1 //===- PPC64.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "SymbolTable.h"
10 #include "Symbols.h"
11 #include "SyntheticSections.h"
12 #include "Target.h"
13 #include "Thunks.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "lld/Common/Memory.h"
16 #include "llvm/Support/Endian.h"
17
18 using namespace llvm;
19 using namespace llvm::object;
20 using namespace llvm::support::endian;
21 using namespace llvm::ELF;
22 using namespace lld;
23 using namespace lld::elf;
24
25 constexpr uint64_t ppc64TocOffset = 0x8000;
26 constexpr uint64_t dynamicThreadPointerOffset = 0x8000;
27
28 // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform
29 // instructions that can be used as part of the initial exec TLS sequence.
30 enum XFormOpcd {
31 LBZX = 87,
32 LHZX = 279,
33 LWZX = 23,
34 LDX = 21,
35 STBX = 215,
36 STHX = 407,
37 STWX = 151,
38 STDX = 149,
39 ADD = 266,
40 };
41
42 enum DFormOpcd {
43 LBZ = 34,
44 LBZU = 35,
45 LHZ = 40,
46 LHZU = 41,
47 LHAU = 43,
48 LWZ = 32,
49 LWZU = 33,
50 LFSU = 49,
51 LD = 58,
52 LFDU = 51,
53 STB = 38,
54 STBU = 39,
55 STH = 44,
56 STHU = 45,
57 STW = 36,
58 STWU = 37,
59 STFSU = 53,
60 STFDU = 55,
61 STD = 62,
62 ADDI = 14
63 };
64
65 constexpr uint32_t NOP = 0x60000000;
66
67 enum class PPCLegacyInsn : uint32_t {
68 NOINSN = 0,
69 // Loads.
70 LBZ = 0x88000000,
71 LHZ = 0xa0000000,
72 LWZ = 0x80000000,
73 LHA = 0xa8000000,
74 LWA = 0xe8000002,
75 LD = 0xe8000000,
76 LFS = 0xC0000000,
77 LXSSP = 0xe4000003,
78 LFD = 0xc8000000,
79 LXSD = 0xe4000002,
80 LXV = 0xf4000001,
81 LXVP = 0x18000000,
82
83 // Stores.
84 STB = 0x98000000,
85 STH = 0xb0000000,
86 STW = 0x90000000,
87 STD = 0xf8000000,
88 STFS = 0xd0000000,
89 STXSSP = 0xf4000003,
90 STFD = 0xd8000000,
91 STXSD = 0xf4000002,
92 STXV = 0xf4000005,
93 STXVP = 0x18000001
94 };
95 enum class PPCPrefixedInsn : uint64_t {
96 NOINSN = 0,
97 PREFIX_MLS = 0x0610000000000000,
98 PREFIX_8LS = 0x0410000000000000,
99
100 // Loads.
101 PLBZ = PREFIX_MLS,
102 PLHZ = PREFIX_MLS,
103 PLWZ = PREFIX_MLS,
104 PLHA = PREFIX_MLS,
105 PLWA = PREFIX_8LS | 0xa4000000,
106 PLD = PREFIX_8LS | 0xe4000000,
107 PLFS = PREFIX_MLS,
108 PLXSSP = PREFIX_8LS | 0xac000000,
109 PLFD = PREFIX_MLS,
110 PLXSD = PREFIX_8LS | 0xa8000000,
111 PLXV = PREFIX_8LS | 0xc8000000,
112 PLXVP = PREFIX_8LS | 0xe8000000,
113
114 // Stores.
115 PSTB = PREFIX_MLS,
116 PSTH = PREFIX_MLS,
117 PSTW = PREFIX_MLS,
118 PSTD = PREFIX_8LS | 0xf4000000,
119 PSTFS = PREFIX_MLS,
120 PSTXSSP = PREFIX_8LS | 0xbc000000,
121 PSTFD = PREFIX_MLS,
122 PSTXSD = PREFIX_8LS | 0xb8000000,
123 PSTXV = PREFIX_8LS | 0xd8000000,
124 PSTXVP = PREFIX_8LS | 0xf8000000
125 };
checkPPCLegacyInsn(uint32_t encoding)126 static bool checkPPCLegacyInsn(uint32_t encoding) {
127 PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding);
128 if (insn == PPCLegacyInsn::NOINSN)
129 return false;
130 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
131 if (insn == PPCLegacyInsn::Legacy) \
132 return true;
133 #include "PPCInsns.def"
134 #undef PCREL_OPT
135 return false;
136 }
137
138 // Masks to apply to legacy instructions when converting them to prefixed,
139 // pc-relative versions. For the most part, the primary opcode is shared
140 // between the legacy instruction and the suffix of its prefixed version.
141 // However, there are some instances where that isn't the case (DS-Form and
142 // DQ-form instructions).
143 enum class LegacyToPrefixMask : uint64_t {
144 NOMASK = 0x0,
145 OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10).
146 ONLY_RST = 0x3e00000, // [RS]T (6-10).
147 ST_STX28_TO5 =
148 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5.
149 };
150
getPPC64TocBase()151 uint64_t elf::getPPC64TocBase() {
152 // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The
153 // TOC starts where the first of these sections starts. We always create a
154 // .got when we see a relocation that uses it, so for us the start is always
155 // the .got.
156 uint64_t tocVA = in.got->getVA();
157
158 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
159 // thus permitting a full 64 Kbytes segment. Note that the glibc startup
160 // code (crt1.o) assumes that you can get from the TOC base to the
161 // start of the .toc section with only a single (signed) 16-bit relocation.
162 return tocVA + ppc64TocOffset;
163 }
164
getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther)165 unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(uint8_t stOther) {
166 // The offset is encoded into the 3 most significant bits of the st_other
167 // field, with some special values described in section 3.4.1 of the ABI:
168 // 0 --> Zero offset between the GEP and LEP, and the function does NOT use
169 // the TOC pointer (r2). r2 will hold the same value on returning from
170 // the function as it did on entering the function.
171 // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a
172 // caller-saved register for all callers.
173 // 2-6 --> The binary logarithm of the offset eg:
174 // 2 --> 2^2 = 4 bytes --> 1 instruction.
175 // 6 --> 2^6 = 64 bytes --> 16 instructions.
176 // 7 --> Reserved.
177 uint8_t gepToLep = (stOther >> 5) & 7;
178 if (gepToLep < 2)
179 return 0;
180
181 // The value encoded in the st_other bits is the
182 // log-base-2(offset).
183 if (gepToLep < 7)
184 return 1 << gepToLep;
185
186 error("reserved value of 7 in the 3 most-significant-bits of st_other");
187 return 0;
188 }
189
isPPC64SmallCodeModelTocReloc(RelType type)190 bool elf::isPPC64SmallCodeModelTocReloc(RelType type) {
191 // The only small code model relocations that access the .toc section.
192 return type == R_PPC64_TOC16 || type == R_PPC64_TOC16_DS;
193 }
194
writePrefixedInstruction(uint8_t * loc,uint64_t insn)195 void elf::writePrefixedInstruction(uint8_t *loc, uint64_t insn) {
196 insn = config->isLE ? insn << 32 | insn >> 32 : insn;
197 write64(loc, insn);
198 }
199
addOptional(StringRef name,uint64_t value,std::vector<Defined * > & defined)200 static bool addOptional(StringRef name, uint64_t value,
201 std::vector<Defined *> &defined) {
202 Symbol *sym = symtab->find(name);
203 if (!sym || sym->isDefined())
204 return false;
205 sym->resolve(Defined{/*file=*/nullptr, saver.save(name), STB_GLOBAL,
206 STV_HIDDEN, STT_FUNC, value,
207 /*size=*/0, /*section=*/nullptr});
208 defined.push_back(cast<Defined>(sym));
209 return true;
210 }
211
212 // If from is 14, write ${prefix}14: firstInsn; ${prefix}15:
213 // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail
214 // The labels are defined only if they exist in the symbol table.
writeSequence(MutableArrayRef<uint32_t> buf,const char * prefix,int from,uint32_t firstInsn,ArrayRef<uint32_t> tail)215 static void writeSequence(MutableArrayRef<uint32_t> buf, const char *prefix,
216 int from, uint32_t firstInsn,
217 ArrayRef<uint32_t> tail) {
218 std::vector<Defined *> defined;
219 char name[16];
220 int first;
221 uint32_t *ptr = buf.data();
222 for (int r = from; r < 32; ++r) {
223 format("%s%d", prefix, r).snprint(name, sizeof(name));
224 if (addOptional(name, 4 * (r - from), defined) && defined.size() == 1)
225 first = r - from;
226 write32(ptr++, firstInsn + 0x200008 * (r - from));
227 }
228 for (uint32_t insn : tail)
229 write32(ptr++, insn);
230 assert(ptr == &*buf.end());
231
232 if (defined.empty())
233 return;
234 // The full section content has the extent of [begin, end). We drop unused
235 // instructions and write [first,end).
236 auto *sec = make<InputSection>(
237 nullptr, SHF_ALLOC, SHT_PROGBITS, 4,
238 makeArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first),
239 4 * (buf.size() - first)),
240 ".text");
241 inputSections.push_back(sec);
242 for (Defined *sym : defined) {
243 sym->section = sec;
244 sym->value -= 4 * first;
245 }
246 }
247
248 // Implements some save and restore functions as described by ELF V2 ABI to be
249 // compatible with GCC. With GCC -Os, when the number of call-saved registers
250 // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and
251 // expects the linker to define them. See
252 // https://sourceware.org/pipermail/binutils/2002-February/017444.html and
253 // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is
254 // weird because libgcc.a would be the natural place. The linker generation
255 // approach has the advantage that the linker can generate multiple copies to
256 // avoid long branch thunks. However, we don't consider the advantage
257 // significant enough to complicate our trunk implementation, so we take the
258 // simple approach and synthesize .text sections providing the implementation.
addPPC64SaveRestore()259 void elf::addPPC64SaveRestore() {
260 static uint32_t savegpr0[20], restgpr0[21], savegpr1[19], restgpr1[19];
261 constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6;
262
263 // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ...
264 // Tail: ld 0, 16(1); mtlr 0; blr
265 writeSequence(restgpr0, "_restgpr0_", 14, 0xe9c1ff70,
266 {0xe8010010, mtlr_0, blr});
267 // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ...
268 // Tail: blr
269 writeSequence(restgpr1, "_restgpr1_", 14, 0xe9ccff70, {blr});
270 // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ...
271 // Tail: std 0, 16(1); blr
272 writeSequence(savegpr0, "_savegpr0_", 14, 0xf9c1ff70, {0xf8010010, blr});
273 // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ...
274 // Tail: blr
275 writeSequence(savegpr1, "_savegpr1_", 14, 0xf9ccff70, {blr});
276 }
277
278 // Find the R_PPC64_ADDR64 in .rela.toc with matching offset.
279 template <typename ELFT>
280 static std::pair<Defined *, int64_t>
getRelaTocSymAndAddend(InputSectionBase * tocSec,uint64_t offset)281 getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) {
282 if (tocSec->numRelocations == 0)
283 return {};
284
285 // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by
286 // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the
287 // relocation index in most cases.
288 //
289 // In rare cases a TOC entry may store a constant that doesn't need an
290 // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8
291 // points to a relocation with larger r_offset. Do a linear probe then.
292 // Constants are extremely uncommon in .toc and the extra number of array
293 // accesses can be seen as a small constant.
294 ArrayRef<typename ELFT::Rela> relas = tocSec->template relas<ELFT>();
295 uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1);
296 for (;;) {
297 if (relas[index].r_offset == offset) {
298 Symbol &sym = tocSec->getFile<ELFT>()->getRelocTargetSym(relas[index]);
299 return {dyn_cast<Defined>(&sym), getAddend<ELFT>(relas[index])};
300 }
301 if (relas[index].r_offset < offset || index == 0)
302 break;
303 --index;
304 }
305 return {};
306 }
307
308 // When accessing a symbol defined in another translation unit, compilers
309 // reserve a .toc entry, allocate a local label and generate toc-indirect
310 // instructions:
311 //
312 // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA
313 // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry
314 // ld/lwa 3, 0(3) # load the value from the address
315 //
316 // .section .toc,"aw",@progbits
317 // .LC0: .tc var[TC],var
318 //
319 // If var is defined, non-preemptable and addressable with a 32-bit signed
320 // offset from the toc base, the address of var can be computed by adding an
321 // offset to the toc base, saving a load.
322 //
323 // addis 3,2,var@toc@ha # this may be relaxed to a nop,
324 // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc
325 // ld/lwa 3, 0(3) # load the value from the address
326 //
327 // Returns true if the relaxation is performed.
tryRelaxPPC64TocIndirection(const Relocation & rel,uint8_t * bufLoc)328 bool elf::tryRelaxPPC64TocIndirection(const Relocation &rel, uint8_t *bufLoc) {
329 assert(config->tocOptimize);
330 if (rel.addend < 0)
331 return false;
332
333 // If the symbol is not the .toc section, this isn't a toc-indirection.
334 Defined *defSym = dyn_cast<Defined>(rel.sym);
335 if (!defSym || !defSym->isSection() || defSym->section->name != ".toc")
336 return false;
337
338 Defined *d;
339 int64_t addend;
340 auto *tocISB = cast<InputSectionBase>(defSym->section);
341 std::tie(d, addend) =
342 config->isLE ? getRelaTocSymAndAddend<ELF64LE>(tocISB, rel.addend)
343 : getRelaTocSymAndAddend<ELF64BE>(tocISB, rel.addend);
344
345 // Only non-preemptable defined symbols can be relaxed.
346 if (!d || d->isPreemptible)
347 return false;
348
349 // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable
350 // ifunc and changed its type to STT_FUNC.
351 assert(!d->isGnuIFunc());
352
353 // Two instructions can materialize a 32-bit signed offset from the toc base.
354 uint64_t tocRelative = d->getVA(addend) - getPPC64TocBase();
355 if (!isInt<32>(tocRelative))
356 return false;
357
358 // Add PPC64TocOffset that will be subtracted by PPC64::relocate().
359 target->relaxGot(bufLoc, rel, tocRelative + ppc64TocOffset);
360 return true;
361 }
362
363 namespace {
364 class PPC64 final : public TargetInfo {
365 public:
366 PPC64();
367 int getTlsGdRelaxSkip(RelType type) const override;
368 uint32_t calcEFlags() const override;
369 RelExpr getRelExpr(RelType type, const Symbol &s,
370 const uint8_t *loc) const override;
371 RelType getDynRel(RelType type) const override;
372 void writePltHeader(uint8_t *buf) const override;
373 void writePlt(uint8_t *buf, const Symbol &sym,
374 uint64_t pltEntryAddr) const override;
375 void writeIplt(uint8_t *buf, const Symbol &sym,
376 uint64_t pltEntryAddr) const override;
377 void relocate(uint8_t *loc, const Relocation &rel,
378 uint64_t val) const override;
379 void writeGotHeader(uint8_t *buf) const override;
380 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
381 uint64_t branchAddr, const Symbol &s,
382 int64_t a) const override;
383 uint32_t getThunkSectionSpacing() const override;
384 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
385 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
386 RelExpr adjustGotPcExpr(RelType type, int64_t addend,
387 const uint8_t *loc) const override;
388 void relaxGot(uint8_t *loc, const Relocation &rel,
389 uint64_t val) const override;
390 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
391 uint64_t val) const override;
392 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
393 uint64_t val) const override;
394 void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
395 uint64_t val) const override;
396 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
397 uint64_t val) const override;
398
399 bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
400 uint8_t stOther) const override;
401 };
402 } // namespace
403
404 // Relocation masks following the #lo(value), #hi(value), #ha(value),
405 // #higher(value), #highera(value), #highest(value), and #highesta(value)
406 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
407 // document.
lo(uint64_t v)408 static uint16_t lo(uint64_t v) { return v; }
hi(uint64_t v)409 static uint16_t hi(uint64_t v) { return v >> 16; }
ha(uint64_t v)410 static uint16_t ha(uint64_t v) { return (v + 0x8000) >> 16; }
higher(uint64_t v)411 static uint16_t higher(uint64_t v) { return v >> 32; }
highera(uint64_t v)412 static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; }
highest(uint64_t v)413 static uint16_t highest(uint64_t v) { return v >> 48; }
highesta(uint64_t v)414 static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; }
415
416 // Extracts the 'PO' field of an instruction encoding.
getPrimaryOpCode(uint32_t encoding)417 static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); }
418
isDQFormInstruction(uint32_t encoding)419 static bool isDQFormInstruction(uint32_t encoding) {
420 switch (getPrimaryOpCode(encoding)) {
421 default:
422 return false;
423 case 6: // Power10 paired loads/stores (lxvp, stxvp).
424 case 56:
425 // The only instruction with a primary opcode of 56 is `lq`.
426 return true;
427 case 61:
428 // There are both DS and DQ instruction forms with this primary opcode.
429 // Namely `lxv` and `stxv` are the DQ-forms that use it.
430 // The DS 'XO' bits being set to 01 is restricted to DQ form.
431 return (encoding & 3) == 0x1;
432 }
433 }
434
isDSFormInstruction(PPCLegacyInsn insn)435 static bool isDSFormInstruction(PPCLegacyInsn insn) {
436 switch (insn) {
437 default:
438 return false;
439 case PPCLegacyInsn::LWA:
440 case PPCLegacyInsn::LD:
441 case PPCLegacyInsn::LXSD:
442 case PPCLegacyInsn::LXSSP:
443 case PPCLegacyInsn::STD:
444 case PPCLegacyInsn::STXSD:
445 case PPCLegacyInsn::STXSSP:
446 return true;
447 }
448 }
449
getPPCLegacyInsn(uint32_t encoding)450 static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) {
451 uint32_t opc = encoding & 0xfc000000;
452
453 // If the primary opcode is shared between multiple instructions, we need to
454 // fix it up to match the actual instruction we are after.
455 if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 ||
456 opc == 0xf8000000) &&
457 !isDQFormInstruction(encoding))
458 opc = encoding & 0xfc000003;
459 else if (opc == 0xf4000000)
460 opc = encoding & 0xfc000007;
461 else if (opc == 0x18000000)
462 opc = encoding & 0xfc00000f;
463
464 // If the value is not one of the enumerators in PPCLegacyInsn, we want to
465 // return PPCLegacyInsn::NOINSN.
466 if (!checkPPCLegacyInsn(opc))
467 return PPCLegacyInsn::NOINSN;
468 return static_cast<PPCLegacyInsn>(opc);
469 }
470
getPCRelativeForm(PPCLegacyInsn insn)471 static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) {
472 switch (insn) {
473 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
474 case PPCLegacyInsn::Legacy: \
475 return PPCPrefixedInsn::PCRel
476 #include "PPCInsns.def"
477 #undef PCREL_OPT
478 }
479 return PPCPrefixedInsn::NOINSN;
480 }
481
getInsnMask(PPCLegacyInsn insn)482 static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) {
483 switch (insn) {
484 #define PCREL_OPT(Legacy, PCRel, InsnMask) \
485 case PPCLegacyInsn::Legacy: \
486 return LegacyToPrefixMask::InsnMask
487 #include "PPCInsns.def"
488 #undef PCREL_OPT
489 }
490 return LegacyToPrefixMask::NOMASK;
491 }
getPCRelativeForm(uint32_t encoding)492 static uint64_t getPCRelativeForm(uint32_t encoding) {
493 PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding);
494 PPCPrefixedInsn pcrelInsn = getPCRelativeForm(origInsn);
495 if (pcrelInsn == PPCPrefixedInsn::NOINSN)
496 return UINT64_C(-1);
497 LegacyToPrefixMask origInsnMask = getInsnMask(origInsn);
498 uint64_t pcrelEncoding =
499 (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask);
500
501 // If the mask requires moving bit 28 to bit 5, do that now.
502 if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5)
503 pcrelEncoding |= (encoding & 0x8) << 23;
504 return pcrelEncoding;
505 }
506
isInstructionUpdateForm(uint32_t encoding)507 static bool isInstructionUpdateForm(uint32_t encoding) {
508 switch (getPrimaryOpCode(encoding)) {
509 default:
510 return false;
511 case LBZU:
512 case LHAU:
513 case LHZU:
514 case LWZU:
515 case LFSU:
516 case LFDU:
517 case STBU:
518 case STHU:
519 case STWU:
520 case STFSU:
521 case STFDU:
522 return true;
523 // LWA has the same opcode as LD, and the DS bits is what differentiates
524 // between LD/LDU/LWA
525 case LD:
526 case STD:
527 return (encoding & 3) == 1;
528 }
529 }
530
531 // Compute the total displacement between the prefixed instruction that gets
532 // to the start of the data and the load/store instruction that has the offset
533 // into the data structure.
534 // For example:
535 // paddi 3, 0, 1000, 1
536 // lwz 3, 20(3)
537 // Should add up to 1020 for total displacement.
getTotalDisp(uint64_t prefixedInsn,uint32_t accessInsn)538 static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) {
539 int64_t disp34 = llvm::SignExtend64(
540 ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), 34);
541 int32_t disp16 = llvm::SignExtend32(accessInsn & 0xffff, 16);
542 // For DS and DQ form instructions, we need to mask out the XO bits.
543 if (isDQFormInstruction(accessInsn))
544 disp16 &= ~0xf;
545 else if (isDSFormInstruction(getPPCLegacyInsn(accessInsn)))
546 disp16 &= ~0x3;
547 return disp34 + disp16;
548 }
549
550 // There are a number of places when we either want to read or write an
551 // instruction when handling a half16 relocation type. On big-endian the buffer
552 // pointer is pointing into the middle of the word we want to extract, and on
553 // little-endian it is pointing to the start of the word. These 2 helpers are to
554 // simplify reading and writing in that context.
writeFromHalf16(uint8_t * loc,uint32_t insn)555 static void writeFromHalf16(uint8_t *loc, uint32_t insn) {
556 write32(config->isLE ? loc : loc - 2, insn);
557 }
558
readFromHalf16(const uint8_t * loc)559 static uint32_t readFromHalf16(const uint8_t *loc) {
560 return read32(config->isLE ? loc : loc - 2);
561 }
562
readPrefixedInstruction(const uint8_t * loc)563 static uint64_t readPrefixedInstruction(const uint8_t *loc) {
564 uint64_t fullInstr = read64(loc);
565 return config->isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr;
566 }
567
PPC64()568 PPC64::PPC64() {
569 copyRel = R_PPC64_COPY;
570 gotRel = R_PPC64_GLOB_DAT;
571 noneRel = R_PPC64_NONE;
572 pltRel = R_PPC64_JMP_SLOT;
573 relativeRel = R_PPC64_RELATIVE;
574 iRelativeRel = R_PPC64_IRELATIVE;
575 symbolicRel = R_PPC64_ADDR64;
576 pltHeaderSize = 60;
577 pltEntrySize = 4;
578 ipltEntrySize = 16; // PPC64PltCallStub::size
579 gotBaseSymInGotPlt = false;
580 gotHeaderEntriesNum = 1;
581 gotPltHeaderEntriesNum = 2;
582 needsThunks = true;
583
584 tlsModuleIndexRel = R_PPC64_DTPMOD64;
585 tlsOffsetRel = R_PPC64_DTPREL64;
586
587 tlsGotRel = R_PPC64_TPREL64;
588
589 needsMoreStackNonSplit = false;
590
591 // We need 64K pages (at least under glibc/Linux, the loader won't
592 // set different permissions on a finer granularity than that).
593 defaultMaxPageSize = 65536;
594
595 // The PPC64 ELF ABI v1 spec, says:
596 //
597 // It is normally desirable to put segments with different characteristics
598 // in separate 256 Mbyte portions of the address space, to give the
599 // operating system full paging flexibility in the 64-bit address space.
600 //
601 // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers
602 // use 0x10000000 as the starting address.
603 defaultImageBase = 0x10000000;
604
605 write32(trapInstr.data(), 0x7fe00008);
606 }
607
getTlsGdRelaxSkip(RelType type) const608 int PPC64::getTlsGdRelaxSkip(RelType type) const {
609 // A __tls_get_addr call instruction is marked with 2 relocations:
610 //
611 // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation
612 // R_PPC64_REL24: __tls_get_addr
613 //
614 // After the relaxation we no longer call __tls_get_addr and should skip both
615 // relocations to not create a false dependence on __tls_get_addr being
616 // defined.
617 if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD)
618 return 2;
619 return 1;
620 }
621
getEFlags(InputFile * file)622 static uint32_t getEFlags(InputFile *file) {
623 if (config->ekind == ELF64BEKind)
624 return cast<ObjFile<ELF64BE>>(file)->getObj().getHeader().e_flags;
625 return cast<ObjFile<ELF64LE>>(file)->getObj().getHeader().e_flags;
626 }
627
628 // This file implements v2 ABI. This function makes sure that all
629 // object files have v2 or an unspecified version as an ABI version.
calcEFlags() const630 uint32_t PPC64::calcEFlags() const {
631 for (InputFile *f : objectFiles) {
632 uint32_t flag = getEFlags(f);
633 if (flag == 1)
634 error(toString(f) + ": ABI version 1 is not supported");
635 else if (flag > 2)
636 error(toString(f) + ": unrecognized e_flags: " + Twine(flag));
637 }
638 return 2;
639 }
640
relaxGot(uint8_t * loc,const Relocation & rel,uint64_t val) const641 void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const {
642 switch (rel.type) {
643 case R_PPC64_TOC16_HA:
644 // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop".
645 relocate(loc, rel, val);
646 break;
647 case R_PPC64_TOC16_LO_DS: {
648 // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or
649 // "addi reg, 2, var@toc".
650 uint32_t insn = readFromHalf16(loc);
651 if (getPrimaryOpCode(insn) != LD)
652 error("expected a 'ld' for got-indirect to toc-relative relaxing");
653 writeFromHalf16(loc, (insn & 0x03ffffff) | 0x38000000);
654 relocateNoSym(loc, R_PPC64_TOC16_LO, val);
655 break;
656 }
657 case R_PPC64_GOT_PCREL34: {
658 // Clear the first 8 bits of the prefix and the first 6 bits of the
659 // instruction (the primary opcode).
660 uint64_t insn = readPrefixedInstruction(loc);
661 if ((insn & 0xfc000000) != 0xe4000000)
662 error("expected a 'pld' for got-indirect to pc-relative relaxing");
663 insn &= ~0xff000000fc000000;
664
665 // Replace the cleared bits with the values for PADDI (0x600000038000000);
666 insn |= 0x600000038000000;
667 writePrefixedInstruction(loc, insn);
668 relocate(loc, rel, val);
669 break;
670 }
671 case R_PPC64_PCREL_OPT: {
672 // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can
673 // be relaxed. The eligibility for the relaxation needs to be determined
674 // on that relocation since this one does not relocate a symbol.
675 uint64_t insn = readPrefixedInstruction(loc);
676 uint32_t accessInsn = read32(loc + rel.addend);
677 uint64_t pcRelInsn = getPCRelativeForm(accessInsn);
678
679 // This error is not necessary for correctness but is emitted for now
680 // to ensure we don't miss these opportunities in real code. It can be
681 // removed at a later date.
682 if (pcRelInsn == UINT64_C(-1)) {
683 errorOrWarn(
684 "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" +
685 Twine::utohexstr(accessInsn));
686 break;
687 }
688
689 int64_t totalDisp = getTotalDisp(insn, accessInsn);
690 if (!isInt<34>(totalDisp))
691 break; // Displacement doesn't fit.
692 // Convert the PADDI to the prefixed version of accessInsn and convert
693 // accessInsn to a nop.
694 writePrefixedInstruction(loc, pcRelInsn |
695 ((totalDisp & 0x3ffff0000) << 16) |
696 (totalDisp & 0xffff));
697 write32(loc + rel.addend, NOP); // nop accessInsn.
698 break;
699 }
700 default:
701 llvm_unreachable("unexpected relocation type");
702 }
703 }
704
relaxTlsGdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const705 void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
706 uint64_t val) const {
707 // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement.
708 // The general dynamic code sequence for a global `x` will look like:
709 // Instruction Relocation Symbol
710 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
711 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
712 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
713 // R_PPC64_REL24 __tls_get_addr
714 // nop None None
715
716 // Relaxing to local exec entails converting:
717 // addis r3, r2, x@got@tlsgd@ha into nop
718 // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha
719 // bl __tls_get_addr(x@tlsgd) into nop
720 // nop into addi r3, r3, x@tprel@l
721
722 switch (rel.type) {
723 case R_PPC64_GOT_TLSGD16_HA:
724 writeFromHalf16(loc, NOP);
725 break;
726 case R_PPC64_GOT_TLSGD16:
727 case R_PPC64_GOT_TLSGD16_LO:
728 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13
729 relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
730 break;
731 case R_PPC64_GOT_TLSGD_PCREL34:
732 // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to
733 // paddi r3, r13, x@tprel, 0
734 writePrefixedInstruction(loc, 0x06000000386d0000);
735 relocateNoSym(loc, R_PPC64_TPREL34, val);
736 break;
737 case R_PPC64_TLSGD: {
738 // PC Relative Relaxation:
739 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
740 // nop
741 // TOC Relaxation:
742 // Relax from bl __tls_get_addr(x@tlsgd)
743 // nop
744 // to
745 // nop
746 // addi r3, r3, x@tprel@l
747 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
748 if (locAsInt % 4 == 0) {
749 write32(loc, NOP); // nop
750 write32(loc + 4, 0x38630000); // addi r3, r3
751 // Since we are relocating a half16 type relocation and Loc + 4 points to
752 // the start of an instruction we need to advance the buffer by an extra
753 // 2 bytes on BE.
754 relocateNoSym(loc + 4 + (config->ekind == ELF64BEKind ? 2 : 0),
755 R_PPC64_TPREL16_LO, val);
756 } else if (locAsInt % 4 == 1) {
757 write32(loc - 1, NOP);
758 } else {
759 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
760 }
761 break;
762 }
763 default:
764 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
765 }
766 }
767
relaxTlsLdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const768 void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel,
769 uint64_t val) const {
770 // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement.
771 // The local dynamic code sequence for a global `x` will look like:
772 // Instruction Relocation Symbol
773 // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x
774 // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x
775 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x
776 // R_PPC64_REL24 __tls_get_addr
777 // nop None None
778
779 // Relaxing to local exec entails converting:
780 // addis r3, r2, x@got@tlsld@ha into nop
781 // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0
782 // bl __tls_get_addr(x@tlsgd) into nop
783 // nop into addi r3, r3, 4096
784
785 switch (rel.type) {
786 case R_PPC64_GOT_TLSLD16_HA:
787 writeFromHalf16(loc, NOP);
788 break;
789 case R_PPC64_GOT_TLSLD16_LO:
790 writeFromHalf16(loc, 0x3c6d0000); // addis r3, r13, 0
791 break;
792 case R_PPC64_GOT_TLSLD_PCREL34:
793 // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to
794 // paddi r3, r13, 0x1000, 0
795 writePrefixedInstruction(loc, 0x06000000386d1000);
796 break;
797 case R_PPC64_TLSLD: {
798 // PC Relative Relaxation:
799 // Relax from bl __tls_get_addr@notoc(x@tlsld)
800 // to
801 // nop
802 // TOC Relaxation:
803 // Relax from bl __tls_get_addr(x@tlsld)
804 // nop
805 // to
806 // nop
807 // addi r3, r3, 4096
808 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
809 if (locAsInt % 4 == 0) {
810 write32(loc, NOP);
811 write32(loc + 4, 0x38631000); // addi r3, r3, 4096
812 } else if (locAsInt % 4 == 1) {
813 write32(loc - 1, NOP);
814 } else {
815 errorOrWarn("R_PPC64_TLSLD has unexpected byte alignment");
816 }
817 break;
818 }
819 case R_PPC64_DTPREL16:
820 case R_PPC64_DTPREL16_HA:
821 case R_PPC64_DTPREL16_HI:
822 case R_PPC64_DTPREL16_DS:
823 case R_PPC64_DTPREL16_LO:
824 case R_PPC64_DTPREL16_LO_DS:
825 case R_PPC64_DTPREL34:
826 relocate(loc, rel, val);
827 break;
828 default:
829 llvm_unreachable("unsupported relocation for TLS LD to LE relaxation");
830 }
831 }
832
getPPCDFormOp(unsigned secondaryOp)833 unsigned elf::getPPCDFormOp(unsigned secondaryOp) {
834 switch (secondaryOp) {
835 case LBZX:
836 return LBZ;
837 case LHZX:
838 return LHZ;
839 case LWZX:
840 return LWZ;
841 case LDX:
842 return LD;
843 case STBX:
844 return STB;
845 case STHX:
846 return STH;
847 case STWX:
848 return STW;
849 case STDX:
850 return STD;
851 case ADD:
852 return ADDI;
853 default:
854 return 0;
855 }
856 }
857
relaxTlsIeToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const858 void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
859 uint64_t val) const {
860 // The initial exec code sequence for a global `x` will look like:
861 // Instruction Relocation Symbol
862 // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x
863 // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x
864 // add r9, r9, x@tls R_PPC64_TLS x
865
866 // Relaxing to local exec entails converting:
867 // addis r9, r2, x@got@tprel@ha into nop
868 // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha
869 // add r9, r9, x@tls into addi r9, r9, x@tprel@l
870
871 // x@tls R_PPC64_TLS is a relocation which does not compute anything,
872 // it is replaced with r13 (thread pointer).
873
874 // The add instruction in the initial exec sequence has multiple variations
875 // that need to be handled. If we are building an address it will use an add
876 // instruction, if we are accessing memory it will use any of the X-form
877 // indexed load or store instructions.
878
879 unsigned offset = (config->ekind == ELF64BEKind) ? 2 : 0;
880 switch (rel.type) {
881 case R_PPC64_GOT_TPREL16_HA:
882 write32(loc - offset, NOP);
883 break;
884 case R_PPC64_GOT_TPREL16_LO_DS:
885 case R_PPC64_GOT_TPREL16_DS: {
886 uint32_t regNo = read32(loc - offset) & 0x03E00000; // bits 6-10
887 write32(loc - offset, 0x3C0D0000 | regNo); // addis RegNo, r13
888 relocateNoSym(loc, R_PPC64_TPREL16_HA, val);
889 break;
890 }
891 case R_PPC64_GOT_TPREL_PCREL34: {
892 const uint64_t pldRT = readPrefixedInstruction(loc) & 0x0000000003e00000;
893 // paddi RT(from pld), r13, symbol@tprel, 0
894 writePrefixedInstruction(loc, 0x06000000380d0000 | pldRT);
895 relocateNoSym(loc, R_PPC64_TPREL34, val);
896 break;
897 }
898 case R_PPC64_TLS: {
899 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
900 if (locAsInt % 4 == 0) {
901 uint32_t primaryOp = getPrimaryOpCode(read32(loc));
902 if (primaryOp != 31)
903 error("unrecognized instruction for IE to LE R_PPC64_TLS");
904 uint32_t secondaryOp = (read32(loc) & 0x000007FE) >> 1; // bits 21-30
905 uint32_t dFormOp = getPPCDFormOp(secondaryOp);
906 if (dFormOp == 0)
907 error("unrecognized instruction for IE to LE R_PPC64_TLS");
908 write32(loc, ((dFormOp << 26) | (read32(loc) & 0x03FFFFFF)));
909 relocateNoSym(loc + offset, R_PPC64_TPREL16_LO, val);
910 } else if (locAsInt % 4 == 1) {
911 // If the offset is not 4 byte aligned then we have a PCRel type reloc.
912 // This version of the relocation is offset by one byte from the
913 // instruction it references.
914 uint32_t tlsInstr = read32(loc - 1);
915 uint32_t primaryOp = getPrimaryOpCode(tlsInstr);
916 if (primaryOp != 31)
917 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
918 uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30
919 // The add is a special case and should be turned into a nop. The paddi
920 // that comes before it will already have computed the address of the
921 // symbol.
922 if (secondaryOp == 266) {
923 write32(loc - 1, NOP);
924 } else {
925 uint32_t dFormOp = getPPCDFormOp(secondaryOp);
926 if (dFormOp == 0)
927 errorOrWarn("unrecognized instruction for IE to LE R_PPC64_TLS");
928 write32(loc - 1, ((dFormOp << 26) | (tlsInstr & 0x03FF0000)));
929 }
930 } else {
931 errorOrWarn("R_PPC64_TLS must be either 4 byte aligned or one byte "
932 "offset from 4 byte aligned");
933 }
934 break;
935 }
936 default:
937 llvm_unreachable("unknown relocation for IE to LE");
938 break;
939 }
940 }
941
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const942 RelExpr PPC64::getRelExpr(RelType type, const Symbol &s,
943 const uint8_t *loc) const {
944 switch (type) {
945 case R_PPC64_NONE:
946 return R_NONE;
947 case R_PPC64_ADDR16:
948 case R_PPC64_ADDR16_DS:
949 case R_PPC64_ADDR16_HA:
950 case R_PPC64_ADDR16_HI:
951 case R_PPC64_ADDR16_HIGHER:
952 case R_PPC64_ADDR16_HIGHERA:
953 case R_PPC64_ADDR16_HIGHEST:
954 case R_PPC64_ADDR16_HIGHESTA:
955 case R_PPC64_ADDR16_LO:
956 case R_PPC64_ADDR16_LO_DS:
957 case R_PPC64_ADDR32:
958 case R_PPC64_ADDR64:
959 return R_ABS;
960 case R_PPC64_GOT16:
961 case R_PPC64_GOT16_DS:
962 case R_PPC64_GOT16_HA:
963 case R_PPC64_GOT16_HI:
964 case R_PPC64_GOT16_LO:
965 case R_PPC64_GOT16_LO_DS:
966 return R_GOT_OFF;
967 case R_PPC64_TOC16:
968 case R_PPC64_TOC16_DS:
969 case R_PPC64_TOC16_HI:
970 case R_PPC64_TOC16_LO:
971 return R_GOTREL;
972 case R_PPC64_GOT_PCREL34:
973 case R_PPC64_GOT_TPREL_PCREL34:
974 case R_PPC64_PCREL_OPT:
975 return R_GOT_PC;
976 case R_PPC64_TOC16_HA:
977 case R_PPC64_TOC16_LO_DS:
978 return config->tocOptimize ? R_PPC64_RELAX_TOC : R_GOTREL;
979 case R_PPC64_TOC:
980 return R_PPC64_TOCBASE;
981 case R_PPC64_REL14:
982 case R_PPC64_REL24:
983 return R_PPC64_CALL_PLT;
984 case R_PPC64_REL24_NOTOC:
985 return R_PLT_PC;
986 case R_PPC64_REL16_LO:
987 case R_PPC64_REL16_HA:
988 case R_PPC64_REL16_HI:
989 case R_PPC64_REL32:
990 case R_PPC64_REL64:
991 case R_PPC64_PCREL34:
992 return R_PC;
993 case R_PPC64_GOT_TLSGD16:
994 case R_PPC64_GOT_TLSGD16_HA:
995 case R_PPC64_GOT_TLSGD16_HI:
996 case R_PPC64_GOT_TLSGD16_LO:
997 return R_TLSGD_GOT;
998 case R_PPC64_GOT_TLSGD_PCREL34:
999 return R_TLSGD_PC;
1000 case R_PPC64_GOT_TLSLD16:
1001 case R_PPC64_GOT_TLSLD16_HA:
1002 case R_PPC64_GOT_TLSLD16_HI:
1003 case R_PPC64_GOT_TLSLD16_LO:
1004 return R_TLSLD_GOT;
1005 case R_PPC64_GOT_TLSLD_PCREL34:
1006 return R_TLSLD_PC;
1007 case R_PPC64_GOT_TPREL16_HA:
1008 case R_PPC64_GOT_TPREL16_LO_DS:
1009 case R_PPC64_GOT_TPREL16_DS:
1010 case R_PPC64_GOT_TPREL16_HI:
1011 return R_GOT_OFF;
1012 case R_PPC64_GOT_DTPREL16_HA:
1013 case R_PPC64_GOT_DTPREL16_LO_DS:
1014 case R_PPC64_GOT_DTPREL16_DS:
1015 case R_PPC64_GOT_DTPREL16_HI:
1016 return R_TLSLD_GOT_OFF;
1017 case R_PPC64_TPREL16:
1018 case R_PPC64_TPREL16_HA:
1019 case R_PPC64_TPREL16_LO:
1020 case R_PPC64_TPREL16_HI:
1021 case R_PPC64_TPREL16_DS:
1022 case R_PPC64_TPREL16_LO_DS:
1023 case R_PPC64_TPREL16_HIGHER:
1024 case R_PPC64_TPREL16_HIGHERA:
1025 case R_PPC64_TPREL16_HIGHEST:
1026 case R_PPC64_TPREL16_HIGHESTA:
1027 case R_PPC64_TPREL34:
1028 return R_TLS;
1029 case R_PPC64_DTPREL16:
1030 case R_PPC64_DTPREL16_DS:
1031 case R_PPC64_DTPREL16_HA:
1032 case R_PPC64_DTPREL16_HI:
1033 case R_PPC64_DTPREL16_HIGHER:
1034 case R_PPC64_DTPREL16_HIGHERA:
1035 case R_PPC64_DTPREL16_HIGHEST:
1036 case R_PPC64_DTPREL16_HIGHESTA:
1037 case R_PPC64_DTPREL16_LO:
1038 case R_PPC64_DTPREL16_LO_DS:
1039 case R_PPC64_DTPREL64:
1040 case R_PPC64_DTPREL34:
1041 return R_DTPREL;
1042 case R_PPC64_TLSGD:
1043 return R_TLSDESC_CALL;
1044 case R_PPC64_TLSLD:
1045 return R_TLSLD_HINT;
1046 case R_PPC64_TLS:
1047 return R_TLSIE_HINT;
1048 default:
1049 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
1050 ") against symbol " + toString(s));
1051 return R_NONE;
1052 }
1053 }
1054
getDynRel(RelType type) const1055 RelType PPC64::getDynRel(RelType type) const {
1056 if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC)
1057 return R_PPC64_ADDR64;
1058 return R_PPC64_NONE;
1059 }
1060
writeGotHeader(uint8_t * buf) const1061 void PPC64::writeGotHeader(uint8_t *buf) const {
1062 write64(buf, getPPC64TocBase());
1063 }
1064
writePltHeader(uint8_t * buf) const1065 void PPC64::writePltHeader(uint8_t *buf) const {
1066 // The generic resolver stub goes first.
1067 write32(buf + 0, 0x7c0802a6); // mflr r0
1068 write32(buf + 4, 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8>
1069 write32(buf + 8, 0x7d6802a6); // mflr r11
1070 write32(buf + 12, 0x7c0803a6); // mtlr r0
1071 write32(buf + 16, 0x7d8b6050); // subf r12, r11, r12
1072 write32(buf + 20, 0x380cffcc); // subi r0,r12,52
1073 write32(buf + 24, 0x7800f082); // srdi r0,r0,62,2
1074 write32(buf + 28, 0xe98b002c); // ld r12,44(r11)
1075 write32(buf + 32, 0x7d6c5a14); // add r11,r12,r11
1076 write32(buf + 36, 0xe98b0000); // ld r12,0(r11)
1077 write32(buf + 40, 0xe96b0008); // ld r11,8(r11)
1078 write32(buf + 44, 0x7d8903a6); // mtctr r12
1079 write32(buf + 48, 0x4e800420); // bctr
1080
1081 // The 'bcl' instruction will set the link register to the address of the
1082 // following instruction ('mflr r11'). Here we store the offset from that
1083 // instruction to the first entry in the GotPlt section.
1084 int64_t gotPltOffset = in.gotPlt->getVA() - (in.plt->getVA() + 8);
1085 write64(buf + 52, gotPltOffset);
1086 }
1087
writePlt(uint8_t * buf,const Symbol & sym,uint64_t) const1088 void PPC64::writePlt(uint8_t *buf, const Symbol &sym,
1089 uint64_t /*pltEntryAddr*/) const {
1090 int32_t offset = pltHeaderSize + sym.pltIndex * pltEntrySize;
1091 // bl __glink_PLTresolve
1092 write32(buf, 0x48000000 | ((-offset) & 0x03FFFFFc));
1093 }
1094
writeIplt(uint8_t * buf,const Symbol & sym,uint64_t) const1095 void PPC64::writeIplt(uint8_t *buf, const Symbol &sym,
1096 uint64_t /*pltEntryAddr*/) const {
1097 writePPC64LoadAndBranch(buf, sym.getGotPltVA() - getPPC64TocBase());
1098 }
1099
toAddr16Rel(RelType type,uint64_t val)1100 static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) {
1101 // Relocations relative to the toc-base need to be adjusted by the Toc offset.
1102 uint64_t tocBiasedVal = val - ppc64TocOffset;
1103 // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset.
1104 uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset;
1105
1106 switch (type) {
1107 // TOC biased relocation.
1108 case R_PPC64_GOT16:
1109 case R_PPC64_GOT_TLSGD16:
1110 case R_PPC64_GOT_TLSLD16:
1111 case R_PPC64_TOC16:
1112 return {R_PPC64_ADDR16, tocBiasedVal};
1113 case R_PPC64_GOT16_DS:
1114 case R_PPC64_TOC16_DS:
1115 case R_PPC64_GOT_TPREL16_DS:
1116 case R_PPC64_GOT_DTPREL16_DS:
1117 return {R_PPC64_ADDR16_DS, tocBiasedVal};
1118 case R_PPC64_GOT16_HA:
1119 case R_PPC64_GOT_TLSGD16_HA:
1120 case R_PPC64_GOT_TLSLD16_HA:
1121 case R_PPC64_GOT_TPREL16_HA:
1122 case R_PPC64_GOT_DTPREL16_HA:
1123 case R_PPC64_TOC16_HA:
1124 return {R_PPC64_ADDR16_HA, tocBiasedVal};
1125 case R_PPC64_GOT16_HI:
1126 case R_PPC64_GOT_TLSGD16_HI:
1127 case R_PPC64_GOT_TLSLD16_HI:
1128 case R_PPC64_GOT_TPREL16_HI:
1129 case R_PPC64_GOT_DTPREL16_HI:
1130 case R_PPC64_TOC16_HI:
1131 return {R_PPC64_ADDR16_HI, tocBiasedVal};
1132 case R_PPC64_GOT16_LO:
1133 case R_PPC64_GOT_TLSGD16_LO:
1134 case R_PPC64_GOT_TLSLD16_LO:
1135 case R_PPC64_TOC16_LO:
1136 return {R_PPC64_ADDR16_LO, tocBiasedVal};
1137 case R_PPC64_GOT16_LO_DS:
1138 case R_PPC64_TOC16_LO_DS:
1139 case R_PPC64_GOT_TPREL16_LO_DS:
1140 case R_PPC64_GOT_DTPREL16_LO_DS:
1141 return {R_PPC64_ADDR16_LO_DS, tocBiasedVal};
1142
1143 // Dynamic Thread pointer biased relocation types.
1144 case R_PPC64_DTPREL16:
1145 return {R_PPC64_ADDR16, dtpBiasedVal};
1146 case R_PPC64_DTPREL16_DS:
1147 return {R_PPC64_ADDR16_DS, dtpBiasedVal};
1148 case R_PPC64_DTPREL16_HA:
1149 return {R_PPC64_ADDR16_HA, dtpBiasedVal};
1150 case R_PPC64_DTPREL16_HI:
1151 return {R_PPC64_ADDR16_HI, dtpBiasedVal};
1152 case R_PPC64_DTPREL16_HIGHER:
1153 return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal};
1154 case R_PPC64_DTPREL16_HIGHERA:
1155 return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal};
1156 case R_PPC64_DTPREL16_HIGHEST:
1157 return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal};
1158 case R_PPC64_DTPREL16_HIGHESTA:
1159 return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal};
1160 case R_PPC64_DTPREL16_LO:
1161 return {R_PPC64_ADDR16_LO, dtpBiasedVal};
1162 case R_PPC64_DTPREL16_LO_DS:
1163 return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal};
1164 case R_PPC64_DTPREL64:
1165 return {R_PPC64_ADDR64, dtpBiasedVal};
1166
1167 default:
1168 return {type, val};
1169 }
1170 }
1171
isTocOptType(RelType type)1172 static bool isTocOptType(RelType type) {
1173 switch (type) {
1174 case R_PPC64_GOT16_HA:
1175 case R_PPC64_GOT16_LO_DS:
1176 case R_PPC64_TOC16_HA:
1177 case R_PPC64_TOC16_LO_DS:
1178 case R_PPC64_TOC16_LO:
1179 return true;
1180 default:
1181 return false;
1182 }
1183 }
1184
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const1185 void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
1186 RelType type = rel.type;
1187 bool shouldTocOptimize = isTocOptType(type);
1188 // For dynamic thread pointer relative, toc-relative, and got-indirect
1189 // relocations, proceed in terms of the corresponding ADDR16 relocation type.
1190 std::tie(type, val) = toAddr16Rel(type, val);
1191
1192 switch (type) {
1193 case R_PPC64_ADDR14: {
1194 checkAlignment(loc, val, 4, rel);
1195 // Preserve the AA/LK bits in the branch instruction
1196 uint8_t aalk = loc[3];
1197 write16(loc + 2, (aalk & 3) | (val & 0xfffc));
1198 break;
1199 }
1200 case R_PPC64_ADDR16:
1201 checkIntUInt(loc, val, 16, rel);
1202 write16(loc, val);
1203 break;
1204 case R_PPC64_ADDR32:
1205 checkIntUInt(loc, val, 32, rel);
1206 write32(loc, val);
1207 break;
1208 case R_PPC64_ADDR16_DS:
1209 case R_PPC64_TPREL16_DS: {
1210 checkInt(loc, val, 16, rel);
1211 // DQ-form instructions use bits 28-31 as part of the instruction encoding
1212 // DS-form instructions only use bits 30-31.
1213 uint16_t mask = isDQFormInstruction(readFromHalf16(loc)) ? 0xf : 0x3;
1214 checkAlignment(loc, lo(val), mask + 1, rel);
1215 write16(loc, (read16(loc) & mask) | lo(val));
1216 } break;
1217 case R_PPC64_ADDR16_HA:
1218 case R_PPC64_REL16_HA:
1219 case R_PPC64_TPREL16_HA:
1220 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0)
1221 writeFromHalf16(loc, NOP);
1222 else
1223 write16(loc, ha(val));
1224 break;
1225 case R_PPC64_ADDR16_HI:
1226 case R_PPC64_REL16_HI:
1227 case R_PPC64_TPREL16_HI:
1228 write16(loc, hi(val));
1229 break;
1230 case R_PPC64_ADDR16_HIGHER:
1231 case R_PPC64_TPREL16_HIGHER:
1232 write16(loc, higher(val));
1233 break;
1234 case R_PPC64_ADDR16_HIGHERA:
1235 case R_PPC64_TPREL16_HIGHERA:
1236 write16(loc, highera(val));
1237 break;
1238 case R_PPC64_ADDR16_HIGHEST:
1239 case R_PPC64_TPREL16_HIGHEST:
1240 write16(loc, highest(val));
1241 break;
1242 case R_PPC64_ADDR16_HIGHESTA:
1243 case R_PPC64_TPREL16_HIGHESTA:
1244 write16(loc, highesta(val));
1245 break;
1246 case R_PPC64_ADDR16_LO:
1247 case R_PPC64_REL16_LO:
1248 case R_PPC64_TPREL16_LO:
1249 // When the high-adjusted part of a toc relocation evaluates to 0, it is
1250 // changed into a nop. The lo part then needs to be updated to use the
1251 // toc-pointer register r2, as the base register.
1252 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1253 uint32_t insn = readFromHalf16(loc);
1254 if (isInstructionUpdateForm(insn))
1255 error(getErrorLocation(loc) +
1256 "can't toc-optimize an update instruction: 0x" +
1257 utohexstr(insn));
1258 writeFromHalf16(loc, (insn & 0xffe00000) | 0x00020000 | lo(val));
1259 } else {
1260 write16(loc, lo(val));
1261 }
1262 break;
1263 case R_PPC64_ADDR16_LO_DS:
1264 case R_PPC64_TPREL16_LO_DS: {
1265 // DQ-form instructions use bits 28-31 as part of the instruction encoding
1266 // DS-form instructions only use bits 30-31.
1267 uint32_t insn = readFromHalf16(loc);
1268 uint16_t mask = isDQFormInstruction(insn) ? 0xf : 0x3;
1269 checkAlignment(loc, lo(val), mask + 1, rel);
1270 if (config->tocOptimize && shouldTocOptimize && ha(val) == 0) {
1271 // When the high-adjusted part of a toc relocation evaluates to 0, it is
1272 // changed into a nop. The lo part then needs to be updated to use the toc
1273 // pointer register r2, as the base register.
1274 if (isInstructionUpdateForm(insn))
1275 error(getErrorLocation(loc) +
1276 "Can't toc-optimize an update instruction: 0x" +
1277 Twine::utohexstr(insn));
1278 insn &= 0xffe00000 | mask;
1279 writeFromHalf16(loc, insn | 0x00020000 | lo(val));
1280 } else {
1281 write16(loc, (read16(loc) & mask) | lo(val));
1282 }
1283 } break;
1284 case R_PPC64_TPREL16:
1285 checkInt(loc, val, 16, rel);
1286 write16(loc, val);
1287 break;
1288 case R_PPC64_REL32:
1289 checkInt(loc, val, 32, rel);
1290 write32(loc, val);
1291 break;
1292 case R_PPC64_ADDR64:
1293 case R_PPC64_REL64:
1294 case R_PPC64_TOC:
1295 write64(loc, val);
1296 break;
1297 case R_PPC64_REL14: {
1298 uint32_t mask = 0x0000FFFC;
1299 checkInt(loc, val, 16, rel);
1300 checkAlignment(loc, val, 4, rel);
1301 write32(loc, (read32(loc) & ~mask) | (val & mask));
1302 break;
1303 }
1304 case R_PPC64_REL24:
1305 case R_PPC64_REL24_NOTOC: {
1306 uint32_t mask = 0x03FFFFFC;
1307 checkInt(loc, val, 26, rel);
1308 checkAlignment(loc, val, 4, rel);
1309 write32(loc, (read32(loc) & ~mask) | (val & mask));
1310 break;
1311 }
1312 case R_PPC64_DTPREL64:
1313 write64(loc, val - dynamicThreadPointerOffset);
1314 break;
1315 case R_PPC64_DTPREL34:
1316 // The Dynamic Thread Vector actually points 0x8000 bytes past the start
1317 // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first
1318 // need to subtract that value then fallthrough to the general case.
1319 val -= dynamicThreadPointerOffset;
1320 LLVM_FALLTHROUGH;
1321 case R_PPC64_PCREL34:
1322 case R_PPC64_GOT_PCREL34:
1323 case R_PPC64_GOT_TLSGD_PCREL34:
1324 case R_PPC64_GOT_TLSLD_PCREL34:
1325 case R_PPC64_GOT_TPREL_PCREL34:
1326 case R_PPC64_TPREL34: {
1327 const uint64_t si0Mask = 0x00000003ffff0000;
1328 const uint64_t si1Mask = 0x000000000000ffff;
1329 const uint64_t fullMask = 0x0003ffff0000ffff;
1330 checkInt(loc, val, 34, rel);
1331
1332 uint64_t instr = readPrefixedInstruction(loc) & ~fullMask;
1333 writePrefixedInstruction(loc, instr | ((val & si0Mask) << 16) |
1334 (val & si1Mask));
1335 break;
1336 }
1337 // If we encounter a PCREL_OPT relocation that we won't optimize.
1338 case R_PPC64_PCREL_OPT:
1339 break;
1340 default:
1341 llvm_unreachable("unknown relocation");
1342 }
1343 }
1344
needsThunk(RelExpr expr,RelType type,const InputFile * file,uint64_t branchAddr,const Symbol & s,int64_t a) const1345 bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
1346 uint64_t branchAddr, const Symbol &s, int64_t a) const {
1347 if (type != R_PPC64_REL14 && type != R_PPC64_REL24 &&
1348 type != R_PPC64_REL24_NOTOC)
1349 return false;
1350
1351 // If a function is in the Plt it needs to be called with a call-stub.
1352 if (s.isInPlt())
1353 return true;
1354
1355 // This check looks at the st_other bits of the callee with relocation
1356 // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee
1357 // clobbers the TOC and we need an R2 save stub.
1358 if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1)
1359 return true;
1360
1361 if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1)
1362 return true;
1363
1364 // If a symbol is a weak undefined and we are compiling an executable
1365 // it doesn't need a range-extending thunk since it can't be called.
1366 if (s.isUndefWeak() && !config->shared)
1367 return false;
1368
1369 // If the offset exceeds the range of the branch type then it will need
1370 // a range-extending thunk.
1371 // See the comment in getRelocTargetVA() about R_PPC64_CALL.
1372 return !inBranchRange(type, branchAddr,
1373 s.getVA(a) +
1374 getPPC64GlobalEntryToLocalEntryOffset(s.stOther));
1375 }
1376
getThunkSectionSpacing() const1377 uint32_t PPC64::getThunkSectionSpacing() const {
1378 // See comment in Arch/ARM.cpp for a more detailed explanation of
1379 // getThunkSectionSpacing(). For PPC64 we pick the constant here based on
1380 // R_PPC64_REL24, which is used by unconditional branch instructions.
1381 // 0x2000000 = (1 << 24-1) * 4
1382 return 0x2000000;
1383 }
1384
inBranchRange(RelType type,uint64_t src,uint64_t dst) const1385 bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
1386 int64_t offset = dst - src;
1387 if (type == R_PPC64_REL14)
1388 return isInt<16>(offset);
1389 if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC)
1390 return isInt<26>(offset);
1391 llvm_unreachable("unsupported relocation type used in branch");
1392 }
1393
adjustTlsExpr(RelType type,RelExpr expr) const1394 RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const {
1395 if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE)
1396 return R_RELAX_TLS_GD_TO_IE_GOT_OFF;
1397 if (expr == R_RELAX_TLS_LD_TO_LE)
1398 return R_RELAX_TLS_LD_TO_LE_ABS;
1399 return expr;
1400 }
1401
adjustGotPcExpr(RelType type,int64_t addend,const uint8_t * loc) const1402 RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend,
1403 const uint8_t *loc) const {
1404 if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) &&
1405 config->pcRelOptimize) {
1406 // It only makes sense to optimize pld since paddi means that the address
1407 // of the object in the GOT is required rather than the object itself.
1408 if ((readPrefixedInstruction(loc) & 0xfc000000) == 0xe4000000)
1409 return R_PPC64_RELAX_GOT_PC;
1410 }
1411 return R_GOT_PC;
1412 }
1413
1414 // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement.
1415 // The general dynamic code sequence for a global `x` uses 4 instructions.
1416 // Instruction Relocation Symbol
1417 // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x
1418 // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x
1419 // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x
1420 // R_PPC64_REL24 __tls_get_addr
1421 // nop None None
1422 //
1423 // Relaxing to initial-exec entails:
1424 // 1) Convert the addis/addi pair that builds the address of the tls_index
1425 // struct for 'x' to an addis/ld pair that loads an offset from a got-entry.
1426 // 2) Convert the call to __tls_get_addr to a nop.
1427 // 3) Convert the nop following the call to an add of the loaded offset to the
1428 // thread pointer.
1429 // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is
1430 // used as the relaxation hint for both steps 2 and 3.
relaxTlsGdToIe(uint8_t * loc,const Relocation & rel,uint64_t val) const1431 void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
1432 uint64_t val) const {
1433 switch (rel.type) {
1434 case R_PPC64_GOT_TLSGD16_HA:
1435 // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to
1436 // addis rT, r2, sym@got@tprel@ha.
1437 relocateNoSym(loc, R_PPC64_GOT_TPREL16_HA, val);
1438 return;
1439 case R_PPC64_GOT_TLSGD16:
1440 case R_PPC64_GOT_TLSGD16_LO: {
1441 // Relax from addi r3, rA, sym@got@tlsgd@l to
1442 // ld r3, sym@got@tprel@l(rA)
1443 uint32_t ra = (readFromHalf16(loc) & (0x1f << 16));
1444 writeFromHalf16(loc, 0xe8600000 | ra);
1445 relocateNoSym(loc, R_PPC64_GOT_TPREL16_LO_DS, val);
1446 return;
1447 }
1448 case R_PPC64_GOT_TLSGD_PCREL34: {
1449 // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to
1450 // pld r3, sym@got@tprel@pcrel
1451 writePrefixedInstruction(loc, 0x04100000e4600000);
1452 relocateNoSym(loc, R_PPC64_GOT_TPREL_PCREL34, val);
1453 return;
1454 }
1455 case R_PPC64_TLSGD: {
1456 // PC Relative Relaxation:
1457 // Relax from bl __tls_get_addr@notoc(x@tlsgd) to
1458 // nop
1459 // TOC Relaxation:
1460 // Relax from bl __tls_get_addr(x@tlsgd)
1461 // nop
1462 // to
1463 // nop
1464 // add r3, r3, r13
1465 const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc);
1466 if (locAsInt % 4 == 0) {
1467 write32(loc, NOP); // bl __tls_get_addr(sym@tlsgd) --> nop
1468 write32(loc + 4, 0x7c636A14); // nop --> add r3, r3, r13
1469 } else if (locAsInt % 4 == 1) {
1470 // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13
1471 write32(loc - 1, 0x7c636a14);
1472 } else {
1473 errorOrWarn("R_PPC64_TLSGD has unexpected byte alignment");
1474 }
1475 return;
1476 }
1477 default:
1478 llvm_unreachable("unsupported relocation for TLS GD to IE relaxation");
1479 }
1480 }
1481
1482 // The prologue for a split-stack function is expected to look roughly
1483 // like this:
1484 // .Lglobal_entry_point:
1485 // # TOC pointer initialization.
1486 // ...
1487 // .Llocal_entry_point:
1488 // # load the __private_ss member of the threads tcbhead.
1489 // ld r0,-0x7000-64(r13)
1490 // # subtract the functions stack size from the stack pointer.
1491 // addis r12, r1, ha(-stack-frame size)
1492 // addi r12, r12, l(-stack-frame size)
1493 // # compare needed to actual and branch to allocate_more_stack if more
1494 // # space is needed, otherwise fallthrough to 'normal' function body.
1495 // cmpld cr7,r12,r0
1496 // blt- cr7, .Lallocate_more_stack
1497 //
1498 // -) The allocate_more_stack block might be placed after the split-stack
1499 // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body`
1500 // instead.
1501 // -) If either the addis or addi is not needed due to the stack size being
1502 // smaller then 32K or a multiple of 64K they will be replaced with a nop,
1503 // but there will always be 2 instructions the linker can overwrite for the
1504 // adjusted stack size.
1505 //
1506 // The linkers job here is to increase the stack size used in the addis/addi
1507 // pair by split-stack-size-adjust.
1508 // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size)
1509 // addi r12, r12, l(-stack-frame size - split-stack-adjust-size)
adjustPrologueForCrossSplitStack(uint8_t * loc,uint8_t * end,uint8_t stOther) const1510 bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end,
1511 uint8_t stOther) const {
1512 // If the caller has a global entry point adjust the buffer past it. The start
1513 // of the split-stack prologue will be at the local entry point.
1514 loc += getPPC64GlobalEntryToLocalEntryOffset(stOther);
1515
1516 // At the very least we expect to see a load of some split-stack data from the
1517 // tcb, and 2 instructions that calculate the ending stack address this
1518 // function will require. If there is not enough room for at least 3
1519 // instructions it can't be a split-stack prologue.
1520 if (loc + 12 >= end)
1521 return false;
1522
1523 // First instruction must be `ld r0, -0x7000-64(r13)`
1524 if (read32(loc) != 0xe80d8fc0)
1525 return false;
1526
1527 int16_t hiImm = 0;
1528 int16_t loImm = 0;
1529 // First instruction can be either an addis if the frame size is larger then
1530 // 32K, or an addi if the size is less then 32K.
1531 int32_t firstInstr = read32(loc + 4);
1532 if (getPrimaryOpCode(firstInstr) == 15) {
1533 hiImm = firstInstr & 0xFFFF;
1534 } else if (getPrimaryOpCode(firstInstr) == 14) {
1535 loImm = firstInstr & 0xFFFF;
1536 } else {
1537 return false;
1538 }
1539
1540 // Second instruction is either an addi or a nop. If the first instruction was
1541 // an addi then LoImm is set and the second instruction must be a nop.
1542 uint32_t secondInstr = read32(loc + 8);
1543 if (!loImm && getPrimaryOpCode(secondInstr) == 14) {
1544 loImm = secondInstr & 0xFFFF;
1545 } else if (secondInstr != NOP) {
1546 return false;
1547 }
1548
1549 // The register operands of the first instruction should be the stack-pointer
1550 // (r1) as the input (RA) and r12 as the output (RT). If the second
1551 // instruction is not a nop, then it should use r12 as both input and output.
1552 auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT,
1553 uint8_t expectedRA) {
1554 return ((instr & 0x3E00000) >> 21 == expectedRT) &&
1555 ((instr & 0x1F0000) >> 16 == expectedRA);
1556 };
1557 if (!checkRegOperands(firstInstr, 12, 1))
1558 return false;
1559 if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12))
1560 return false;
1561
1562 int32_t stackFrameSize = (hiImm * 65536) + loImm;
1563 // Check that the adjusted size doesn't overflow what we can represent with 2
1564 // instructions.
1565 if (stackFrameSize < config->splitStackAdjustSize + INT32_MIN) {
1566 error(getErrorLocation(loc) + "split-stack prologue adjustment overflows");
1567 return false;
1568 }
1569
1570 int32_t adjustedStackFrameSize =
1571 stackFrameSize - config->splitStackAdjustSize;
1572
1573 loImm = adjustedStackFrameSize & 0xFFFF;
1574 hiImm = (adjustedStackFrameSize + 0x8000) >> 16;
1575 if (hiImm) {
1576 write32(loc + 4, 0x3D810000 | (uint16_t)hiImm);
1577 // If the low immediate is zero the second instruction will be a nop.
1578 secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP;
1579 write32(loc + 8, secondInstr);
1580 } else {
1581 // addi r12, r1, imm
1582 write32(loc + 4, (0x39810000) | (uint16_t)loImm);
1583 write32(loc + 8, NOP);
1584 }
1585
1586 return true;
1587 }
1588
getPPC64TargetInfo()1589 TargetInfo *elf::getPPC64TargetInfo() {
1590 static PPC64 target;
1591 return ⌖
1592 }
1593