should be obvious which (except maybe
383 //   for TYPE_BYTES, which are represented using strings in C++).
384 // - A Get*() or Set*() method for singular fields is called on a repeated
385 //   field.
386 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
387 //   field.
388 // - The Message object passed to any method is not of the right type for
389 //   this Reflection object (i.e. message.GetReflection() != reflection).
390 //
391 // You might wonder why there is not any abstract representation for a field
392 // of arbitrary type.  E.g., why isn't there just a "GetField()" method that
393 // returns "const Field&", where "Field" is some class with accessors like
394 // "GetInt32Value()".  The problem is that someone would have to deal with
395 // allocating these Field objects.  For generated message classes, having to
396 // allocate space for an additional object to wrap every field would at least
397 // double the message's memory footprint, probably worse.  Allocating the
398 // objects on-demand, on the other hand, would be expensive and prone to
399 // memory leaks.  So, instead we ended up with this flat interface.
400 class PROTOBUF_EXPORT Reflection final {
401  public:
402   // Get the UnknownFieldSet for the message.  This contains fields which
403   // were seen when the Message was parsed but were not recognized according
404   // to the Message's definition.
405   const UnknownFieldSet& GetUnknownFields(const Message& message) const;
406   // Get a mutable pointer to the UnknownFieldSet for the message.  This
407   // contains fields which were seen when the Message was parsed but were not
408   // recognized according to the Message's definition.
409   UnknownFieldSet* MutableUnknownFields(Message* message) const;
410 
411   // Estimate the amount of memory used by the message object.
412   size_t SpaceUsedLong(const Message& message) const;
413 
414   PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
SpaceUsed(const Message & message)415   int SpaceUsed(const Message& message) const {
416     return internal::ToIntSize(SpaceUsedLong(message));
417   }
418 
419   // Check if the given non-repeated field is set.
420   bool HasField(const Message& message, const FieldDescriptor* field) const;
421 
422   // Get the number of elements of a repeated field.
423   int FieldSize(const Message& message, const FieldDescriptor* field) const;
424 
425   // Clear the value of a field, so that HasField() returns false or
426   // FieldSize() returns zero.
427   void ClearField(Message* message, const FieldDescriptor* field) const;
428 
429   // Check if the oneof is set. Returns true if any field in oneof
430   // is set, false otherwise.
431   bool HasOneof(const Message& message,
432                 const OneofDescriptor* oneof_descriptor) const;
433 
434   void ClearOneof(Message* message,
435                   const OneofDescriptor* oneof_descriptor) const;
436 
437   // Returns the field descriptor if the oneof is set. nullptr otherwise.
438   const FieldDescriptor* GetOneofFieldDescriptor(
439       const Message& message, const OneofDescriptor* oneof_descriptor) const;
440 
441   // Removes the last element of a repeated field.
442   // We don't provide a way to remove any element other than the last
443   // because it invites inefficient use, such as O(n^2) filtering loops
444   // that should have been O(n).  If you want to remove an element other
445   // than the last, the best way to do it is to re-arrange the elements
446   // (using Swap()) so that the one you want removed is at the end, then
447   // call RemoveLast().
448   void RemoveLast(Message* message, const FieldDescriptor* field) const;
449   // Removes the last element of a repeated message field, and returns the
450   // pointer to the caller.  Caller takes ownership of the returned pointer.
451   Message* ReleaseLast(Message* message, const FieldDescriptor* field) const;
452 
453   // Swap the complete contents of two messages.
454   void Swap(Message* message1, Message* message2) const;
455 
456   // Swap fields listed in fields vector of two messages.
457   void SwapFields(Message* message1, Message* message2,
458                   const std::vector<const FieldDescriptor*>& fields) const;
459 
460   // Swap two elements of a repeated field.
461   void SwapElements(Message* message, const FieldDescriptor* field, int index1,
462                     int index2) const;
463 
464   // List all fields of the message which are currently set, except for unknown
465   // fields, but including extension known to the parser (i.e. compiled in).
466   // Singular fields will only be listed if HasField(field) would return true
467   // and repeated fields will only be listed if FieldSize(field) would return
468   // non-zero.  Fields (both normal fields and extension fields) will be listed
469   // ordered by field number.
470   // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
471   // access to fields/extensions unknown to the parser.
472   void ListFields(const Message& message,
473                   std::vector<const FieldDescriptor*>* output) const;
474 
475   // Singular field getters ------------------------------------------
476   // These get the value of a non-repeated field.  They return the default
477   // value for fields that aren't set.
478 
479   int32 GetInt32(const Message& message, const FieldDescriptor* field) const;
480   int64 GetInt64(const Message& message, const FieldDescriptor* field) const;
481   uint32 GetUInt32(const Message& message, const FieldDescriptor* field) const;
482   uint64 GetUInt64(const Message& message, const FieldDescriptor* field) const;
483   float GetFloat(const Message& message, const FieldDescriptor* field) const;
484   double GetDouble(const Message& message, const FieldDescriptor* field) const;
485   bool GetBool(const Message& message, const FieldDescriptor* field) const;
486   std::string GetString(const Message& message,
487                         const FieldDescriptor* field) const;
488   const EnumValueDescriptor* GetEnum(const Message& message,
489                                      const FieldDescriptor* field) const;
490 
491   // GetEnumValue() returns an enum field's value as an integer rather than
492   // an EnumValueDescriptor*. If the integer value does not correspond to a
493   // known value descriptor, a new value descriptor is created. (Such a value
494   // will only be present when the new unknown-enum-value semantics are enabled
495   // for a message.)
496   int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
497 
498   // See MutableMessage() for the meaning of the "factory" parameter.
499   const Message& GetMessage(const Message& message,
500                             const FieldDescriptor* field,
501                             MessageFactory* factory = nullptr) const;
502 
503   // Get a string value without copying, if possible.
504   //
505   // GetString() necessarily returns a copy of the string.  This can be
506   // inefficient when the std::string is already stored in a std::string object
507   // in the underlying message.  GetStringReference() will return a reference to
508   // the underlying std::string in this case.  Otherwise, it will copy the
509   // string into *scratch and return that.
510   //
511   // Note:  It is perfectly reasonable and useful to write code like:
512   //     str = reflection->GetStringReference(message, field, &str);
513   //   This line would ensure that only one copy of the string is made
514   //   regardless of the field's underlying representation.  When initializing
515   //   a newly-constructed string, though, it's just as fast and more
516   //   readable to use code like:
517   //     std::string str = reflection->GetString(message, field);
518   const std::string& GetStringReference(const Message& message,
519                                         const FieldDescriptor* field,
520                                         std::string* scratch) const;
521 
522 
523   // Singular field mutators -----------------------------------------
524   // These mutate the value of a non-repeated field.
525 
526   void SetInt32(Message* message, const FieldDescriptor* field,
527                 int32 value) const;
528   void SetInt64(Message* message, const FieldDescriptor* field,
529                 int64 value) const;
530   void SetUInt32(Message* message, const FieldDescriptor* field,
531                  uint32 value) const;
532   void SetUInt64(Message* message, const FieldDescriptor* field,
533                  uint64 value) const;
534   void SetFloat(Message* message, const FieldDescriptor* field,
535                 float value) const;
536   void SetDouble(Message* message, const FieldDescriptor* field,
537                  double value) const;
538   void SetBool(Message* message, const FieldDescriptor* field,
539                bool value) const;
540   void SetString(Message* message, const FieldDescriptor* field,
541                  const std::string& value) const;
542   void SetEnum(Message* message, const FieldDescriptor* field,
543                const EnumValueDescriptor* value) const;
544   // Set an enum field's value with an integer rather than EnumValueDescriptor.
545   // For proto3 this is just setting the enum field to the value specified, for
546   // proto2 it's more complicated. If value is a known enum value the field is
547   // set as usual. If the value is unknown then it is added to the unknown field
548   // set. Note this matches the behavior of parsing unknown enum values.
549   // If multiple calls with unknown values happen than they are all added to the
550   // unknown field set in order of the calls.
551   void SetEnumValue(Message* message, const FieldDescriptor* field,
552                     int value) const;
553 
554   // Get a mutable pointer to a field with a message type.  If a MessageFactory
555   // is provided, it will be used to construct instances of the sub-message;
556   // otherwise, the default factory is used.  If the field is an extension that
557   // does not live in the same pool as the containing message's descriptor (e.g.
558   // it lives in an overlay pool), then a MessageFactory must be provided.
559   // If you have no idea what that meant, then you probably don't need to worry
560   // about it (don't provide a MessageFactory).  WARNING:  If the
561   // FieldDescriptor is for a compiled-in extension, then
562   // factory->GetPrototype(field->message_type()) MUST return an instance of
563   // the compiled-in class for this type, NOT DynamicMessage.
564   Message* MutableMessage(Message* message, const FieldDescriptor* field,
565                           MessageFactory* factory = nullptr) const;
566   // Replaces the message specified by 'field' with the already-allocated object
567   // sub_message, passing ownership to the message.  If the field contained a
568   // message, that message is deleted.  If sub_message is nullptr, the field is
569   // cleared.
570   void SetAllocatedMessage(Message* message, Message* sub_message,
571                            const FieldDescriptor* field) const;
572   // Releases the message specified by 'field' and returns the pointer,
573   // ReleaseMessage() will return the message the message object if it exists.
574   // Otherwise, it may or may not return nullptr.  In any case, if the return
575   // value is non-null, the caller takes ownership of the pointer.
576   // If the field existed (HasField() is true), then the returned pointer will
577   // be the same as the pointer returned by MutableMessage().
578   // This function has the same effect as ClearField().
579   Message* ReleaseMessage(Message* message, const FieldDescriptor* field,
580                           MessageFactory* factory = nullptr) const;
581 
582 
583   // Repeated field getters ------------------------------------------
584   // These get the value of one element of a repeated field.
585 
586   int32 GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
587                          int index) const;
588   int64 GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
589                          int index) const;
590   uint32 GetRepeatedUInt32(const Message& message, const FieldDescriptor* field,
591                            int index) const;
592   uint64 GetRepeatedUInt64(const Message& message, const FieldDescriptor* field,
593                            int index) const;
594   float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
595                          int index) const;
596   double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
597                            int index) const;
598   bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
599                        int index) const;
600   std::string GetRepeatedString(const Message& message,
601                                 const FieldDescriptor* field, int index) const;
602   const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
603                                              const FieldDescriptor* field,
604                                              int index) const;
605   // GetRepeatedEnumValue() returns an enum field's value as an integer rather
606   // than an EnumValueDescriptor*. If the integer value does not correspond to a
607   // known value descriptor, a new value descriptor is created. (Such a value
608   // will only be present when the new unknown-enum-value semantics are enabled
609   // for a message.)
610   int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
611                            int index) const;
612   const Message& GetRepeatedMessage(const Message& message,
613                                     const FieldDescriptor* field,
614                                     int index) const;
615 
616   // See GetStringReference(), above.
617   const std::string& GetRepeatedStringReference(const Message& message,
618                                                 const FieldDescriptor* field,
619                                                 int index,
620                                                 std::string* scratch) const;
621 
622 
623   // Repeated field mutators -----------------------------------------
624   // These mutate the value of one element of a repeated field.
625 
626   void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
627                         int index, int32 value) const;
628   void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
629                         int index, int64 value) const;
630   void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
631                          int index, uint32 value) const;
632   void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
633                          int index, uint64 value) const;
634   void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
635                         int index, float value) const;
636   void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
637                          int index, double value) const;
638   void SetRepeatedBool(Message* message, const FieldDescriptor* field,
639                        int index, bool value) const;
640   void SetRepeatedString(Message* message, const FieldDescriptor* field,
641                          int index, const std::string& value) const;
642   void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
643                        int index, const EnumValueDescriptor* value) const;
644   // Set an enum field's value with an integer rather than EnumValueDescriptor.
645   // For proto3 this is just setting the enum field to the value specified, for
646   // proto2 it's more complicated. If value is a known enum value the field is
647   // set as usual. If the value is unknown then it is added to the unknown field
648   // set. Note this matches the behavior of parsing unknown enum values.
649   // If multiple calls with unknown values happen than they are all added to the
650   // unknown field set in order of the calls.
651   void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
652                             int index, int value) const;
653   // Get a mutable pointer to an element of a repeated field with a message
654   // type.
655   Message* MutableRepeatedMessage(Message* message,
656                                   const FieldDescriptor* field,
657                                   int index) const;
658 
659 
660   // Repeated field adders -------------------------------------------
661   // These add an element to a repeated field.
662 
663   void AddInt32(Message* message, const FieldDescriptor* field,
664                 int32 value) const;
665   void AddInt64(Message* message, const FieldDescriptor* field,
666                 int64 value) const;
667   void AddUInt32(Message* message, const FieldDescriptor* field,
668                  uint32 value) const;
669   void AddUInt64(Message* message, const FieldDescriptor* field,
670                  uint64 value) const;
671   void AddFloat(Message* message, const FieldDescriptor* field,
672                 float value) const;
673   void AddDouble(Message* message, const FieldDescriptor* field,
674                  double value) const;
675   void AddBool(Message* message, const FieldDescriptor* field,
676                bool value) const;
677   void AddString(Message* message, const FieldDescriptor* field,
678                  const std::string& value) const;
679   void AddEnum(Message* message, const FieldDescriptor* field,
680                const EnumValueDescriptor* value) const;
681   // Add an integer value to a repeated enum field rather than
682   // EnumValueDescriptor. For proto3 this is just setting the enum field to the
683   // value specified, for proto2 it's more complicated. If value is a known enum
684   // value the field is set as usual. If the value is unknown then it is added
685   // to the unknown field set. Note this matches the behavior of parsing unknown
686   // enum values. If multiple calls with unknown values happen than they are all
687   // added to the unknown field set in order of the calls.
688   void AddEnumValue(Message* message, const FieldDescriptor* field,
689                     int value) const;
690   // See MutableMessage() for comments on the "factory" parameter.
691   Message* AddMessage(Message* message, const FieldDescriptor* field,
692                       MessageFactory* factory = nullptr) const;
693 
694   // Appends an already-allocated object 'new_entry' to the repeated field
695   // specified by 'field' passing ownership to the message.
696   void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
697                            Message* new_entry) const;
698 
699 
700   // Get a RepeatedFieldRef object that can be used to read the underlying
701   // repeated field. The type parameter T must be set according to the
702   // field's cpp type. The following table shows the mapping from cpp type
703   // to acceptable T.
704   //
705   //   field->cpp_type()      T
706   //   CPPTYPE_INT32        int32
707   //   CPPTYPE_UINT32       uint32
708   //   CPPTYPE_INT64        int64
709   //   CPPTYPE_UINT64       uint64
710   //   CPPTYPE_DOUBLE       double
711   //   CPPTYPE_FLOAT        float
712   //   CPPTYPE_BOOL         bool
713   //   CPPTYPE_ENUM         generated enum type or int32
714   //   CPPTYPE_STRING       std::string
715   //   CPPTYPE_MESSAGE      generated message type or google::protobuf::Message
716   //
717   // A RepeatedFieldRef object can be copied and the resulted object will point
718   // to the same repeated field in the same message. The object can be used as
719   // long as the message is not destroyed.
720   //
721   // Note that to use this method users need to include the header file
722   // "net/proto2/public/reflection.h" (which defines the RepeatedFieldRef
723   // class templates).
724   template <typename T>
725   RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
726                                           const FieldDescriptor* field) const;
727 
728   // Like GetRepeatedFieldRef() but return an object that can also be used
729   // manipulate the underlying repeated field.
730   template <typename T>
731   MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
732       Message* message, const FieldDescriptor* field) const;
733 
734   // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
735   // access. The following repeated field accesors will be removed in the
736   // future.
737   //
738   // Repeated field accessors  -------------------------------------------------
739   // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
740   // access to the data in a RepeatedField.  The methods below provide aggregate
741   // access by exposing the RepeatedField object itself with the Message.
742   // Applying these templates to inappropriate types will lead to an undefined
743   // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
744   // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
745   //
746   // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
747 
748   // DEPRECATED. Please use GetRepeatedFieldRef().
749   //
750   // for T = Cord and all protobuf scalar types except enums.
751   template <typename T>
752   PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
753   const RepeatedField<T>& GetRepeatedField(const Message&,
754                                            const FieldDescriptor*) const;
755 
756   // DEPRECATED. Please use GetMutableRepeatedFieldRef().
757   //
758   // for T = Cord and all protobuf scalar types except enums.
759   template <typename T>
760   PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
761   RepeatedField<T>* MutableRepeatedField(Message*,
762                                          const FieldDescriptor*) const;
763 
764   // DEPRECATED. Please use GetRepeatedFieldRef().
765   //
766   // for T = std::string, google::protobuf::internal::StringPieceField
767   //         google::protobuf::Message & descendants.
768   template <typename T>
769   PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
770   const RepeatedPtrField<T>& GetRepeatedPtrField(const Message&,
771                                                  const FieldDescriptor*) const;
772 
773   // DEPRECATED. Please use GetMutableRepeatedFieldRef().
774   //
775   // for T = std::string, google::protobuf::internal::StringPieceField
776   //         google::protobuf::Message & descendants.
777   template <typename T>
778   PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
779   RepeatedPtrField<T>* MutableRepeatedPtrField(Message*,
780                                                const FieldDescriptor*) const;
781 
782   // Extensions ----------------------------------------------------------------
783 
784   // Try to find an extension of this message type by fully-qualified field
785   // name.  Returns nullptr if no extension is known for this name or number.
786   PROTOBUF_DEPRECATED_MSG(
787       "Please use DescriptorPool::FindExtensionByPrintableName instead")
788   const FieldDescriptor* FindKnownExtensionByName(
789       const std::string& name) const;
790 
791   // Try to find an extension of this message type by field number.
792   // Returns nullptr if no extension is known for this name or number.
793   PROTOBUF_DEPRECATED_MSG(
794       "Please use DescriptorPool::FindExtensionByNumber instead")
795   const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
796 
797   // Feature Flags -------------------------------------------------------------
798 
799   // Does this message support storing arbitrary integer values in enum fields?
800   // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
801   // take arbitrary integer values, and the legacy GetEnum() getter will
802   // dynamically create an EnumValueDescriptor for any integer value without
803   // one. If |false|, setting an unknown enum value via the integer-based
804   // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
805   //
806   // Generic code that uses reflection to handle messages with enum fields
807   // should check this flag before using the integer-based setter, and either
808   // downgrade to a compatible value or use the UnknownFieldSet if not. For
809   // example:
810   //
811   //   int new_value = GetValueFromApplicationLogic();
812   //   if (reflection->SupportsUnknownEnumValues()) {
813   //     reflection->SetEnumValue(message, field, new_value);
814   //   } else {
815   //     if (field_descriptor->enum_type()->
816   //             FindValueByNumber(new_value) != nullptr) {
817   //       reflection->SetEnumValue(message, field, new_value);
818   //     } else if (emit_unknown_enum_values) {
819   //       reflection->MutableUnknownFields(message)->AddVarint(
820   //           field->number(), new_value);
821   //     } else {
822   //       // convert value to a compatible/default value.
823   //       new_value = CompatibleDowngrade(new_value);
824   //       reflection->SetEnumValue(message, field, new_value);
825   //     }
826   //   }
827   bool SupportsUnknownEnumValues() const;
828 
829   // Returns the MessageFactory associated with this message.  This can be
830   // useful for determining if a message is a generated message or not, for
831   // example:
832   //   if (message->GetReflection()->GetMessageFactory() ==
833   //       google::protobuf::MessageFactory::generated_factory()) {
834   //     // This is a generated message.
835   //   }
836   // It can also be used to create more messages of this type, though
837   // Message::New() is an easier way to accomplish this.
838   MessageFactory* GetMessageFactory() const;
839 
840  private:
841   // Obtain a pointer to a Repeated Field Structure and do some type checking:
842   //   on field->cpp_type(),
843   //   on field->field_option().ctype() (if ctype >= 0)
844   //   of field->message_type() (if message_type != nullptr).
845   // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
846   void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
847                                 FieldDescriptor::CppType, int ctype,
848                                 const Descriptor* message_type) const;
849 
850   const void* GetRawRepeatedField(const Message& message,
851                                   const FieldDescriptor* field,
852                                   FieldDescriptor::CppType cpptype, int ctype,
853                                   const Descriptor* message_type) const;
854 
855   // The following methods are used to implement (Mutable)RepeatedFieldRef.
856   // A Ref object will store a raw pointer to the repeated field data (obtained
857   // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
858   // RepeatedFieldAccessor) which will be used to access the raw data.
859 
860   // Returns a raw pointer to the repeated field
861   //
862   // "cpp_type" and "message_type" are deduced from the type parameter T passed
863   // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
864   // "message_type" should be set to its descriptor. Otherwise "message_type"
865   // should be set to nullptr. Implementations of this method should check
866   // whether "cpp_type"/"message_type" is consistent with the actual type of the
867   // field. We use 1 routine rather than 2 (const vs mutable) because it is
868   // protected and it doesn't change the message.
869   void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
870                           FieldDescriptor::CppType cpp_type,
871                           const Descriptor* message_type) const;
872 
873   // The returned pointer should point to a singleton instance which implements
874   // the RepeatedFieldAccessor interface.
875   const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
876       const FieldDescriptor* field) const;
877 
878   const Descriptor* const descriptor_;
879   const internal::ReflectionSchema schema_;
880   const DescriptorPool* const descriptor_pool_;
881   MessageFactory* const message_factory_;
882 
883   // Last non weak field index. This is an optimization when most weak fields
884   // are at the end of the containing message. If a message proto doesn't
885   // contain weak fields, then this field equals descriptor_->field_count().
886   int last_non_weak_field_index_;
887 
888   template <typename T, typename Enable>
889   friend class RepeatedFieldRef;
890   template <typename T, typename Enable>
891   friend class MutableRepeatedFieldRef;
892   friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
893   friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
894   friend class DynamicMessageFactory;
895   friend class python::MapReflectionFriend;
896 #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
897   friend class expr::CelMapReflectionFriend;
898   friend class internal::MapFieldReflectionTest;
899   friend class internal::MapKeySorter;
900   friend class internal::WireFormat;
901   friend class internal::ReflectionOps;
902   // Needed for implementing text format for map.
903   friend class internal::MapFieldPrinterHelper;
904   friend class internal::ReflectionAccessor;
905 
906   Reflection(const Descriptor* descriptor,
907              const internal::ReflectionSchema& schema,
908              const DescriptorPool* pool, MessageFactory* factory);
909 
910   // Special version for specialized implementations of string.  We can't
911   // call MutableRawRepeatedField directly here because we don't have access to
912   // FieldOptions::* which are defined in descriptor.pb.h.  Including that
913   // file here is not possible because it would cause a circular include cycle.
914   // We use 1 routine rather than 2 (const vs mutable) because it is private
915   // and mutable a repeated string field doesn't change the message.
916   void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
917                                  bool is_string) const;
918 
919   friend class MapReflectionTester;
920   // Returns true if key is in map. Returns false if key is not in map field.
921   bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
922                       const MapKey& key) const;
923 
924   // If key is in map field: Saves the value pointer to val and returns
925   // false. If key in not in map field: Insert the key into map, saves
926   // value pointer to val and retuns true.
927   bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
928                               const MapKey& key, MapValueRef* val) const;
929 
930   // Delete and returns true if key is in the map field. Returns false
931   // otherwise.
932   bool DeleteMapValue(Message* message, const FieldDescriptor* field,
933                       const MapKey& key) const;
934 
935   // Returns a MapIterator referring to the first element in the map field.
936   // If the map field is empty, this function returns the same as
937   // reflection::MapEnd. Mutation to the field may invalidate the iterator.
938   MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
939 
940   // Returns a MapIterator referring to the theoretical element that would
941   // follow the last element in the map field. It does not point to any
942   // real element. Mutation to the field may invalidate the iterator.
943   MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
944 
945   // Get the number of <key, value> pair of a map field. The result may be
946   // different from FieldSize which can have duplicate keys.
947   int MapSize(const Message& message, const FieldDescriptor* field) const;
948 
949   // Help method for MapIterator.
950   friend class MapIterator;
951   internal::MapFieldBase* MutableMapData(Message* message,
952                                          const FieldDescriptor* field) const;
953 
954   const internal::MapFieldBase* GetMapData(const Message& message,
955                                            const FieldDescriptor* field) const;
956 
957   template <class T>
958   const T& GetRawNonOneof(const Message& message,
959                           const FieldDescriptor* field) const;
960   template <class T>
961   T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;
962 
963   template <typename Type>
964   const Type& GetRaw(const Message& message,
965                      const FieldDescriptor* field) const;
966   template <typename Type>
967   inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
968   template <typename Type>
969   inline const Type& DefaultRaw(const FieldDescriptor* field) const;
970 
971   inline const uint32* GetHasBits(const Message& message) const;
972   inline uint32* MutableHasBits(Message* message) const;
973   inline uint32 GetOneofCase(const Message& message,
974                              const OneofDescriptor* oneof_descriptor) const;
975   inline uint32* MutableOneofCase(
976       Message* message, const OneofDescriptor* oneof_descriptor) const;
977   inline const internal::ExtensionSet& GetExtensionSet(
978       const Message& message) const;
979   inline internal::ExtensionSet* MutableExtensionSet(Message* message) const;
980   inline Arena* GetArena(Message* message) const;
981 
982   inline const internal::InternalMetadataWithArena&
983   GetInternalMetadataWithArena(const Message& message) const;
984 
985   internal::InternalMetadataWithArena* MutableInternalMetadataWithArena(
986       Message* message) const;
987 
988   inline bool IsInlined(const FieldDescriptor* field) const;
989 
990   inline bool HasBit(const Message& message,
991                      const FieldDescriptor* field) const;
992   inline void SetBit(Message* message, const FieldDescriptor* field) const;
993   inline void ClearBit(Message* message, const FieldDescriptor* field) const;
994   inline void SwapBit(Message* message1, Message* message2,
995                       const FieldDescriptor* field) const;
996 
997   // This function only swaps the field. Should swap corresponding has_bit
998   // before or after using this function.
999   void SwapField(Message* message1, Message* message2,
1000                  const FieldDescriptor* field) const;
1001 
1002   void SwapOneofField(Message* message1, Message* message2,
1003                       const OneofDescriptor* oneof_descriptor) const;
1004 
1005   inline bool HasOneofField(const Message& message,
1006                             const FieldDescriptor* field) const;
1007   inline void SetOneofCase(Message* message,
1008                            const FieldDescriptor* field) const;
1009   inline void ClearOneofField(Message* message,
1010                               const FieldDescriptor* field) const;
1011 
1012   template <typename Type>
1013   inline const Type& GetField(const Message& message,
1014                               const FieldDescriptor* field) const;
1015   template <typename Type>
1016   inline void SetField(Message* message, const FieldDescriptor* field,
1017                        const Type& value) const;
1018   template <typename Type>
1019   inline Type* MutableField(Message* message,
1020                             const FieldDescriptor* field) const;
1021   template <typename Type>
1022   inline const Type& GetRepeatedField(const Message& message,
1023                                       const FieldDescriptor* field,
1024                                       int index) const;
1025   template <typename Type>
1026   inline const Type& GetRepeatedPtrField(const Message& message,
1027                                          const FieldDescriptor* field,
1028                                          int index) const;
1029   template <typename Type>
1030   inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
1031                                int index, Type value) const;
1032   template <typename Type>
1033   inline Type* MutableRepeatedField(Message* message,
1034                                     const FieldDescriptor* field,
1035                                     int index) const;
1036   template <typename Type>
1037   inline void AddField(Message* message, const FieldDescriptor* field,
1038                        const Type& value) const;
1039   template <typename Type>
1040   inline Type* AddField(Message* message, const FieldDescriptor* field) const;
1041 
1042   int GetExtensionNumberOrDie(const Descriptor* type) const;
1043 
1044   // Internal versions of EnumValue API perform no checking. Called after checks
1045   // by public methods.
1046   void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
1047                             int value) const;
1048   void SetRepeatedEnumValueInternal(Message* message,
1049                                     const FieldDescriptor* field, int index,
1050                                     int value) const;
1051   void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
1052                             int value) const;
1053 
1054   Message* UnsafeArenaReleaseMessage(Message* message,
1055                                      const FieldDescriptor* field,
1056                                      MessageFactory* factory = nullptr) const;
1057 
1058   void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
1059                                       const FieldDescriptor* field) const;
1060 
1061   friend inline  // inline so nobody can call this function.
1062       void
1063       RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
1064 
1065   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
1066 };
1067 
1068 // Abstract interface for a factory for message objects.
1069 class PROTOBUF_EXPORT MessageFactory {
1070  public:
MessageFactory()1071   inline MessageFactory() {}
1072   virtual ~MessageFactory();
1073 
1074   // Given a Descriptor, gets or constructs the default (prototype) Message
1075   // of that type.  You can then call that message's New() method to construct
1076   // a mutable message of that type.
1077   //
1078   // Calling this method twice with the same Descriptor returns the same
1079   // object.  The returned object remains property of the factory.  Also, any
1080   // objects created by calling the prototype's New() method share some data
1081   // with the prototype, so these must be destroyed before the MessageFactory
1082   // is destroyed.
1083   //
1084   // The given descriptor must outlive the returned message, and hence must
1085   // outlive the MessageFactory.
1086   //
1087   // Some implementations do not support all types.  GetPrototype() will
1088   // return nullptr if the descriptor passed in is not supported.
1089   //
1090   // This method may or may not be thread-safe depending on the implementation.
1091   // Each implementation should document its own degree thread-safety.
1092   virtual const Message* GetPrototype(const Descriptor* type) = 0;
1093 
1094   // Gets a MessageFactory which supports all generated, compiled-in messages.
1095   // In other words, for any compiled-in type FooMessage, the following is true:
1096   //   MessageFactory::generated_factory()->GetPrototype(
1097   //     FooMessage::descriptor()) == FooMessage::default_instance()
1098   // This factory supports all types which are found in
1099   // DescriptorPool::generated_pool().  If given a descriptor from any other
1100   // pool, GetPrototype() will return nullptr.  (You can also check if a
1101   // descriptor is for a generated message by checking if
1102   // descriptor->file()->pool() == DescriptorPool::generated_pool().)
1103   //
1104   // This factory is 100% thread-safe; calling GetPrototype() does not modify
1105   // any shared data.
1106   //
1107   // This factory is a singleton.  The caller must not delete the object.
1108   static MessageFactory* generated_factory();
1109 
1110   // For internal use only:  Registers a .proto file at static initialization
1111   // time, to be placed in generated_factory.  The first time GetPrototype()
1112   // is called with a descriptor from this file, |register_messages| will be
1113   // called, with the file name as the parameter.  It must call
1114   // InternalRegisterGeneratedMessage() (below) to register each message type
1115   // in the file.  This strange mechanism is necessary because descriptors are
1116   // built lazily, so we can't register types by their descriptor until we
1117   // know that the descriptor exists.  |filename| must be a permanent string.
1118   static void InternalRegisterGeneratedFile(
1119       const google::protobuf::internal::DescriptorTable* table);
1120 
1121   // For internal use only:  Registers a message type.  Called only by the
1122   // functions which are registered with InternalRegisterGeneratedFile(),
1123   // above.
1124   static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
1125                                                const Message* prototype);
1126 
1127 
1128  private:
1129   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
1130 };
1131 
1132 #define DECLARE_GET_REPEATED_FIELD(TYPE)                                       \
1133   template <>                                                                  \
1134   PROTOBUF_EXPORT const RepeatedField<TYPE>&                                   \
1135   Reflection::GetRepeatedField<TYPE>(const Message& message,                   \
1136                                      const FieldDescriptor* field) const;      \
1137                                                                                \
1138   template <>                                                                  \
1139   PROTOBUF_EXPORT RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>( \
1140       Message * message, const FieldDescriptor* field) const;
1141 
1142 DECLARE_GET_REPEATED_FIELD(int32)
DECLARE_GET_REPEATED_FIELD(int64)1143 DECLARE_GET_REPEATED_FIELD(int64)
1144 DECLARE_GET_REPEATED_FIELD(uint32)
1145 DECLARE_GET_REPEATED_FIELD(uint64)
1146 DECLARE_GET_REPEATED_FIELD(float)
1147 DECLARE_GET_REPEATED_FIELD(double)
1148 DECLARE_GET_REPEATED_FIELD(bool)
1149 
1150 #undef DECLARE_GET_REPEATED_FIELD
1151 
1152 // Tries to downcast this message to a generated message type.  Returns nullptr
1153 // if this class is not an instance of T.  This works even if RTTI is disabled.
1154 //
1155 // This also has the effect of creating a strong reference to T that will
1156 // prevent the linker from stripping it out at link time.  This can be important
1157 // if you are using a DynamicMessageFactory that delegates to the generated
1158 // factory.
1159 template <typename T>
1160 const T* DynamicCastToGenerated(const Message* from) {
1161   // Compile-time assert that T is a generated type that has a
1162   // default_instance() accessor, but avoid actually calling it.
1163   const T& (*get_default_instance)() = &T::default_instance;
1164   (void)get_default_instance;
1165 
1166   // Compile-time assert that T is a subclass of google::protobuf::Message.
1167   const Message* unused = static_cast<T*>(nullptr);
1168   (void)unused;
1169 
1170 #ifdef GOOGLE_PROTOBUF_NO_RTTI
1171   bool ok = T::default_instance().GetReflection() == from->GetReflection();
1172   return ok ? down_cast<const T*>(from) : nullptr;
1173 #else
1174   return dynamic_cast<const T*>(from);
1175 #endif
1176 }
1177 
1178 template <typename T>
DynamicCastToGenerated(Message * from)1179 T* DynamicCastToGenerated(Message* from) {
1180   const Message* message_const = from;
1181   return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
1182 }
1183 
1184 // Call this function to ensure that this message's reflection is linked into
1185 // the binary:
1186 //
1187 //   google::protobuf::LinkMessageReflection<FooMessage>();
1188 //
1189 // This will ensure that the following lookup will succeed:
1190 //
1191 //   DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage");
1192 //
1193 // As a side-effect, it will also guarantee that anything else from the same
1194 // .proto file will also be available for lookup in the generated pool.
1195 //
1196 // This function does not actually register the message, so it does not need
1197 // to be called before the lookup.  However it does need to occur in a function
1198 // that cannot be stripped from the binary (ie. it must be reachable from main).
1199 //
1200 // Best practice is to call this function as close as possible to where the
1201 // reflection is actually needed.  This function is very cheap to call, so you
1202 // should not need to worry about its runtime overhead except in the tightest
1203 // of loops (on x86-64 it compiles into two "mov" instructions).
1204 template <typename T>
LinkMessageReflection()1205 void LinkMessageReflection() {
1206   typedef const T& GetDefaultInstanceFunction();
1207   GetDefaultInstanceFunction* volatile unused = &T::default_instance;
1208   (void)&unused;  // Use address to avoid an extra load of volatile variable.
1209 }
1210 
1211 // =============================================================================
1212 // Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
1213 // specializations for <std::string>, <StringPieceField> and <Message> and
1214 // handle everything else with the default template which will match any type
1215 // having a method with signature "static const google::protobuf::Descriptor*
1216 // descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
1217 
1218 template <>
1219 inline const RepeatedPtrField<std::string>&
1220 Reflection::GetRepeatedPtrField<std::string>(
1221     const Message& message, const FieldDescriptor* field) const {
1222   return *static_cast<RepeatedPtrField<std::string>*>(
1223       MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
1224 }
1225 
1226 template <>
1227 inline RepeatedPtrField<std::string>*
1228 Reflection::MutableRepeatedPtrField<std::string>(
1229     Message* message, const FieldDescriptor* field) const {
1230   return static_cast<RepeatedPtrField<std::string>*>(
1231       MutableRawRepeatedString(message, field, true));
1232 }
1233 
1234 
1235 // -----
1236 
1237 template <>
GetRepeatedPtrField(const Message & message,const FieldDescriptor * field)1238 inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField(
1239     const Message& message, const FieldDescriptor* field) const {
1240   return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
1241       message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1242 }
1243 
1244 template <>
MutableRepeatedPtrField(Message * message,const FieldDescriptor * field)1245 inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField(
1246     Message* message, const FieldDescriptor* field) const {
1247   return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
1248       message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1249 }
1250 
1251 template <typename PB>
GetRepeatedPtrField(const Message & message,const FieldDescriptor * field)1252 inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField(
1253     const Message& message, const FieldDescriptor* field) const {
1254   return *static_cast<const RepeatedPtrField<PB>*>(
1255       GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
1256                           PB::default_instance().GetDescriptor()));
1257 }
1258 
1259 template <typename PB>
MutableRepeatedPtrField(Message * message,const FieldDescriptor * field)1260 inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField(
1261     Message* message, const FieldDescriptor* field) const {
1262   return static_cast<RepeatedPtrField<PB>*>(
1263       MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
1264                               -1, PB::default_instance().GetDescriptor()));
1265 }
1266 }  // namespace protobuf
1267 }  // namespace google
1268 
1269 #include <google/protobuf/port_undef.inc>
1270 
1271 #endif  // GOOGLE_PROTOBUF_MESSAGE_H__
1272