1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk>
5 // Copyright (C) 2011, 2013 Chen-Pang He <jdh8@ms63.hinet.net>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #ifndef EIGEN_MATRIX_EXPONENTIAL
12 #define EIGEN_MATRIX_EXPONENTIAL
13
14 #include "StemFunction.h"
15
16 namespace Eigen {
17 namespace internal {
18
19 /** \brief Scaling operator.
20 *
21 * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$.
22 */
23 template <typename RealScalar>
24 struct MatrixExponentialScalingOp
25 {
26 /** \brief Constructor.
27 *
28 * \param[in] squarings The integer \f$ s \f$ in this document.
29 */
MatrixExponentialScalingOpMatrixExponentialScalingOp30 MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { }
31
32
33 /** \brief Scale a matrix coefficient.
34 *
35 * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
36 */
operatorMatrixExponentialScalingOp37 inline const RealScalar operator() (const RealScalar& x) const
38 {
39 using std::ldexp;
40 return ldexp(x, -m_squarings);
41 }
42
43 typedef std::complex<RealScalar> ComplexScalar;
44
45 /** \brief Scale a matrix coefficient.
46 *
47 * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$.
48 */
operatorMatrixExponentialScalingOp49 inline const ComplexScalar operator() (const ComplexScalar& x) const
50 {
51 using std::ldexp;
52 return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings));
53 }
54
55 private:
56 int m_squarings;
57 };
58
59 /** \brief Compute the (3,3)-Padé approximant to the exponential.
60 *
61 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
62 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
63 */
64 template <typename MatA, typename MatU, typename MatV>
matrix_exp_pade3(const MatA & A,MatU & U,MatV & V)65 void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V)
66 {
67 typedef typename MatA::PlainObject MatrixType;
68 typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar;
69 const RealScalar b[] = {120.L, 60.L, 12.L, 1.L};
70 const MatrixType A2 = A * A;
71 const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
72 U.noalias() = A * tmp;
73 V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
74 }
75
76 /** \brief Compute the (5,5)-Padé approximant to the exponential.
77 *
78 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
79 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
80 */
81 template <typename MatA, typename MatU, typename MatV>
matrix_exp_pade5(const MatA & A,MatU & U,MatV & V)82 void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V)
83 {
84 typedef typename MatA::PlainObject MatrixType;
85 typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
86 const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L};
87 const MatrixType A2 = A * A;
88 const MatrixType A4 = A2 * A2;
89 const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
90 U.noalias() = A * tmp;
91 V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
92 }
93
94 /** \brief Compute the (7,7)-Padé approximant to the exponential.
95 *
96 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
97 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
98 */
99 template <typename MatA, typename MatU, typename MatV>
matrix_exp_pade7(const MatA & A,MatU & U,MatV & V)100 void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V)
101 {
102 typedef typename MatA::PlainObject MatrixType;
103 typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
104 const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L};
105 const MatrixType A2 = A * A;
106 const MatrixType A4 = A2 * A2;
107 const MatrixType A6 = A4 * A2;
108 const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2
109 + b[1] * MatrixType::Identity(A.rows(), A.cols());
110 U.noalias() = A * tmp;
111 V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
112
113 }
114
115 /** \brief Compute the (9,9)-Padé approximant to the exponential.
116 *
117 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
118 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
119 */
120 template <typename MatA, typename MatU, typename MatV>
matrix_exp_pade9(const MatA & A,MatU & U,MatV & V)121 void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V)
122 {
123 typedef typename MatA::PlainObject MatrixType;
124 typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
125 const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L,
126 2162160.L, 110880.L, 3960.L, 90.L, 1.L};
127 const MatrixType A2 = A * A;
128 const MatrixType A4 = A2 * A2;
129 const MatrixType A6 = A4 * A2;
130 const MatrixType A8 = A6 * A2;
131 const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
132 + b[1] * MatrixType::Identity(A.rows(), A.cols());
133 U.noalias() = A * tmp;
134 V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
135 }
136
137 /** \brief Compute the (13,13)-Padé approximant to the exponential.
138 *
139 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
140 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
141 */
142 template <typename MatA, typename MatU, typename MatV>
matrix_exp_pade13(const MatA & A,MatU & U,MatV & V)143 void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V)
144 {
145 typedef typename MatA::PlainObject MatrixType;
146 typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
147 const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L,
148 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L,
149 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L};
150 const MatrixType A2 = A * A;
151 const MatrixType A4 = A2 * A2;
152 const MatrixType A6 = A4 * A2;
153 V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage
154 MatrixType tmp = A6 * V;
155 tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols());
156 U.noalias() = A * tmp;
157 tmp = b[12] * A6 + b[10] * A4 + b[8] * A2;
158 V.noalias() = A6 * tmp;
159 V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols());
160 }
161
162 /** \brief Compute the (17,17)-Padé approximant to the exponential.
163 *
164 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé
165 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
166 *
167 * This function activates only if your long double is double-double or quadruple.
168 */
169 #if LDBL_MANT_DIG > 64
170 template <typename MatA, typename MatU, typename MatV>
matrix_exp_pade17(const MatA & A,MatU & U,MatV & V)171 void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V)
172 {
173 typedef typename MatA::PlainObject MatrixType;
174 typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar;
175 const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
176 100610229646136770560000.L, 15720348382208870400000.L,
177 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
178 595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
179 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
180 46512.L, 306.L, 1.L};
181 const MatrixType A2 = A * A;
182 const MatrixType A4 = A2 * A2;
183 const MatrixType A6 = A4 * A2;
184 const MatrixType A8 = A4 * A4;
185 V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage
186 MatrixType tmp = A8 * V;
187 tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2
188 + b[1] * MatrixType::Identity(A.rows(), A.cols());
189 U.noalias() = A * tmp;
190 tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2;
191 V.noalias() = tmp * A8;
192 V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2
193 + b[0] * MatrixType::Identity(A.rows(), A.cols());
194 }
195 #endif
196
197 template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real>
198 struct matrix_exp_computeUV
199 {
200 /** \brief Compute Padé approximant to the exponential.
201 *
202 * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Padé
203 * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$
204 * denotes the matrix \c arg. The degree of the Padé approximant and the value of squarings
205 * are chosen such that the approximation error is no more than the round-off error.
206 */
207 static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings);
208 };
209
210 template <typename MatrixType>
211 struct matrix_exp_computeUV<MatrixType, float>
212 {
213 template <typename ArgType>
214 static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
215 {
216 using std::frexp;
217 using std::pow;
218 const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
219 squarings = 0;
220 if (l1norm < 4.258730016922831e-001f) {
221 matrix_exp_pade3(arg, U, V);
222 } else if (l1norm < 1.880152677804762e+000f) {
223 matrix_exp_pade5(arg, U, V);
224 } else {
225 const float maxnorm = 3.925724783138660f;
226 frexp(l1norm / maxnorm, &squarings);
227 if (squarings < 0) squarings = 0;
228 MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings));
229 matrix_exp_pade7(A, U, V);
230 }
231 }
232 };
233
234 template <typename MatrixType>
235 struct matrix_exp_computeUV<MatrixType, double>
236 {
237 template <typename ArgType>
238 static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
239 {
240 using std::frexp;
241 using std::pow;
242 const double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
243 squarings = 0;
244 if (l1norm < 1.495585217958292e-002) {
245 matrix_exp_pade3(arg, U, V);
246 } else if (l1norm < 2.539398330063230e-001) {
247 matrix_exp_pade5(arg, U, V);
248 } else if (l1norm < 9.504178996162932e-001) {
249 matrix_exp_pade7(arg, U, V);
250 } else if (l1norm < 2.097847961257068e+000) {
251 matrix_exp_pade9(arg, U, V);
252 } else {
253 const double maxnorm = 5.371920351148152;
254 frexp(l1norm / maxnorm, &squarings);
255 if (squarings < 0) squarings = 0;
256 MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<double>(squarings));
257 matrix_exp_pade13(A, U, V);
258 }
259 }
260 };
261
262 template <typename MatrixType>
263 struct matrix_exp_computeUV<MatrixType, long double>
264 {
265 template <typename ArgType>
266 static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings)
267 {
268 #if LDBL_MANT_DIG == 53 // double precision
269 matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings);
270
271 #else
272
273 using std::frexp;
274 using std::pow;
275 const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff();
276 squarings = 0;
277
278 #if LDBL_MANT_DIG <= 64 // extended precision
279
280 if (l1norm < 4.1968497232266989671e-003L) {
281 matrix_exp_pade3(arg, U, V);
282 } else if (l1norm < 1.1848116734693823091e-001L) {
283 matrix_exp_pade5(arg, U, V);
284 } else if (l1norm < 5.5170388480686700274e-001L) {
285 matrix_exp_pade7(arg, U, V);
286 } else if (l1norm < 1.3759868875587845383e+000L) {
287 matrix_exp_pade9(arg, U, V);
288 } else {
289 const long double maxnorm = 4.0246098906697353063L;
290 frexp(l1norm / maxnorm, &squarings);
291 if (squarings < 0) squarings = 0;
292 MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
293 matrix_exp_pade13(A, U, V);
294 }
295
296 #elif LDBL_MANT_DIG <= 106 // double-double
297
298 if (l1norm < 3.2787892205607026992947488108213e-005L) {
299 matrix_exp_pade3(arg, U, V);
300 } else if (l1norm < 6.4467025060072760084130906076332e-003L) {
301 matrix_exp_pade5(arg, U, V);
302 } else if (l1norm < 6.8988028496595374751374122881143e-002L) {
303 matrix_exp_pade7(arg, U, V);
304 } else if (l1norm < 2.7339737518502231741495857201670e-001L) {
305 matrix_exp_pade9(arg, U, V);
306 } else if (l1norm < 1.3203382096514474905666448850278e+000L) {
307 matrix_exp_pade13(arg, U, V);
308 } else {
309 const long double maxnorm = 3.2579440895405400856599663723517L;
310 frexp(l1norm / maxnorm, &squarings);
311 if (squarings < 0) squarings = 0;
312 MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
313 matrix_exp_pade17(A, U, V);
314 }
315
316 #elif LDBL_MANT_DIG <= 112 // quadruple precison
317
318 if (l1norm < 1.639394610288918690547467954466970e-005L) {
319 matrix_exp_pade3(arg, U, V);
320 } else if (l1norm < 4.253237712165275566025884344433009e-003L) {
321 matrix_exp_pade5(arg, U, V);
322 } else if (l1norm < 5.125804063165764409885122032933142e-002L) {
323 matrix_exp_pade7(arg, U, V);
324 } else if (l1norm < 2.170000765161155195453205651889853e-001L) {
325 matrix_exp_pade9(arg, U, V);
326 } else if (l1norm < 1.125358383453143065081397882891878e+000L) {
327 matrix_exp_pade13(arg, U, V);
328 } else {
329 frexp(l1norm / maxnorm, &squarings);
330 if (squarings < 0) squarings = 0;
331 MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings));
332 matrix_exp_pade17(A, U, V);
333 }
334
335 #else
336
337 // this case should be handled in compute()
338 eigen_assert(false && "Bug in MatrixExponential");
339
340 #endif
341 #endif // LDBL_MANT_DIG
342 }
343 };
344
345
346 /* Computes the matrix exponential
347 *
348 * \param arg argument of matrix exponential (should be plain object)
349 * \param result variable in which result will be stored
350 */
351 template <typename ArgType, typename ResultType>
352 void matrix_exp_compute(const ArgType& arg, ResultType &result)
353 {
354 typedef typename ArgType::PlainObject MatrixType;
355 #if LDBL_MANT_DIG > 112 // rarely happens
356 typedef typename traits<MatrixType>::Scalar Scalar;
357 typedef typename NumTraits<Scalar>::Real RealScalar;
358 typedef typename std::complex<RealScalar> ComplexScalar;
359 if (sizeof(RealScalar) > 14) {
360 result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>);
361 return;
362 }
363 #endif
364 MatrixType U, V;
365 int squarings;
366 matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V)
367 MatrixType numer = U + V;
368 MatrixType denom = -U + V;
369 result = denom.partialPivLu().solve(numer);
370 for (int i=0; i<squarings; i++)
371 result *= result; // undo scaling by repeated squaring
372 }
373
374 } // end namespace Eigen::internal
375
376 /** \ingroup MatrixFunctions_Module
377 *
378 * \brief Proxy for the matrix exponential of some matrix (expression).
379 *
380 * \tparam Derived Type of the argument to the matrix exponential.
381 *
382 * This class holds the argument to the matrix exponential until it is assigned or evaluated for
383 * some other reason (so the argument should not be changed in the meantime). It is the return type
384 * of MatrixBase::exp() and most of the time this is the only way it is used.
385 */
386 template<typename Derived> struct MatrixExponentialReturnValue
387 : public ReturnByValue<MatrixExponentialReturnValue<Derived> >
388 {
389 typedef typename Derived::Index Index;
390 public:
391 /** \brief Constructor.
392 *
393 * \param src %Matrix (expression) forming the argument of the matrix exponential.
394 */
395 MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
396
397 /** \brief Compute the matrix exponential.
398 *
399 * \param result the matrix exponential of \p src in the constructor.
400 */
401 template <typename ResultType>
402 inline void evalTo(ResultType& result) const
403 {
404 const typename internal::nested_eval<Derived, 10>::type tmp(m_src);
405 internal::matrix_exp_compute(tmp, result);
406 }
407
408 Index rows() const { return m_src.rows(); }
409 Index cols() const { return m_src.cols(); }
410
411 protected:
412 const typename internal::ref_selector<Derived>::type m_src;
413 };
414
415 namespace internal {
416 template<typename Derived>
417 struct traits<MatrixExponentialReturnValue<Derived> >
418 {
419 typedef typename Derived::PlainObject ReturnType;
420 };
421 }
422
423 template <typename Derived>
424 const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
425 {
426 eigen_assert(rows() == cols());
427 return MatrixExponentialReturnValue<Derived>(derived());
428 }
429
430 } // end namespace Eigen
431
432 #endif // EIGEN_MATRIX_EXPONENTIAL
433