• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <Eigen/SVD>
13 
14 template<typename MatrixType, typename JacobiScalar>
jacobi(const MatrixType & m=MatrixType ())15 void jacobi(const MatrixType& m = MatrixType())
16 {
17   typedef typename MatrixType::Index Index;
18   Index rows = m.rows();
19   Index cols = m.cols();
20 
21   enum {
22     RowsAtCompileTime = MatrixType::RowsAtCompileTime,
23     ColsAtCompileTime = MatrixType::ColsAtCompileTime
24   };
25 
26   typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
27 
28   const MatrixType a(MatrixType::Random(rows, cols));
29 
30   JacobiVector v = JacobiVector::Random().normalized();
31   JacobiScalar c = v.x(), s = v.y();
32   JacobiRotation<JacobiScalar> rot(c, s);
33 
34   {
35     Index p = internal::random<Index>(0, rows-1);
36     Index q;
37     do {
38       q = internal::random<Index>(0, rows-1);
39     } while (q == p);
40 
41     MatrixType b = a;
42     b.applyOnTheLeft(p, q, rot);
43     VERIFY_IS_APPROX(b.row(p), c * a.row(p) + numext::conj(s) * a.row(q));
44     VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + numext::conj(c) * a.row(q));
45   }
46 
47   {
48     Index p = internal::random<Index>(0, cols-1);
49     Index q;
50     do {
51       q = internal::random<Index>(0, cols-1);
52     } while (q == p);
53 
54     MatrixType b = a;
55     b.applyOnTheRight(p, q, rot);
56     VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q));
57     VERIFY_IS_APPROX(b.col(q), numext::conj(s) * a.col(p) + numext::conj(c) * a.col(q));
58   }
59 }
60 
test_jacobi()61 void test_jacobi()
62 {
63   for(int i = 0; i < g_repeat; i++) {
64     CALL_SUBTEST_1(( jacobi<Matrix3f, float>() ));
65     CALL_SUBTEST_2(( jacobi<Matrix4d, double>() ));
66     CALL_SUBTEST_3(( jacobi<Matrix4cf, float>() ));
67     CALL_SUBTEST_3(( jacobi<Matrix4cf, std::complex<float> >() ));
68 
69     int r = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2),
70         c = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2);
71     CALL_SUBTEST_4(( jacobi<MatrixXf, float>(MatrixXf(r,c)) ));
72     CALL_SUBTEST_5(( jacobi<MatrixXcd, double>(MatrixXcd(r,c)) ));
73     CALL_SUBTEST_5(( jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r,c)) ));
74     // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned paths
75     CALL_SUBTEST_6(( jacobi<MatrixXcf, float>(MatrixXcf(r,c)) ));
76     CALL_SUBTEST_6(( jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r,c)) ));
77 
78     TEST_SET_BUT_UNUSED_VARIABLE(r);
79     TEST_SET_BUT_UNUSED_VARIABLE(c);
80   }
81 }
82