• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- DNBArchImplARM64.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  Created by Greg Clayton on 6/25/07.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
14 
15 #include "MacOSX/arm64/DNBArchImplARM64.h"
16 
17 #if defined(ARM_THREAD_STATE64_COUNT)
18 
19 #include "DNB.h"
20 #include "DNBBreakpoint.h"
21 #include "DNBLog.h"
22 #include "DNBRegisterInfo.h"
23 #include "MacOSX/MachProcess.h"
24 #include "MacOSX/MachThread.h"
25 
26 #include <inttypes.h>
27 #include <sys/sysctl.h>
28 
29 #if __has_feature(ptrauth_calls)
30 #include <ptrauth.h>
31 #endif
32 
33 // Break only in privileged or user mode
34 // (PAC bits in the DBGWVRn_EL1 watchpoint control register)
35 #define S_USER ((uint32_t)(2u << 1))
36 
37 #define BCR_ENABLE ((uint32_t)(1u))
38 #define WCR_ENABLE ((uint32_t)(1u))
39 
40 // Watchpoint load/store
41 // (LSC bits in the DBGWVRn_EL1 watchpoint control register)
42 #define WCR_LOAD ((uint32_t)(1u << 3))
43 #define WCR_STORE ((uint32_t)(1u << 4))
44 
45 // Enable breakpoint, watchpoint, and vector catch debug exceptions.
46 // (MDE bit in the MDSCR_EL1 register.  Equivalent to the MDBGen bit in
47 // DBGDSCRext in Aarch32)
48 #define MDE_ENABLE ((uint32_t)(1u << 15))
49 
50 // Single instruction step
51 // (SS bit in the MDSCR_EL1 register)
52 #define SS_ENABLE ((uint32_t)(1u))
53 
54 static const uint8_t g_arm64_breakpoint_opcode[] = {
55     0x00, 0x00, 0x20, 0xD4}; // "brk #0", 0xd4200000 in BE byte order
56 
57 // If we need to set one logical watchpoint by using
58 // two hardware watchpoint registers, the watchpoint
59 // will be split into a "high" and "low" watchpoint.
60 // Record both of them in the LoHi array.
61 
62 // It's safe to initialize to all 0's since
63 // hi > lo and therefore LoHi[i] cannot be 0.
64 static uint32_t LoHi[16] = {0};
65 
Initialize()66 void DNBArchMachARM64::Initialize() {
67   DNBArchPluginInfo arch_plugin_info = {
68       CPU_TYPE_ARM64, DNBArchMachARM64::Create,
69       DNBArchMachARM64::GetRegisterSetInfo,
70       DNBArchMachARM64::SoftwareBreakpointOpcode};
71 
72   // Register this arch plug-in with the main protocol class
73   DNBArchProtocol::RegisterArchPlugin(arch_plugin_info);
74 
75   DNBArchPluginInfo arch_plugin_info_32 = {
76       CPU_TYPE_ARM64_32, DNBArchMachARM64::Create,
77       DNBArchMachARM64::GetRegisterSetInfo,
78       DNBArchMachARM64::SoftwareBreakpointOpcode};
79 
80   // Register this arch plug-in with the main protocol class
81   DNBArchProtocol::RegisterArchPlugin(arch_plugin_info_32);
82 }
83 
Create(MachThread * thread)84 DNBArchProtocol *DNBArchMachARM64::Create(MachThread *thread) {
85   DNBArchMachARM64 *obj = new DNBArchMachARM64(thread);
86 
87   return obj;
88 }
89 
90 const uint8_t *
SoftwareBreakpointOpcode(nub_size_t byte_size)91 DNBArchMachARM64::SoftwareBreakpointOpcode(nub_size_t byte_size) {
92   return g_arm64_breakpoint_opcode;
93 }
94 
GetCPUType()95 uint32_t DNBArchMachARM64::GetCPUType() { return CPU_TYPE_ARM64; }
96 
GetPC(uint64_t failValue)97 uint64_t DNBArchMachARM64::GetPC(uint64_t failValue) {
98   // Get program counter
99   if (GetGPRState(false) == KERN_SUCCESS)
100 #if defined(__LP64__)
101     return arm_thread_state64_get_pc(m_state.context.gpr);
102 #else
103     return m_state.context.gpr.__pc;
104 #endif
105   return failValue;
106 }
107 
SetPC(uint64_t value)108 kern_return_t DNBArchMachARM64::SetPC(uint64_t value) {
109   // Get program counter
110   kern_return_t err = GetGPRState(false);
111   if (err == KERN_SUCCESS) {
112 #if defined(__LP64__)
113 #if __has_feature(ptrauth_calls)
114     // The incoming value could be garbage.  Strip it to avoid
115     // trapping when it gets resigned in the thread state.
116     value = (uint64_t) ptrauth_strip((void*) value, ptrauth_key_function_pointer);
117     value = (uint64_t) ptrauth_sign_unauthenticated((void*) value, ptrauth_key_function_pointer, 0);
118 #endif
119     arm_thread_state64_set_pc_fptr (m_state.context.gpr, (void*) value);
120 #else
121     m_state.context.gpr.__pc = value;
122 #endif
123     err = SetGPRState();
124   }
125   return err == KERN_SUCCESS;
126 }
127 
GetSP(uint64_t failValue)128 uint64_t DNBArchMachARM64::GetSP(uint64_t failValue) {
129   // Get stack pointer
130   if (GetGPRState(false) == KERN_SUCCESS)
131 #if defined(__LP64__)
132     return arm_thread_state64_get_sp(m_state.context.gpr);
133 #else
134     return m_state.context.gpr.__sp;
135 #endif
136   return failValue;
137 }
138 
GetGPRState(bool force)139 kern_return_t DNBArchMachARM64::GetGPRState(bool force) {
140   int set = e_regSetGPR;
141   // Check if we have valid cached registers
142   if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
143     return KERN_SUCCESS;
144 
145   // Read the registers from our thread
146   mach_msg_type_number_t count = e_regSetGPRCount;
147   kern_return_t kret =
148       ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE64,
149                          (thread_state_t)&m_state.context.gpr, &count);
150   if (DNBLogEnabledForAny(LOG_THREAD)) {
151     uint64_t *x = &m_state.context.gpr.__x[0];
152     DNBLogThreaded(
153         "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs"
154         "\n   x0=%16.16llx"
155         "\n   x1=%16.16llx"
156         "\n   x2=%16.16llx"
157         "\n   x3=%16.16llx"
158         "\n   x4=%16.16llx"
159         "\n   x5=%16.16llx"
160         "\n   x6=%16.16llx"
161         "\n   x7=%16.16llx"
162         "\n   x8=%16.16llx"
163         "\n   x9=%16.16llx"
164         "\n  x10=%16.16llx"
165         "\n  x11=%16.16llx"
166         "\n  x12=%16.16llx"
167         "\n  x13=%16.16llx"
168         "\n  x14=%16.16llx"
169         "\n  x15=%16.16llx"
170         "\n  x16=%16.16llx"
171         "\n  x17=%16.16llx"
172         "\n  x18=%16.16llx"
173         "\n  x19=%16.16llx"
174         "\n  x20=%16.16llx"
175         "\n  x21=%16.16llx"
176         "\n  x22=%16.16llx"
177         "\n  x23=%16.16llx"
178         "\n  x24=%16.16llx"
179         "\n  x25=%16.16llx"
180         "\n  x26=%16.16llx"
181         "\n  x27=%16.16llx"
182         "\n  x28=%16.16llx"
183         "\n   fp=%16.16llx"
184         "\n   lr=%16.16llx"
185         "\n   sp=%16.16llx"
186         "\n   pc=%16.16llx"
187         "\n cpsr=%8.8x",
188         m_thread->MachPortNumber(), e_regSetGPR, e_regSetGPRCount, kret, count,
189         x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[0], x[11],
190         x[12], x[13], x[14], x[15], x[16], x[17], x[18], x[19], x[20], x[21],
191         x[22], x[23], x[24], x[25], x[26], x[27], x[28],
192 #if defined(__LP64__)
193         (uint64_t) arm_thread_state64_get_fp (m_state.context.gpr),
194         (uint64_t) arm_thread_state64_get_lr (m_state.context.gpr),
195         (uint64_t) arm_thread_state64_get_sp (m_state.context.gpr),
196         (uint64_t) arm_thread_state64_get_pc (m_state.context.gpr),
197 #else
198         m_state.context.gpr.__fp, m_state.context.gpr.__lr,
199         m_state.context.gpr.__sp, m_state.context.gpr.__pc,
200 #endif
201         m_state.context.gpr.__cpsr);
202   }
203   m_state.SetError(set, Read, kret);
204   return kret;
205 }
206 
GetVFPState(bool force)207 kern_return_t DNBArchMachARM64::GetVFPState(bool force) {
208   int set = e_regSetVFP;
209   // Check if we have valid cached registers
210   if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
211     return KERN_SUCCESS;
212 
213   // Read the registers from our thread
214   mach_msg_type_number_t count = e_regSetVFPCount;
215   kern_return_t kret =
216       ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE64,
217                          (thread_state_t)&m_state.context.vfp, &count);
218   if (DNBLogEnabledForAny(LOG_THREAD)) {
219 #if defined(__arm64__) || defined(__aarch64__)
220     DNBLogThreaded(
221         "thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs"
222         "\n   q0  = 0x%16.16llx%16.16llx"
223         "\n   q1  = 0x%16.16llx%16.16llx"
224         "\n   q2  = 0x%16.16llx%16.16llx"
225         "\n   q3  = 0x%16.16llx%16.16llx"
226         "\n   q4  = 0x%16.16llx%16.16llx"
227         "\n   q5  = 0x%16.16llx%16.16llx"
228         "\n   q6  = 0x%16.16llx%16.16llx"
229         "\n   q7  = 0x%16.16llx%16.16llx"
230         "\n   q8  = 0x%16.16llx%16.16llx"
231         "\n   q9  = 0x%16.16llx%16.16llx"
232         "\n   q10 = 0x%16.16llx%16.16llx"
233         "\n   q11 = 0x%16.16llx%16.16llx"
234         "\n   q12 = 0x%16.16llx%16.16llx"
235         "\n   q13 = 0x%16.16llx%16.16llx"
236         "\n   q14 = 0x%16.16llx%16.16llx"
237         "\n   q15 = 0x%16.16llx%16.16llx"
238         "\n   q16 = 0x%16.16llx%16.16llx"
239         "\n   q17 = 0x%16.16llx%16.16llx"
240         "\n   q18 = 0x%16.16llx%16.16llx"
241         "\n   q19 = 0x%16.16llx%16.16llx"
242         "\n   q20 = 0x%16.16llx%16.16llx"
243         "\n   q21 = 0x%16.16llx%16.16llx"
244         "\n   q22 = 0x%16.16llx%16.16llx"
245         "\n   q23 = 0x%16.16llx%16.16llx"
246         "\n   q24 = 0x%16.16llx%16.16llx"
247         "\n   q25 = 0x%16.16llx%16.16llx"
248         "\n   q26 = 0x%16.16llx%16.16llx"
249         "\n   q27 = 0x%16.16llx%16.16llx"
250         "\n   q28 = 0x%16.16llx%16.16llx"
251         "\n   q29 = 0x%16.16llx%16.16llx"
252         "\n   q30 = 0x%16.16llx%16.16llx"
253         "\n   q31 = 0x%16.16llx%16.16llx"
254         "\n  fpsr = 0x%8.8x"
255         "\n  fpcr = 0x%8.8x\n\n",
256         m_thread->MachPortNumber(), e_regSetVFP, e_regSetVFPCount, kret, count,
257         ((uint64_t *)&m_state.context.vfp.__v[0])[0],
258         ((uint64_t *)&m_state.context.vfp.__v[0])[1],
259         ((uint64_t *)&m_state.context.vfp.__v[1])[0],
260         ((uint64_t *)&m_state.context.vfp.__v[1])[1],
261         ((uint64_t *)&m_state.context.vfp.__v[2])[0],
262         ((uint64_t *)&m_state.context.vfp.__v[2])[1],
263         ((uint64_t *)&m_state.context.vfp.__v[3])[0],
264         ((uint64_t *)&m_state.context.vfp.__v[3])[1],
265         ((uint64_t *)&m_state.context.vfp.__v[4])[0],
266         ((uint64_t *)&m_state.context.vfp.__v[4])[1],
267         ((uint64_t *)&m_state.context.vfp.__v[5])[0],
268         ((uint64_t *)&m_state.context.vfp.__v[5])[1],
269         ((uint64_t *)&m_state.context.vfp.__v[6])[0],
270         ((uint64_t *)&m_state.context.vfp.__v[6])[1],
271         ((uint64_t *)&m_state.context.vfp.__v[7])[0],
272         ((uint64_t *)&m_state.context.vfp.__v[7])[1],
273         ((uint64_t *)&m_state.context.vfp.__v[8])[0],
274         ((uint64_t *)&m_state.context.vfp.__v[8])[1],
275         ((uint64_t *)&m_state.context.vfp.__v[9])[0],
276         ((uint64_t *)&m_state.context.vfp.__v[9])[1],
277         ((uint64_t *)&m_state.context.vfp.__v[10])[0],
278         ((uint64_t *)&m_state.context.vfp.__v[10])[1],
279         ((uint64_t *)&m_state.context.vfp.__v[11])[0],
280         ((uint64_t *)&m_state.context.vfp.__v[11])[1],
281         ((uint64_t *)&m_state.context.vfp.__v[12])[0],
282         ((uint64_t *)&m_state.context.vfp.__v[12])[1],
283         ((uint64_t *)&m_state.context.vfp.__v[13])[0],
284         ((uint64_t *)&m_state.context.vfp.__v[13])[1],
285         ((uint64_t *)&m_state.context.vfp.__v[14])[0],
286         ((uint64_t *)&m_state.context.vfp.__v[14])[1],
287         ((uint64_t *)&m_state.context.vfp.__v[15])[0],
288         ((uint64_t *)&m_state.context.vfp.__v[15])[1],
289         ((uint64_t *)&m_state.context.vfp.__v[16])[0],
290         ((uint64_t *)&m_state.context.vfp.__v[16])[1],
291         ((uint64_t *)&m_state.context.vfp.__v[17])[0],
292         ((uint64_t *)&m_state.context.vfp.__v[17])[1],
293         ((uint64_t *)&m_state.context.vfp.__v[18])[0],
294         ((uint64_t *)&m_state.context.vfp.__v[18])[1],
295         ((uint64_t *)&m_state.context.vfp.__v[19])[0],
296         ((uint64_t *)&m_state.context.vfp.__v[19])[1],
297         ((uint64_t *)&m_state.context.vfp.__v[20])[0],
298         ((uint64_t *)&m_state.context.vfp.__v[20])[1],
299         ((uint64_t *)&m_state.context.vfp.__v[21])[0],
300         ((uint64_t *)&m_state.context.vfp.__v[21])[1],
301         ((uint64_t *)&m_state.context.vfp.__v[22])[0],
302         ((uint64_t *)&m_state.context.vfp.__v[22])[1],
303         ((uint64_t *)&m_state.context.vfp.__v[23])[0],
304         ((uint64_t *)&m_state.context.vfp.__v[23])[1],
305         ((uint64_t *)&m_state.context.vfp.__v[24])[0],
306         ((uint64_t *)&m_state.context.vfp.__v[24])[1],
307         ((uint64_t *)&m_state.context.vfp.__v[25])[0],
308         ((uint64_t *)&m_state.context.vfp.__v[25])[1],
309         ((uint64_t *)&m_state.context.vfp.__v[26])[0],
310         ((uint64_t *)&m_state.context.vfp.__v[26])[1],
311         ((uint64_t *)&m_state.context.vfp.__v[27])[0],
312         ((uint64_t *)&m_state.context.vfp.__v[27])[1],
313         ((uint64_t *)&m_state.context.vfp.__v[28])[0],
314         ((uint64_t *)&m_state.context.vfp.__v[28])[1],
315         ((uint64_t *)&m_state.context.vfp.__v[29])[0],
316         ((uint64_t *)&m_state.context.vfp.__v[29])[1],
317         ((uint64_t *)&m_state.context.vfp.__v[30])[0],
318         ((uint64_t *)&m_state.context.vfp.__v[30])[1],
319         ((uint64_t *)&m_state.context.vfp.__v[31])[0],
320         ((uint64_t *)&m_state.context.vfp.__v[31])[1],
321         m_state.context.vfp.__fpsr, m_state.context.vfp.__fpcr);
322 #endif
323   }
324   m_state.SetError(set, Read, kret);
325   return kret;
326 }
327 
GetEXCState(bool force)328 kern_return_t DNBArchMachARM64::GetEXCState(bool force) {
329   int set = e_regSetEXC;
330   // Check if we have valid cached registers
331   if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
332     return KERN_SUCCESS;
333 
334   // Read the registers from our thread
335   mach_msg_type_number_t count = e_regSetEXCCount;
336   kern_return_t kret =
337       ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64,
338                          (thread_state_t)&m_state.context.exc, &count);
339   m_state.SetError(set, Read, kret);
340   return kret;
341 }
342 
DumpDBGState(const arm_debug_state_t & dbg)343 static void DumpDBGState(const arm_debug_state_t &dbg) {
344   uint32_t i = 0;
345   for (i = 0; i < 16; i++)
346     DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } "
347                                "WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }",
348                      i, i, dbg.__bvr[i], dbg.__bcr[i], i, i, dbg.__wvr[i],
349                      dbg.__wcr[i]);
350 }
351 
GetDBGState(bool force)352 kern_return_t DNBArchMachARM64::GetDBGState(bool force) {
353   int set = e_regSetDBG;
354 
355   // Check if we have valid cached registers
356   if (!force && m_state.GetError(set, Read) == KERN_SUCCESS)
357     return KERN_SUCCESS;
358 
359   // Read the registers from our thread
360   mach_msg_type_number_t count = e_regSetDBGCount;
361   kern_return_t kret =
362       ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64,
363                          (thread_state_t)&m_state.dbg, &count);
364   m_state.SetError(set, Read, kret);
365 
366   return kret;
367 }
368 
SetGPRState()369 kern_return_t DNBArchMachARM64::SetGPRState() {
370   int set = e_regSetGPR;
371   kern_return_t kret = ::thread_set_state(
372       m_thread->MachPortNumber(), ARM_THREAD_STATE64,
373       (thread_state_t)&m_state.context.gpr, e_regSetGPRCount);
374   m_state.SetError(set, Write,
375                    kret); // Set the current write error for this register set
376   m_state.InvalidateRegisterSetState(set); // Invalidate the current register
377                                            // state in case registers are read
378                                            // back differently
379   return kret;                             // Return the error code
380 }
381 
SetVFPState()382 kern_return_t DNBArchMachARM64::SetVFPState() {
383   int set = e_regSetVFP;
384   kern_return_t kret = ::thread_set_state(
385       m_thread->MachPortNumber(), ARM_NEON_STATE64,
386       (thread_state_t)&m_state.context.vfp, e_regSetVFPCount);
387   m_state.SetError(set, Write,
388                    kret); // Set the current write error for this register set
389   m_state.InvalidateRegisterSetState(set); // Invalidate the current register
390                                            // state in case registers are read
391                                            // back differently
392   return kret;                             // Return the error code
393 }
394 
SetEXCState()395 kern_return_t DNBArchMachARM64::SetEXCState() {
396   int set = e_regSetEXC;
397   kern_return_t kret = ::thread_set_state(
398       m_thread->MachPortNumber(), ARM_EXCEPTION_STATE64,
399       (thread_state_t)&m_state.context.exc, e_regSetEXCCount);
400   m_state.SetError(set, Write,
401                    kret); // Set the current write error for this register set
402   m_state.InvalidateRegisterSetState(set); // Invalidate the current register
403                                            // state in case registers are read
404                                            // back differently
405   return kret;                             // Return the error code
406 }
407 
SetDBGState(bool also_set_on_task)408 kern_return_t DNBArchMachARM64::SetDBGState(bool also_set_on_task) {
409   int set = e_regSetDBG;
410   kern_return_t kret =
411       ::thread_set_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE64,
412                          (thread_state_t)&m_state.dbg, e_regSetDBGCount);
413   if (also_set_on_task) {
414     kern_return_t task_kret = task_set_state(
415         m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE64,
416         (thread_state_t)&m_state.dbg, e_regSetDBGCount);
417     if (task_kret != KERN_SUCCESS)
418       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::SetDBGState failed "
419                                         "to set debug control register state: "
420                                         "0x%8.8x.",
421                        task_kret);
422   }
423   m_state.SetError(set, Write,
424                    kret); // Set the current write error for this register set
425   m_state.InvalidateRegisterSetState(set); // Invalidate the current register
426                                            // state in case registers are read
427                                            // back differently
428 
429   return kret; // Return the error code
430 }
431 
ThreadWillResume()432 void DNBArchMachARM64::ThreadWillResume() {
433   // Do we need to step this thread? If so, let the mach thread tell us so.
434   if (m_thread->IsStepping()) {
435     EnableHardwareSingleStep(true);
436   }
437 
438   // Disable the triggered watchpoint temporarily before we resume.
439   // Plus, we try to enable hardware single step to execute past the instruction
440   // which triggered our watchpoint.
441   if (m_watchpoint_did_occur) {
442     if (m_watchpoint_hw_index >= 0) {
443       kern_return_t kret = GetDBGState(false);
444       if (kret == KERN_SUCCESS &&
445           !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) {
446         // The watchpoint might have been disabled by the user.  We don't need
447         // to do anything at all
448         // to enable hardware single stepping.
449         m_watchpoint_did_occur = false;
450         m_watchpoint_hw_index = -1;
451         return;
452       }
453 
454       DisableHardwareWatchpoint(m_watchpoint_hw_index, false);
455       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() "
456                                         "DisableHardwareWatchpoint(%d) called",
457                        m_watchpoint_hw_index);
458 
459       // Enable hardware single step to move past the watchpoint-triggering
460       // instruction.
461       m_watchpoint_resume_single_step_enabled =
462           (EnableHardwareSingleStep(true) == KERN_SUCCESS);
463 
464       // If we are not able to enable single step to move past the
465       // watchpoint-triggering instruction,
466       // at least we should reset the two watchpoint member variables so that
467       // the next time around
468       // this callback function is invoked, the enclosing logical branch is
469       // skipped.
470       if (!m_watchpoint_resume_single_step_enabled) {
471         // Reset the two watchpoint member variables.
472         m_watchpoint_did_occur = false;
473         m_watchpoint_hw_index = -1;
474         DNBLogThreadedIf(
475             LOG_WATCHPOINTS,
476             "DNBArchMachARM::ThreadWillResume() failed to enable single step");
477       } else
478         DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() "
479                                           "succeeded to enable single step");
480     }
481   }
482 }
483 
NotifyException(MachException::Data & exc)484 bool DNBArchMachARM64::NotifyException(MachException::Data &exc) {
485 
486   switch (exc.exc_type) {
487   default:
488     break;
489   case EXC_BREAKPOINT:
490     if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG) {
491       // The data break address is passed as exc_data[1].
492       nub_addr_t addr = exc.exc_data[1];
493       // Find the hardware index with the side effect of possibly massaging the
494       // addr to return the starting address as seen from the debugger side.
495       uint32_t hw_index = GetHardwareWatchpointHit(addr);
496 
497       // One logical watchpoint was split into two watchpoint locations because
498       // it was too big.  If the watchpoint exception is indicating the 2nd half
499       // of the two-parter, find the address of the 1st half and report that --
500       // that's what lldb is going to expect to see.
501       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException "
502                                         "watchpoint %d was hit on address "
503                                         "0x%llx",
504                        hw_index, (uint64_t)addr);
505       const int num_watchpoints = NumSupportedHardwareWatchpoints();
506       for (int i = 0; i < num_watchpoints; i++) {
507         if (LoHi[i] != 0 && LoHi[i] == hw_index && LoHi[i] != i &&
508             GetWatchpointAddressByIndex(i) != INVALID_NUB_ADDRESS) {
509           addr = GetWatchpointAddressByIndex(i);
510           DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException "
511                                             "It is a linked watchpoint; "
512                                             "rewritten to index %d addr 0x%llx",
513                            LoHi[i], (uint64_t)addr);
514         }
515       }
516 
517       if (hw_index != INVALID_NUB_HW_INDEX) {
518         m_watchpoint_did_occur = true;
519         m_watchpoint_hw_index = hw_index;
520         exc.exc_data[1] = addr;
521         // Piggyback the hw_index in the exc.data.
522         exc.exc_data.push_back(hw_index);
523       }
524 
525       return true;
526     }
527     // detect a __builtin_debugtrap instruction pattern ("brk #0xf000")
528     // and advance the $pc past it, so that the user can continue execution.
529     // Generally speaking, this knowledge should be centralized in lldb,
530     // recognizing the builtin_trap instruction and knowing how to advance
531     // the pc past it, so that continue etc work.
532     if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_BREAKPOINT) {
533       nub_addr_t pc = GetPC(INVALID_NUB_ADDRESS);
534       if (pc != INVALID_NUB_ADDRESS && pc > 0) {
535         DNBBreakpoint *bp =
536             m_thread->Process()->Breakpoints().FindByAddress(pc);
537         if (bp == nullptr) {
538           uint8_t insnbuf[4];
539           if (m_thread->Process()->ReadMemory(pc, 4, insnbuf) == 4) {
540             uint8_t builtin_debugtrap_insn[4] = {0x00, 0x00, 0x3e,
541                                                  0xd4}; // brk #0xf000
542             if (memcmp(insnbuf, builtin_debugtrap_insn, 4) == 0) {
543               SetPC(pc + 4);
544             }
545           }
546         }
547       }
548     }
549     break;
550   }
551   return false;
552 }
553 
ThreadDidStop()554 bool DNBArchMachARM64::ThreadDidStop() {
555   bool success = true;
556 
557   m_state.InvalidateAllRegisterStates();
558 
559   if (m_watchpoint_resume_single_step_enabled) {
560     // Great!  We now disable the hardware single step as well as re-enable the
561     // hardware watchpoint.
562     // See also ThreadWillResume().
563     if (EnableHardwareSingleStep(false) == KERN_SUCCESS) {
564       if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) {
565         ReenableHardwareWatchpoint(m_watchpoint_hw_index);
566         m_watchpoint_resume_single_step_enabled = false;
567         m_watchpoint_did_occur = false;
568         m_watchpoint_hw_index = -1;
569       } else {
570         DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
571                     "is true but (m_watchpoint_did_occur && "
572                     "m_watchpoint_hw_index >= 0) does not hold!");
573       }
574     } else {
575       DNBLogError("internal error detected: m_watchpoint_resume_step_enabled "
576                   "is true but unable to disable single step!");
577     }
578   }
579 
580   // Are we stepping a single instruction?
581   if (GetGPRState(true) == KERN_SUCCESS) {
582     // We are single stepping, was this the primary thread?
583     if (m_thread->IsStepping()) {
584       // This was the primary thread, we need to clear the trace
585       // bit if so.
586       success = EnableHardwareSingleStep(false) == KERN_SUCCESS;
587     } else {
588       // The MachThread will automatically restore the suspend count
589       // in ThreadDidStop(), so we don't need to do anything here if
590       // we weren't the primary thread the last time
591     }
592   }
593   return success;
594 }
595 
596 // Set the single step bit in the processor status register.
EnableHardwareSingleStep(bool enable)597 kern_return_t DNBArchMachARM64::EnableHardwareSingleStep(bool enable) {
598   DNBError err;
599   DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable);
600 
601   err = GetGPRState(false);
602 
603   if (err.Fail()) {
604     err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__);
605     return err.Status();
606   }
607 
608   err = GetDBGState(false);
609 
610   if (err.Fail()) {
611     err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__);
612     return err.Status();
613   }
614 
615 #if defined(__LP64__)
616   uint64_t pc = arm_thread_state64_get_pc (m_state.context.gpr);
617 #else
618   uint64_t pc = m_state.context.gpr.__pc;
619 #endif
620 
621   if (enable) {
622     DNBLogThreadedIf(LOG_STEP,
623                      "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx",
624                      __FUNCTION__, pc);
625     m_state.dbg.__mdscr_el1 |= SS_ENABLE;
626   } else {
627     DNBLogThreadedIf(LOG_STEP,
628                      "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx",
629                      __FUNCTION__, pc);
630     m_state.dbg.__mdscr_el1 &= ~(SS_ENABLE);
631   }
632 
633   return SetDBGState(false);
634 }
635 
636 // return 1 if bit "BIT" is set in "value"
bit(uint32_t value,uint32_t bit)637 static inline uint32_t bit(uint32_t value, uint32_t bit) {
638   return (value >> bit) & 1u;
639 }
640 
641 // return the bitfield "value[msbit:lsbit]".
bits(uint64_t value,uint32_t msbit,uint32_t lsbit)642 static inline uint64_t bits(uint64_t value, uint32_t msbit, uint32_t lsbit) {
643   assert(msbit >= lsbit);
644   uint64_t shift_left = sizeof(value) * 8 - 1 - msbit;
645   value <<=
646       shift_left; // shift anything above the msbit off of the unsigned edge
647   value >>= shift_left + lsbit; // shift it back again down to the lsbit
648                                 // (including undoing any shift from above)
649   return value;                 // return our result
650 }
651 
NumSupportedHardwareWatchpoints()652 uint32_t DNBArchMachARM64::NumSupportedHardwareWatchpoints() {
653   // Set the init value to something that will let us know that we need to
654   // autodetect how many watchpoints are supported dynamically...
655   static uint32_t g_num_supported_hw_watchpoints = UINT_MAX;
656   if (g_num_supported_hw_watchpoints == UINT_MAX) {
657     // Set this to zero in case we can't tell if there are any HW breakpoints
658     g_num_supported_hw_watchpoints = 0;
659 
660     size_t len;
661     uint32_t n = 0;
662     len = sizeof(n);
663     if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0) {
664       g_num_supported_hw_watchpoints = n;
665       DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n);
666     } else {
667 // For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in
668 // EL0 so it can't
669 // access that reg.  The kernel should have filled in the sysctls based on it
670 // though.
671 #if defined(__arm__)
672       uint32_t register_DBGDIDR;
673 
674       asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
675       uint32_t numWRPs = bits(register_DBGDIDR, 31, 28);
676       // Zero is reserved for the WRP count, so don't increment it if it is zero
677       if (numWRPs > 0)
678         numWRPs++;
679       g_num_supported_hw_watchpoints = numWRPs;
680       DNBLogThreadedIf(LOG_THREAD,
681                        "Number of supported hw watchpoints via asm():  %d",
682                        g_num_supported_hw_watchpoints);
683 #endif
684     }
685   }
686   return g_num_supported_hw_watchpoints;
687 }
688 
NumSupportedHardwareBreakpoints()689 uint32_t DNBArchMachARM64::NumSupportedHardwareBreakpoints() {
690   // Set the init value to something that will let us know that we need to
691   // autodetect how many breakpoints are supported dynamically...
692   static uint32_t g_num_supported_hw_breakpoints = UINT_MAX;
693   if (g_num_supported_hw_breakpoints == UINT_MAX) {
694     // Set this to zero in case we can't tell if there are any HW breakpoints
695     g_num_supported_hw_breakpoints = 0;
696 
697     size_t len;
698     uint32_t n = 0;
699     len = sizeof(n);
700     if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0) {
701       g_num_supported_hw_breakpoints = n;
702       DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n);
703     } else {
704 // For AArch64 we would need to look at ID_AA64DFR0_EL1 but debugserver runs in
705 // EL0 so it can't access that reg.  The kernel should have filled in the
706 // sysctls based on it though.
707 #if defined(__arm__)
708       uint32_t register_DBGDIDR;
709 
710       asm("mrc p14, 0, %0, c0, c0, 0" : "=r"(register_DBGDIDR));
711       uint32_t numWRPs = bits(register_DBGDIDR, 31, 28);
712       // Zero is reserved for the WRP count, so don't increment it if it is zero
713       if (numWRPs > 0)
714         numWRPs++;
715       g_num_supported_hw_breakpoints = numWRPs;
716       DNBLogThreadedIf(LOG_THREAD,
717                        "Number of supported hw breakpoint via asm():  %d",
718                        g_num_supported_hw_breakpoints);
719 #endif
720     }
721   }
722   return g_num_supported_hw_breakpoints;
723 }
724 
EnableHardwareBreakpoint(nub_addr_t addr,nub_size_t size,bool also_set_on_task)725 uint32_t DNBArchMachARM64::EnableHardwareBreakpoint(nub_addr_t addr,
726                                                     nub_size_t size,
727                                                     bool also_set_on_task) {
728   DNBLogThreadedIf(LOG_WATCHPOINTS,
729                    "DNBArchMachARM64::EnableHardwareBreakpoint(addr = "
730                    "0x%8.8llx, size = %zu)",
731                    (uint64_t)addr, size);
732 
733   const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints();
734 
735   nub_addr_t aligned_bp_address = addr;
736   uint32_t control_value = 0;
737 
738   switch (size) {
739   case 2:
740     control_value = (0x3 << 5) | 7;
741     aligned_bp_address &= ~1;
742     break;
743   case 4:
744     control_value = (0xfu << 5) | 7;
745     aligned_bp_address &= ~3;
746     break;
747   };
748 
749   // Read the debug state
750   kern_return_t kret = GetDBGState(false);
751   if (kret == KERN_SUCCESS) {
752     // Check to make sure we have the needed hardware support
753     uint32_t i = 0;
754 
755     for (i = 0; i < num_hw_breakpoints; ++i) {
756       if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0)
757         break; // We found an available hw breakpoint slot (in i)
758     }
759 
760     // See if we found an available hw breakpoint slot above
761     if (i < num_hw_breakpoints) {
762       m_state.dbg.__bvr[i] = aligned_bp_address;
763       m_state.dbg.__bcr[i] = control_value;
764 
765       DNBLogThreadedIf(LOG_WATCHPOINTS,
766                        "DNBArchMachARM64::EnableHardwareBreakpoint() "
767                        "adding breakpoint on address 0x%llx with control "
768                        "register value 0x%x",
769                        (uint64_t)m_state.dbg.__bvr[i],
770                        (uint32_t)m_state.dbg.__bcr[i]);
771 
772       // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
773       // automatically, don't need to do it here.
774       kret = SetDBGState(also_set_on_task);
775 
776       DNBLogThreadedIf(LOG_WATCHPOINTS,
777                        "DNBArchMachARM64::"
778                        "EnableHardwareBreakpoint() "
779                        "SetDBGState() => 0x%8.8x.",
780                        kret);
781 
782       if (kret == KERN_SUCCESS)
783         return i;
784     } else {
785       DNBLogThreadedIf(LOG_WATCHPOINTS,
786                        "DNBArchMachARM64::"
787                        "EnableHardwareBreakpoint(): All "
788                        "hardware resources (%u) are in use.",
789                        num_hw_breakpoints);
790     }
791   }
792   return INVALID_NUB_HW_INDEX;
793 }
794 
EnableHardwareWatchpoint(nub_addr_t addr,nub_size_t size,bool read,bool write,bool also_set_on_task)795 uint32_t DNBArchMachARM64::EnableHardwareWatchpoint(nub_addr_t addr,
796                                                     nub_size_t size, bool read,
797                                                     bool write,
798                                                     bool also_set_on_task) {
799   DNBLogThreadedIf(LOG_WATCHPOINTS,
800                    "DNBArchMachARM64::EnableHardwareWatchpoint(addr = "
801                    "0x%8.8llx, size = %zu, read = %u, write = %u)",
802                    (uint64_t)addr, size, read, write);
803 
804   const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
805 
806   // Can't watch zero bytes
807   if (size == 0)
808     return INVALID_NUB_HW_INDEX;
809 
810   // We must watch for either read or write
811   if (read == false && write == false)
812     return INVALID_NUB_HW_INDEX;
813 
814   // Otherwise, can't watch more than 8 bytes per WVR/WCR pair
815   if (size > 8)
816     return INVALID_NUB_HW_INDEX;
817 
818   // Aarch64 watchpoints are in one of two forms: (1) 1-8 bytes, aligned to
819   // an 8 byte address, or (2) a power-of-two size region of memory; minimum
820   // 8 bytes, maximum 2GB; the starting address must be aligned to that power
821   // of two.
822   //
823   // For (1), 1-8 byte watchpoints, using the Byte Address Selector field in
824   // DBGWCR<n>.BAS.  Any of the bytes may be watched, but if multiple bytes
825   // are watched, the bytes selected must be contiguous.  The start address
826   // watched must be doubleword (8-byte) aligned; if the start address is
827   // word (4-byte) aligned, only 4 bytes can be watched.
828   //
829   // For (2), the MASK field in DBGWCR<n>.MASK is used.
830   //
831   // See the ARM ARM, section "Watchpoint exceptions", and more specifically,
832   // "Watchpoint data address comparisons".
833   //
834   // debugserver today only supports (1) - the Byte Address Selector 1-8 byte
835   // watchpoints that are 8-byte aligned.  To support larger watchpoints,
836   // debugserver would need to interpret the mach exception when the watched
837   // region was hit, see if the address accessed lies within the subset
838   // of the power-of-two region that lldb asked us to watch (v. ARM ARM,
839   // "Determining the memory location that caused a Watchpoint exception"),
840   // and silently resume the inferior (disable watchpoint, stepi, re-enable
841   // watchpoint) if the address lies outside the region that lldb asked us
842   // to watch.
843   //
844   // Alternatively, lldb would need to be prepared for a larger region
845   // being watched than it requested, and silently resume the inferior if
846   // the accessed address is outside the region lldb wants to watch.
847 
848   nub_addr_t aligned_wp_address = addr & ~0x7;
849   uint32_t addr_dword_offset = addr & 0x7;
850 
851   // Do we need to split up this logical watchpoint into two hardware watchpoint
852   // registers?
853   // e.g. a watchpoint of length 4 on address 6.  We need do this with
854   //   one watchpoint on address 0 with bytes 6 & 7 being monitored
855   //   one watchpoint on address 8 with bytes 0, 1, 2, 3 being monitored
856 
857   if (addr_dword_offset + size > 8) {
858     DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::"
859                                       "EnableHardwareWatchpoint(addr = "
860                                       "0x%8.8llx, size = %zu) needs two "
861                                       "hardware watchpoints slots to monitor",
862                      (uint64_t)addr, size);
863     int low_watchpoint_size = 8 - addr_dword_offset;
864     int high_watchpoint_size = addr_dword_offset + size - 8;
865 
866     uint32_t lo = EnableHardwareWatchpoint(addr, low_watchpoint_size, read,
867                                            write, also_set_on_task);
868     if (lo == INVALID_NUB_HW_INDEX)
869       return INVALID_NUB_HW_INDEX;
870     uint32_t hi =
871         EnableHardwareWatchpoint(aligned_wp_address + 8, high_watchpoint_size,
872                                  read, write, also_set_on_task);
873     if (hi == INVALID_NUB_HW_INDEX) {
874       DisableHardwareWatchpoint(lo, also_set_on_task);
875       return INVALID_NUB_HW_INDEX;
876     }
877     // Tag this lo->hi mapping in our database.
878     LoHi[lo] = hi;
879     return lo;
880   }
881 
882   // At this point
883   //  1 aligned_wp_address is the requested address rounded down to 8-byte
884   //  alignment
885   //  2 addr_dword_offset is the offset into that double word (8-byte) region
886   //  that we are watching
887   //  3 size is the number of bytes within that 8-byte region that we are
888   //  watching
889 
890   // Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the
891   // above.
892   // The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4,
893   // etc, up to 0b11111111 for 8.
894   // then we shift those bits left by the offset into this dword that we are
895   // interested in.
896   // e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of
897   // 0b11110000.
898   uint32_t byte_address_select = ((1 << size) - 1) << addr_dword_offset;
899 
900   // Read the debug state
901   kern_return_t kret = GetDBGState(false);
902 
903   if (kret == KERN_SUCCESS) {
904     // Check to make sure we have the needed hardware support
905     uint32_t i = 0;
906 
907     for (i = 0; i < num_hw_watchpoints; ++i) {
908       if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0)
909         break; // We found an available hw watchpoint slot (in i)
910     }
911 
912     // See if we found an available hw watchpoint slot above
913     if (i < num_hw_watchpoints) {
914       // DumpDBGState(m_state.dbg);
915 
916       // Clear any previous LoHi joined-watchpoint that may have been in use
917       LoHi[i] = 0;
918 
919       // shift our Byte Address Select bits up to the correct bit range for the
920       // DBGWCRn_EL1
921       byte_address_select = byte_address_select << 5;
922 
923       // Make sure bits 1:0 are clear in our address
924       m_state.dbg.__wvr[i] = aligned_wp_address;   // DVA (Data Virtual Address)
925       m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow
926                                                    // the DVA that we will watch
927                              S_USER |              // Stop only in user mode
928                              (read ? WCR_LOAD : 0) |   // Stop on read access?
929                              (write ? WCR_STORE : 0) | // Stop on write access?
930                              WCR_ENABLE; // Enable this watchpoint;
931 
932       DNBLogThreadedIf(
933           LOG_WATCHPOINTS, "DNBArchMachARM64::EnableHardwareWatchpoint() "
934                            "adding watchpoint on address 0x%llx with control "
935                            "register value 0x%x",
936           (uint64_t)m_state.dbg.__wvr[i], (uint32_t)m_state.dbg.__wcr[i]);
937 
938       // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
939       // automatically, don't need to do it here.
940 
941       kret = SetDBGState(also_set_on_task);
942       // DumpDBGState(m_state.dbg);
943 
944       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::"
945                                         "EnableHardwareWatchpoint() "
946                                         "SetDBGState() => 0x%8.8x.",
947                        kret);
948 
949       if (kret == KERN_SUCCESS)
950         return i;
951     } else {
952       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::"
953                                         "EnableHardwareWatchpoint(): All "
954                                         "hardware resources (%u) are in use.",
955                        num_hw_watchpoints);
956     }
957   }
958   return INVALID_NUB_HW_INDEX;
959 }
960 
ReenableHardwareWatchpoint(uint32_t hw_index)961 bool DNBArchMachARM64::ReenableHardwareWatchpoint(uint32_t hw_index) {
962   // If this logical watchpoint # is actually implemented using
963   // two hardware watchpoint registers, re-enable both of them.
964 
965   if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
966     return ReenableHardwareWatchpoint_helper(hw_index) &&
967            ReenableHardwareWatchpoint_helper(LoHi[hw_index]);
968   } else {
969     return ReenableHardwareWatchpoint_helper(hw_index);
970   }
971 }
972 
ReenableHardwareWatchpoint_helper(uint32_t hw_index)973 bool DNBArchMachARM64::ReenableHardwareWatchpoint_helper(uint32_t hw_index) {
974   kern_return_t kret = GetDBGState(false);
975   if (kret != KERN_SUCCESS)
976     return false;
977 
978   const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
979   if (hw_index >= num_hw_points)
980     return false;
981 
982   m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr;
983   m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control;
984 
985   DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::"
986                                     "EnableHardwareWatchpoint( %u ) - WVR%u = "
987                                     "0x%8.8llx  WCR%u = 0x%8.8llx",
988                    hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
989                    hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);
990 
991   // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us
992   // automatically, don't need to do it here.
993 
994   kret = SetDBGState(false);
995 
996   return (kret == KERN_SUCCESS);
997 }
998 
DisableHardwareWatchpoint(uint32_t hw_index,bool also_set_on_task)999 bool DNBArchMachARM64::DisableHardwareWatchpoint(uint32_t hw_index,
1000                                                  bool also_set_on_task) {
1001   if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) {
1002     return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task) &&
1003            DisableHardwareWatchpoint_helper(LoHi[hw_index], also_set_on_task);
1004   } else {
1005     return DisableHardwareWatchpoint_helper(hw_index, also_set_on_task);
1006   }
1007 }
1008 
DisableHardwareWatchpoint_helper(uint32_t hw_index,bool also_set_on_task)1009 bool DNBArchMachARM64::DisableHardwareWatchpoint_helper(uint32_t hw_index,
1010                                                         bool also_set_on_task) {
1011   kern_return_t kret = GetDBGState(false);
1012   if (kret != KERN_SUCCESS)
1013     return false;
1014 
1015   const uint32_t num_hw_points = NumSupportedHardwareWatchpoints();
1016   if (hw_index >= num_hw_points)
1017     return false;
1018 
1019   m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index];
1020   m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index];
1021 
1022   m_state.dbg.__wcr[hw_index] &= ~((nub_addr_t)WCR_ENABLE);
1023   DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM64::"
1024                                     "DisableHardwareWatchpoint( %u ) - WVR%u = "
1025                                     "0x%8.8llx  WCR%u = 0x%8.8llx",
1026                    hw_index, hw_index, (uint64_t)m_state.dbg.__wvr[hw_index],
1027                    hw_index, (uint64_t)m_state.dbg.__wcr[hw_index]);
1028 
1029   kret = SetDBGState(also_set_on_task);
1030 
1031   return (kret == KERN_SUCCESS);
1032 }
1033 
DisableHardwareBreakpoint(uint32_t hw_index,bool also_set_on_task)1034 bool DNBArchMachARM64::DisableHardwareBreakpoint(uint32_t hw_index,
1035                                                  bool also_set_on_task) {
1036   kern_return_t kret = GetDBGState(false);
1037   if (kret != KERN_SUCCESS)
1038     return false;
1039 
1040   const uint32_t num_hw_points = NumSupportedHardwareBreakpoints();
1041   if (hw_index >= num_hw_points)
1042     return false;
1043 
1044   m_disabled_breakpoints[hw_index].addr = m_state.dbg.__bvr[hw_index];
1045   m_disabled_breakpoints[hw_index].control = m_state.dbg.__bcr[hw_index];
1046 
1047   m_state.dbg.__bcr[hw_index] = 0;
1048   DNBLogThreadedIf(LOG_WATCHPOINTS,
1049                    "DNBArchMachARM64::"
1050                    "DisableHardwareBreakpoint( %u ) - WVR%u = "
1051                    "0x%8.8llx  BCR%u = 0x%8.8llx",
1052                    hw_index, hw_index, (uint64_t)m_state.dbg.__bvr[hw_index],
1053                    hw_index, (uint64_t)m_state.dbg.__bcr[hw_index]);
1054 
1055   kret = SetDBGState(also_set_on_task);
1056 
1057   return (kret == KERN_SUCCESS);
1058 }
1059 
1060 // This is for checking the Byte Address Select bits in the DBRWCRn_EL1 control
1061 // register.
1062 // Returns -1 if the trailing bit patterns are not one of:
1063 // { 0b???????1, 0b??????10, 0b?????100, 0b????1000, 0b???10000, 0b??100000,
1064 // 0b?1000000, 0b10000000 }.
LowestBitSet(uint32_t val)1065 static inline int32_t LowestBitSet(uint32_t val) {
1066   for (unsigned i = 0; i < 8; ++i) {
1067     if (bit(val, i))
1068       return i;
1069   }
1070   return -1;
1071 }
1072 
1073 // Iterate through the debug registers; return the index of the first watchpoint
1074 // whose address matches.
1075 // As a side effect, the starting address as understood by the debugger is
1076 // returned which could be
1077 // different from 'addr' passed as an in/out argument.
GetHardwareWatchpointHit(nub_addr_t & addr)1078 uint32_t DNBArchMachARM64::GetHardwareWatchpointHit(nub_addr_t &addr) {
1079   // Read the debug state
1080   kern_return_t kret = GetDBGState(true);
1081   // DumpDBGState(m_state.dbg);
1082   DNBLogThreadedIf(
1083       LOG_WATCHPOINTS,
1084       "DNBArchMachARM64::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.",
1085       kret);
1086   DNBLogThreadedIf(LOG_WATCHPOINTS,
1087                    "DNBArchMachARM64::GetHardwareWatchpointHit() addr = 0x%llx",
1088                    (uint64_t)addr);
1089 
1090   if (kret == KERN_SUCCESS) {
1091     DBG &debug_state = m_state.dbg;
1092     uint32_t i, num = NumSupportedHardwareWatchpoints();
1093     for (i = 0; i < num; ++i) {
1094       nub_addr_t wp_addr = GetWatchAddress(debug_state, i);
1095       uint32_t byte_mask = bits(debug_state.__wcr[i], 12, 5);
1096 
1097       DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchImplX86_64::"
1098                        "GetHardwareWatchpointHit() slot: %u "
1099                        "(addr = 0x%llx; byte_mask = 0x%x)",
1100                        i, static_cast<uint64_t>(wp_addr),
1101                        byte_mask);
1102 
1103       if (!IsWatchpointEnabled(debug_state, i))
1104         continue;
1105 
1106       if (bits(wp_addr, 48, 3) != bits(addr, 48, 3))
1107         continue;
1108 
1109       // Sanity check the byte_mask
1110       uint32_t lsb = LowestBitSet(byte_mask);
1111       if (lsb < 0)
1112         continue;
1113 
1114       uint64_t byte_to_match = bits(addr, 2, 0);
1115 
1116       if (byte_mask & (1 << byte_to_match)) {
1117         addr = wp_addr + lsb;
1118         return i;
1119       }
1120     }
1121   }
1122   return INVALID_NUB_HW_INDEX;
1123 }
1124 
GetWatchpointAddressByIndex(uint32_t hw_index)1125 nub_addr_t DNBArchMachARM64::GetWatchpointAddressByIndex(uint32_t hw_index) {
1126   kern_return_t kret = GetDBGState(true);
1127   if (kret != KERN_SUCCESS)
1128     return INVALID_NUB_ADDRESS;
1129   const uint32_t num = NumSupportedHardwareWatchpoints();
1130   if (hw_index >= num)
1131     return INVALID_NUB_ADDRESS;
1132   if (IsWatchpointEnabled(m_state.dbg, hw_index))
1133     return GetWatchAddress(m_state.dbg, hw_index);
1134   return INVALID_NUB_ADDRESS;
1135 }
1136 
IsWatchpointEnabled(const DBG & debug_state,uint32_t hw_index)1137 bool DNBArchMachARM64::IsWatchpointEnabled(const DBG &debug_state,
1138                                            uint32_t hw_index) {
1139   // Watchpoint Control Registers, bitfield definitions
1140   // ...
1141   // Bits    Value    Description
1142   // [0]     0        Watchpoint disabled
1143   //         1        Watchpoint enabled.
1144   return (debug_state.__wcr[hw_index] & 1u);
1145 }
1146 
GetWatchAddress(const DBG & debug_state,uint32_t hw_index)1147 nub_addr_t DNBArchMachARM64::GetWatchAddress(const DBG &debug_state,
1148                                              uint32_t hw_index) {
1149   // Watchpoint Value Registers, bitfield definitions
1150   // Bits        Description
1151   // [31:2]      Watchpoint value (word address, i.e., 4-byte aligned)
1152   // [1:0]       RAZ/SBZP
1153   return bits(debug_state.__wvr[hw_index], 63, 0);
1154 }
1155 
1156 // Register information definitions for 64 bit ARMv8.
1157 enum gpr_regnums {
1158   gpr_x0 = 0,
1159   gpr_x1,
1160   gpr_x2,
1161   gpr_x3,
1162   gpr_x4,
1163   gpr_x5,
1164   gpr_x6,
1165   gpr_x7,
1166   gpr_x8,
1167   gpr_x9,
1168   gpr_x10,
1169   gpr_x11,
1170   gpr_x12,
1171   gpr_x13,
1172   gpr_x14,
1173   gpr_x15,
1174   gpr_x16,
1175   gpr_x17,
1176   gpr_x18,
1177   gpr_x19,
1178   gpr_x20,
1179   gpr_x21,
1180   gpr_x22,
1181   gpr_x23,
1182   gpr_x24,
1183   gpr_x25,
1184   gpr_x26,
1185   gpr_x27,
1186   gpr_x28,
1187   gpr_fp,
1188   gpr_x29 = gpr_fp,
1189   gpr_lr,
1190   gpr_x30 = gpr_lr,
1191   gpr_sp,
1192   gpr_x31 = gpr_sp,
1193   gpr_pc,
1194   gpr_cpsr,
1195   gpr_w0,
1196   gpr_w1,
1197   gpr_w2,
1198   gpr_w3,
1199   gpr_w4,
1200   gpr_w5,
1201   gpr_w6,
1202   gpr_w7,
1203   gpr_w8,
1204   gpr_w9,
1205   gpr_w10,
1206   gpr_w11,
1207   gpr_w12,
1208   gpr_w13,
1209   gpr_w14,
1210   gpr_w15,
1211   gpr_w16,
1212   gpr_w17,
1213   gpr_w18,
1214   gpr_w19,
1215   gpr_w20,
1216   gpr_w21,
1217   gpr_w22,
1218   gpr_w23,
1219   gpr_w24,
1220   gpr_w25,
1221   gpr_w26,
1222   gpr_w27,
1223   gpr_w28
1224 
1225 };
1226 
1227 enum {
1228   vfp_v0 = 0,
1229   vfp_v1,
1230   vfp_v2,
1231   vfp_v3,
1232   vfp_v4,
1233   vfp_v5,
1234   vfp_v6,
1235   vfp_v7,
1236   vfp_v8,
1237   vfp_v9,
1238   vfp_v10,
1239   vfp_v11,
1240   vfp_v12,
1241   vfp_v13,
1242   vfp_v14,
1243   vfp_v15,
1244   vfp_v16,
1245   vfp_v17,
1246   vfp_v18,
1247   vfp_v19,
1248   vfp_v20,
1249   vfp_v21,
1250   vfp_v22,
1251   vfp_v23,
1252   vfp_v24,
1253   vfp_v25,
1254   vfp_v26,
1255   vfp_v27,
1256   vfp_v28,
1257   vfp_v29,
1258   vfp_v30,
1259   vfp_v31,
1260   vfp_fpsr,
1261   vfp_fpcr,
1262 
1263   // lower 32 bits of the corresponding vfp_v<n> reg.
1264   vfp_s0,
1265   vfp_s1,
1266   vfp_s2,
1267   vfp_s3,
1268   vfp_s4,
1269   vfp_s5,
1270   vfp_s6,
1271   vfp_s7,
1272   vfp_s8,
1273   vfp_s9,
1274   vfp_s10,
1275   vfp_s11,
1276   vfp_s12,
1277   vfp_s13,
1278   vfp_s14,
1279   vfp_s15,
1280   vfp_s16,
1281   vfp_s17,
1282   vfp_s18,
1283   vfp_s19,
1284   vfp_s20,
1285   vfp_s21,
1286   vfp_s22,
1287   vfp_s23,
1288   vfp_s24,
1289   vfp_s25,
1290   vfp_s26,
1291   vfp_s27,
1292   vfp_s28,
1293   vfp_s29,
1294   vfp_s30,
1295   vfp_s31,
1296 
1297   // lower 64 bits of the corresponding vfp_v<n> reg.
1298   vfp_d0,
1299   vfp_d1,
1300   vfp_d2,
1301   vfp_d3,
1302   vfp_d4,
1303   vfp_d5,
1304   vfp_d6,
1305   vfp_d7,
1306   vfp_d8,
1307   vfp_d9,
1308   vfp_d10,
1309   vfp_d11,
1310   vfp_d12,
1311   vfp_d13,
1312   vfp_d14,
1313   vfp_d15,
1314   vfp_d16,
1315   vfp_d17,
1316   vfp_d18,
1317   vfp_d19,
1318   vfp_d20,
1319   vfp_d21,
1320   vfp_d22,
1321   vfp_d23,
1322   vfp_d24,
1323   vfp_d25,
1324   vfp_d26,
1325   vfp_d27,
1326   vfp_d28,
1327   vfp_d29,
1328   vfp_d30,
1329   vfp_d31
1330 };
1331 
1332 enum { exc_far = 0, exc_esr, exc_exception };
1333 
1334 // These numbers from the "DWARF for the ARM 64-bit Architecture (AArch64)"
1335 // document.
1336 
1337 enum {
1338   dwarf_x0 = 0,
1339   dwarf_x1,
1340   dwarf_x2,
1341   dwarf_x3,
1342   dwarf_x4,
1343   dwarf_x5,
1344   dwarf_x6,
1345   dwarf_x7,
1346   dwarf_x8,
1347   dwarf_x9,
1348   dwarf_x10,
1349   dwarf_x11,
1350   dwarf_x12,
1351   dwarf_x13,
1352   dwarf_x14,
1353   dwarf_x15,
1354   dwarf_x16,
1355   dwarf_x17,
1356   dwarf_x18,
1357   dwarf_x19,
1358   dwarf_x20,
1359   dwarf_x21,
1360   dwarf_x22,
1361   dwarf_x23,
1362   dwarf_x24,
1363   dwarf_x25,
1364   dwarf_x26,
1365   dwarf_x27,
1366   dwarf_x28,
1367   dwarf_x29,
1368   dwarf_x30,
1369   dwarf_x31,
1370   dwarf_pc = 32,
1371   dwarf_elr_mode = 33,
1372   dwarf_fp = dwarf_x29,
1373   dwarf_lr = dwarf_x30,
1374   dwarf_sp = dwarf_x31,
1375   // 34-63 reserved
1376 
1377   // V0-V31 (128 bit vector registers)
1378   dwarf_v0 = 64,
1379   dwarf_v1,
1380   dwarf_v2,
1381   dwarf_v3,
1382   dwarf_v4,
1383   dwarf_v5,
1384   dwarf_v6,
1385   dwarf_v7,
1386   dwarf_v8,
1387   dwarf_v9,
1388   dwarf_v10,
1389   dwarf_v11,
1390   dwarf_v12,
1391   dwarf_v13,
1392   dwarf_v14,
1393   dwarf_v15,
1394   dwarf_v16,
1395   dwarf_v17,
1396   dwarf_v18,
1397   dwarf_v19,
1398   dwarf_v20,
1399   dwarf_v21,
1400   dwarf_v22,
1401   dwarf_v23,
1402   dwarf_v24,
1403   dwarf_v25,
1404   dwarf_v26,
1405   dwarf_v27,
1406   dwarf_v28,
1407   dwarf_v29,
1408   dwarf_v30,
1409   dwarf_v31
1410 
1411   // 96-127 reserved
1412 };
1413 
1414 enum {
1415   debugserver_gpr_x0 = 0,
1416   debugserver_gpr_x1,
1417   debugserver_gpr_x2,
1418   debugserver_gpr_x3,
1419   debugserver_gpr_x4,
1420   debugserver_gpr_x5,
1421   debugserver_gpr_x6,
1422   debugserver_gpr_x7,
1423   debugserver_gpr_x8,
1424   debugserver_gpr_x9,
1425   debugserver_gpr_x10,
1426   debugserver_gpr_x11,
1427   debugserver_gpr_x12,
1428   debugserver_gpr_x13,
1429   debugserver_gpr_x14,
1430   debugserver_gpr_x15,
1431   debugserver_gpr_x16,
1432   debugserver_gpr_x17,
1433   debugserver_gpr_x18,
1434   debugserver_gpr_x19,
1435   debugserver_gpr_x20,
1436   debugserver_gpr_x21,
1437   debugserver_gpr_x22,
1438   debugserver_gpr_x23,
1439   debugserver_gpr_x24,
1440   debugserver_gpr_x25,
1441   debugserver_gpr_x26,
1442   debugserver_gpr_x27,
1443   debugserver_gpr_x28,
1444   debugserver_gpr_fp, // x29
1445   debugserver_gpr_lr, // x30
1446   debugserver_gpr_sp, // sp aka xsp
1447   debugserver_gpr_pc,
1448   debugserver_gpr_cpsr,
1449   debugserver_vfp_v0,
1450   debugserver_vfp_v1,
1451   debugserver_vfp_v2,
1452   debugserver_vfp_v3,
1453   debugserver_vfp_v4,
1454   debugserver_vfp_v5,
1455   debugserver_vfp_v6,
1456   debugserver_vfp_v7,
1457   debugserver_vfp_v8,
1458   debugserver_vfp_v9,
1459   debugserver_vfp_v10,
1460   debugserver_vfp_v11,
1461   debugserver_vfp_v12,
1462   debugserver_vfp_v13,
1463   debugserver_vfp_v14,
1464   debugserver_vfp_v15,
1465   debugserver_vfp_v16,
1466   debugserver_vfp_v17,
1467   debugserver_vfp_v18,
1468   debugserver_vfp_v19,
1469   debugserver_vfp_v20,
1470   debugserver_vfp_v21,
1471   debugserver_vfp_v22,
1472   debugserver_vfp_v23,
1473   debugserver_vfp_v24,
1474   debugserver_vfp_v25,
1475   debugserver_vfp_v26,
1476   debugserver_vfp_v27,
1477   debugserver_vfp_v28,
1478   debugserver_vfp_v29,
1479   debugserver_vfp_v30,
1480   debugserver_vfp_v31,
1481   debugserver_vfp_fpsr,
1482   debugserver_vfp_fpcr
1483 };
1484 
1485 const char *g_contained_x0[]{"x0", NULL};
1486 const char *g_contained_x1[]{"x1", NULL};
1487 const char *g_contained_x2[]{"x2", NULL};
1488 const char *g_contained_x3[]{"x3", NULL};
1489 const char *g_contained_x4[]{"x4", NULL};
1490 const char *g_contained_x5[]{"x5", NULL};
1491 const char *g_contained_x6[]{"x6", NULL};
1492 const char *g_contained_x7[]{"x7", NULL};
1493 const char *g_contained_x8[]{"x8", NULL};
1494 const char *g_contained_x9[]{"x9", NULL};
1495 const char *g_contained_x10[]{"x10", NULL};
1496 const char *g_contained_x11[]{"x11", NULL};
1497 const char *g_contained_x12[]{"x12", NULL};
1498 const char *g_contained_x13[]{"x13", NULL};
1499 const char *g_contained_x14[]{"x14", NULL};
1500 const char *g_contained_x15[]{"x15", NULL};
1501 const char *g_contained_x16[]{"x16", NULL};
1502 const char *g_contained_x17[]{"x17", NULL};
1503 const char *g_contained_x18[]{"x18", NULL};
1504 const char *g_contained_x19[]{"x19", NULL};
1505 const char *g_contained_x20[]{"x20", NULL};
1506 const char *g_contained_x21[]{"x21", NULL};
1507 const char *g_contained_x22[]{"x22", NULL};
1508 const char *g_contained_x23[]{"x23", NULL};
1509 const char *g_contained_x24[]{"x24", NULL};
1510 const char *g_contained_x25[]{"x25", NULL};
1511 const char *g_contained_x26[]{"x26", NULL};
1512 const char *g_contained_x27[]{"x27", NULL};
1513 const char *g_contained_x28[]{"x28", NULL};
1514 
1515 const char *g_invalidate_x0[]{"x0", "w0", NULL};
1516 const char *g_invalidate_x1[]{"x1", "w1", NULL};
1517 const char *g_invalidate_x2[]{"x2", "w2", NULL};
1518 const char *g_invalidate_x3[]{"x3", "w3", NULL};
1519 const char *g_invalidate_x4[]{"x4", "w4", NULL};
1520 const char *g_invalidate_x5[]{"x5", "w5", NULL};
1521 const char *g_invalidate_x6[]{"x6", "w6", NULL};
1522 const char *g_invalidate_x7[]{"x7", "w7", NULL};
1523 const char *g_invalidate_x8[]{"x8", "w8", NULL};
1524 const char *g_invalidate_x9[]{"x9", "w9", NULL};
1525 const char *g_invalidate_x10[]{"x10", "w10", NULL};
1526 const char *g_invalidate_x11[]{"x11", "w11", NULL};
1527 const char *g_invalidate_x12[]{"x12", "w12", NULL};
1528 const char *g_invalidate_x13[]{"x13", "w13", NULL};
1529 const char *g_invalidate_x14[]{"x14", "w14", NULL};
1530 const char *g_invalidate_x15[]{"x15", "w15", NULL};
1531 const char *g_invalidate_x16[]{"x16", "w16", NULL};
1532 const char *g_invalidate_x17[]{"x17", "w17", NULL};
1533 const char *g_invalidate_x18[]{"x18", "w18", NULL};
1534 const char *g_invalidate_x19[]{"x19", "w19", NULL};
1535 const char *g_invalidate_x20[]{"x20", "w20", NULL};
1536 const char *g_invalidate_x21[]{"x21", "w21", NULL};
1537 const char *g_invalidate_x22[]{"x22", "w22", NULL};
1538 const char *g_invalidate_x23[]{"x23", "w23", NULL};
1539 const char *g_invalidate_x24[]{"x24", "w24", NULL};
1540 const char *g_invalidate_x25[]{"x25", "w25", NULL};
1541 const char *g_invalidate_x26[]{"x26", "w26", NULL};
1542 const char *g_invalidate_x27[]{"x27", "w27", NULL};
1543 const char *g_invalidate_x28[]{"x28", "w28", NULL};
1544 
1545 #define GPR_OFFSET_IDX(idx) (offsetof(DNBArchMachARM64::GPR, __x[idx]))
1546 
1547 #define GPR_OFFSET_NAME(reg) (offsetof(DNBArchMachARM64::GPR, __##reg))
1548 
1549 // These macros will auto define the register name, alt name, register size,
1550 // register offset, encoding, format and native register. This ensures that
1551 // the register state structures are defined correctly and have the correct
1552 // sizes and offsets.
1553 #define DEFINE_GPR_IDX(idx, reg, alt, gen)                                     \
1554   {                                                                            \
1555     e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_IDX(idx),      \
1556         dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL,            \
1557         g_invalidate_x##idx                                                    \
1558   }
1559 #define DEFINE_GPR_NAME(reg, alt, gen)                                         \
1560   {                                                                            \
1561     e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 8, GPR_OFFSET_NAME(reg),     \
1562         dwarf_##reg, dwarf_##reg, gen, debugserver_gpr_##reg, NULL, NULL       \
1563   }
1564 #define DEFINE_PSEUDO_GPR_IDX(idx, reg)                                        \
1565   {                                                                            \
1566     e_regSetGPR, gpr_##reg, #reg, NULL, Uint, Hex, 4, 0, INVALID_NUB_REGNUM,   \
1567         INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,            \
1568         g_contained_x##idx, g_invalidate_x##idx                                \
1569   }
1570 
1571 //_STRUCT_ARM_THREAD_STATE64
1572 //{
1573 //	uint64_t    x[29];	/* General purpose registers x0-x28 */
1574 //	uint64_t    fp;		/* Frame pointer x29 */
1575 //	uint64_t    lr;		/* Link register x30 */
1576 //	uint64_t    sp;		/* Stack pointer x31 */
1577 //	uint64_t    pc;		/* Program counter */
1578 //	uint32_t    cpsr;	/* Current program status register */
1579 //};
1580 
1581 // General purpose registers
1582 const DNBRegisterInfo DNBArchMachARM64::g_gpr_registers[] = {
1583     DEFINE_GPR_IDX(0, x0, "arg1", GENERIC_REGNUM_ARG1),
1584     DEFINE_GPR_IDX(1, x1, "arg2", GENERIC_REGNUM_ARG2),
1585     DEFINE_GPR_IDX(2, x2, "arg3", GENERIC_REGNUM_ARG3),
1586     DEFINE_GPR_IDX(3, x3, "arg4", GENERIC_REGNUM_ARG4),
1587     DEFINE_GPR_IDX(4, x4, "arg5", GENERIC_REGNUM_ARG5),
1588     DEFINE_GPR_IDX(5, x5, "arg6", GENERIC_REGNUM_ARG6),
1589     DEFINE_GPR_IDX(6, x6, "arg7", GENERIC_REGNUM_ARG7),
1590     DEFINE_GPR_IDX(7, x7, "arg8", GENERIC_REGNUM_ARG8),
1591     DEFINE_GPR_IDX(8, x8, NULL, INVALID_NUB_REGNUM),
1592     DEFINE_GPR_IDX(9, x9, NULL, INVALID_NUB_REGNUM),
1593     DEFINE_GPR_IDX(10, x10, NULL, INVALID_NUB_REGNUM),
1594     DEFINE_GPR_IDX(11, x11, NULL, INVALID_NUB_REGNUM),
1595     DEFINE_GPR_IDX(12, x12, NULL, INVALID_NUB_REGNUM),
1596     DEFINE_GPR_IDX(13, x13, NULL, INVALID_NUB_REGNUM),
1597     DEFINE_GPR_IDX(14, x14, NULL, INVALID_NUB_REGNUM),
1598     DEFINE_GPR_IDX(15, x15, NULL, INVALID_NUB_REGNUM),
1599     DEFINE_GPR_IDX(16, x16, NULL, INVALID_NUB_REGNUM),
1600     DEFINE_GPR_IDX(17, x17, NULL, INVALID_NUB_REGNUM),
1601     DEFINE_GPR_IDX(18, x18, NULL, INVALID_NUB_REGNUM),
1602     DEFINE_GPR_IDX(19, x19, NULL, INVALID_NUB_REGNUM),
1603     DEFINE_GPR_IDX(20, x20, NULL, INVALID_NUB_REGNUM),
1604     DEFINE_GPR_IDX(21, x21, NULL, INVALID_NUB_REGNUM),
1605     DEFINE_GPR_IDX(22, x22, NULL, INVALID_NUB_REGNUM),
1606     DEFINE_GPR_IDX(23, x23, NULL, INVALID_NUB_REGNUM),
1607     DEFINE_GPR_IDX(24, x24, NULL, INVALID_NUB_REGNUM),
1608     DEFINE_GPR_IDX(25, x25, NULL, INVALID_NUB_REGNUM),
1609     DEFINE_GPR_IDX(26, x26, NULL, INVALID_NUB_REGNUM),
1610     DEFINE_GPR_IDX(27, x27, NULL, INVALID_NUB_REGNUM),
1611     DEFINE_GPR_IDX(28, x28, NULL, INVALID_NUB_REGNUM),
1612     // For the G/g packet we want to show where the offset into the regctx
1613     // is for fp/lr/sp/pc, but we cannot directly access them on arm64e
1614     // devices (and therefore can't offsetof() them)) - add the offset based
1615     // on the last accessible register by hand for advertising the location
1616     // in the regctx to lldb.  We'll go through the accessor functions when
1617     // we read/write them here.
1618     {
1619        e_regSetGPR, gpr_fp, "fp", "x29", Uint, Hex, 8, GPR_OFFSET_IDX(28) + 8,
1620        dwarf_fp, dwarf_fp, GENERIC_REGNUM_FP, debugserver_gpr_fp, NULL, NULL
1621     },
1622     {
1623        e_regSetGPR, gpr_lr, "lr", "x30", Uint, Hex, 8, GPR_OFFSET_IDX(28) + 16,
1624        dwarf_lr, dwarf_lr, GENERIC_REGNUM_RA, debugserver_gpr_lr, NULL, NULL
1625     },
1626     {
1627        e_regSetGPR, gpr_sp, "sp", "xsp", Uint, Hex, 8, GPR_OFFSET_IDX(28) + 24,
1628        dwarf_sp, dwarf_sp, GENERIC_REGNUM_SP, debugserver_gpr_sp, NULL, NULL
1629     },
1630     {
1631        e_regSetGPR, gpr_pc, "pc", NULL, Uint, Hex, 8, GPR_OFFSET_IDX(28) + 32,
1632        dwarf_pc, dwarf_pc, GENERIC_REGNUM_PC, debugserver_gpr_pc, NULL, NULL
1633     },
1634 
1635     // in armv7 we specify that writing to the CPSR should invalidate r8-12, sp,
1636     // lr.
1637     // this should be specified for arm64 too even though debugserver is only
1638     // used for
1639     // userland debugging.
1640     {e_regSetGPR, gpr_cpsr, "cpsr", "flags", Uint, Hex, 4,
1641      GPR_OFFSET_NAME(cpsr), dwarf_elr_mode, dwarf_elr_mode, INVALID_NUB_REGNUM,
1642      debugserver_gpr_cpsr, NULL, NULL},
1643 
1644     DEFINE_PSEUDO_GPR_IDX(0, w0),
1645     DEFINE_PSEUDO_GPR_IDX(1, w1),
1646     DEFINE_PSEUDO_GPR_IDX(2, w2),
1647     DEFINE_PSEUDO_GPR_IDX(3, w3),
1648     DEFINE_PSEUDO_GPR_IDX(4, w4),
1649     DEFINE_PSEUDO_GPR_IDX(5, w5),
1650     DEFINE_PSEUDO_GPR_IDX(6, w6),
1651     DEFINE_PSEUDO_GPR_IDX(7, w7),
1652     DEFINE_PSEUDO_GPR_IDX(8, w8),
1653     DEFINE_PSEUDO_GPR_IDX(9, w9),
1654     DEFINE_PSEUDO_GPR_IDX(10, w10),
1655     DEFINE_PSEUDO_GPR_IDX(11, w11),
1656     DEFINE_PSEUDO_GPR_IDX(12, w12),
1657     DEFINE_PSEUDO_GPR_IDX(13, w13),
1658     DEFINE_PSEUDO_GPR_IDX(14, w14),
1659     DEFINE_PSEUDO_GPR_IDX(15, w15),
1660     DEFINE_PSEUDO_GPR_IDX(16, w16),
1661     DEFINE_PSEUDO_GPR_IDX(17, w17),
1662     DEFINE_PSEUDO_GPR_IDX(18, w18),
1663     DEFINE_PSEUDO_GPR_IDX(19, w19),
1664     DEFINE_PSEUDO_GPR_IDX(20, w20),
1665     DEFINE_PSEUDO_GPR_IDX(21, w21),
1666     DEFINE_PSEUDO_GPR_IDX(22, w22),
1667     DEFINE_PSEUDO_GPR_IDX(23, w23),
1668     DEFINE_PSEUDO_GPR_IDX(24, w24),
1669     DEFINE_PSEUDO_GPR_IDX(25, w25),
1670     DEFINE_PSEUDO_GPR_IDX(26, w26),
1671     DEFINE_PSEUDO_GPR_IDX(27, w27),
1672     DEFINE_PSEUDO_GPR_IDX(28, w28)};
1673 
1674 const char *g_contained_v0[]{"v0", NULL};
1675 const char *g_contained_v1[]{"v1", NULL};
1676 const char *g_contained_v2[]{"v2", NULL};
1677 const char *g_contained_v3[]{"v3", NULL};
1678 const char *g_contained_v4[]{"v4", NULL};
1679 const char *g_contained_v5[]{"v5", NULL};
1680 const char *g_contained_v6[]{"v6", NULL};
1681 const char *g_contained_v7[]{"v7", NULL};
1682 const char *g_contained_v8[]{"v8", NULL};
1683 const char *g_contained_v9[]{"v9", NULL};
1684 const char *g_contained_v10[]{"v10", NULL};
1685 const char *g_contained_v11[]{"v11", NULL};
1686 const char *g_contained_v12[]{"v12", NULL};
1687 const char *g_contained_v13[]{"v13", NULL};
1688 const char *g_contained_v14[]{"v14", NULL};
1689 const char *g_contained_v15[]{"v15", NULL};
1690 const char *g_contained_v16[]{"v16", NULL};
1691 const char *g_contained_v17[]{"v17", NULL};
1692 const char *g_contained_v18[]{"v18", NULL};
1693 const char *g_contained_v19[]{"v19", NULL};
1694 const char *g_contained_v20[]{"v20", NULL};
1695 const char *g_contained_v21[]{"v21", NULL};
1696 const char *g_contained_v22[]{"v22", NULL};
1697 const char *g_contained_v23[]{"v23", NULL};
1698 const char *g_contained_v24[]{"v24", NULL};
1699 const char *g_contained_v25[]{"v25", NULL};
1700 const char *g_contained_v26[]{"v26", NULL};
1701 const char *g_contained_v27[]{"v27", NULL};
1702 const char *g_contained_v28[]{"v28", NULL};
1703 const char *g_contained_v29[]{"v29", NULL};
1704 const char *g_contained_v30[]{"v30", NULL};
1705 const char *g_contained_v31[]{"v31", NULL};
1706 
1707 const char *g_invalidate_v0[]{"v0", "d0", "s0", NULL};
1708 const char *g_invalidate_v1[]{"v1", "d1", "s1", NULL};
1709 const char *g_invalidate_v2[]{"v2", "d2", "s2", NULL};
1710 const char *g_invalidate_v3[]{"v3", "d3", "s3", NULL};
1711 const char *g_invalidate_v4[]{"v4", "d4", "s4", NULL};
1712 const char *g_invalidate_v5[]{"v5", "d5", "s5", NULL};
1713 const char *g_invalidate_v6[]{"v6", "d6", "s6", NULL};
1714 const char *g_invalidate_v7[]{"v7", "d7", "s7", NULL};
1715 const char *g_invalidate_v8[]{"v8", "d8", "s8", NULL};
1716 const char *g_invalidate_v9[]{"v9", "d9", "s9", NULL};
1717 const char *g_invalidate_v10[]{"v10", "d10", "s10", NULL};
1718 const char *g_invalidate_v11[]{"v11", "d11", "s11", NULL};
1719 const char *g_invalidate_v12[]{"v12", "d12", "s12", NULL};
1720 const char *g_invalidate_v13[]{"v13", "d13", "s13", NULL};
1721 const char *g_invalidate_v14[]{"v14", "d14", "s14", NULL};
1722 const char *g_invalidate_v15[]{"v15", "d15", "s15", NULL};
1723 const char *g_invalidate_v16[]{"v16", "d16", "s16", NULL};
1724 const char *g_invalidate_v17[]{"v17", "d17", "s17", NULL};
1725 const char *g_invalidate_v18[]{"v18", "d18", "s18", NULL};
1726 const char *g_invalidate_v19[]{"v19", "d19", "s19", NULL};
1727 const char *g_invalidate_v20[]{"v20", "d20", "s20", NULL};
1728 const char *g_invalidate_v21[]{"v21", "d21", "s21", NULL};
1729 const char *g_invalidate_v22[]{"v22", "d22", "s22", NULL};
1730 const char *g_invalidate_v23[]{"v23", "d23", "s23", NULL};
1731 const char *g_invalidate_v24[]{"v24", "d24", "s24", NULL};
1732 const char *g_invalidate_v25[]{"v25", "d25", "s25", NULL};
1733 const char *g_invalidate_v26[]{"v26", "d26", "s26", NULL};
1734 const char *g_invalidate_v27[]{"v27", "d27", "s27", NULL};
1735 const char *g_invalidate_v28[]{"v28", "d28", "s28", NULL};
1736 const char *g_invalidate_v29[]{"v29", "d29", "s29", NULL};
1737 const char *g_invalidate_v30[]{"v30", "d30", "s30", NULL};
1738 const char *g_invalidate_v31[]{"v31", "d31", "s31", NULL};
1739 
1740 #if defined(__arm64__) || defined(__aarch64__)
1741 #define VFP_V_OFFSET_IDX(idx)                                                  \
1742   (offsetof(DNBArchMachARM64::FPU, __v) + (idx * 16) +                         \
1743    offsetof(DNBArchMachARM64::Context, vfp))
1744 #else
1745 #define VFP_V_OFFSET_IDX(idx)                                                  \
1746   (offsetof(DNBArchMachARM64::FPU, opaque) + (idx * 16) +                      \
1747    offsetof(DNBArchMachARM64::Context, vfp))
1748 #endif
1749 #define VFP_OFFSET_NAME(reg)                                                   \
1750   (offsetof(DNBArchMachARM64::FPU, reg) +                                      \
1751    offsetof(DNBArchMachARM64::Context, vfp))
1752 #define EXC_OFFSET(reg)                                                        \
1753   (offsetof(DNBArchMachARM64::EXC, reg) +                                      \
1754    offsetof(DNBArchMachARM64::Context, exc))
1755 
1756 //#define FLOAT_FORMAT Float
1757 #define DEFINE_VFP_V_IDX(idx)                                                  \
1758   {                                                                            \
1759     e_regSetVFP, vfp_v##idx, "v" #idx, "q" #idx, Vector, VectorOfUInt8, 16,    \
1760         VFP_V_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_v##idx,               \
1761         INVALID_NUB_REGNUM, debugserver_vfp_v##idx, NULL, g_invalidate_v##idx  \
1762   }
1763 #define DEFINE_PSEUDO_VFP_S_IDX(idx)                                           \
1764   {                                                                            \
1765     e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, Float, 4, 0,             \
1766         INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,            \
1767         INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx            \
1768   }
1769 #define DEFINE_PSEUDO_VFP_D_IDX(idx)                                           \
1770   {                                                                            \
1771     e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, Float, 8, 0,             \
1772         INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,            \
1773         INVALID_NUB_REGNUM, g_contained_v##idx, g_invalidate_v##idx            \
1774   }
1775 
1776 // Floating point registers
1777 const DNBRegisterInfo DNBArchMachARM64::g_vfp_registers[] = {
1778     DEFINE_VFP_V_IDX(0),
1779     DEFINE_VFP_V_IDX(1),
1780     DEFINE_VFP_V_IDX(2),
1781     DEFINE_VFP_V_IDX(3),
1782     DEFINE_VFP_V_IDX(4),
1783     DEFINE_VFP_V_IDX(5),
1784     DEFINE_VFP_V_IDX(6),
1785     DEFINE_VFP_V_IDX(7),
1786     DEFINE_VFP_V_IDX(8),
1787     DEFINE_VFP_V_IDX(9),
1788     DEFINE_VFP_V_IDX(10),
1789     DEFINE_VFP_V_IDX(11),
1790     DEFINE_VFP_V_IDX(12),
1791     DEFINE_VFP_V_IDX(13),
1792     DEFINE_VFP_V_IDX(14),
1793     DEFINE_VFP_V_IDX(15),
1794     DEFINE_VFP_V_IDX(16),
1795     DEFINE_VFP_V_IDX(17),
1796     DEFINE_VFP_V_IDX(18),
1797     DEFINE_VFP_V_IDX(19),
1798     DEFINE_VFP_V_IDX(20),
1799     DEFINE_VFP_V_IDX(21),
1800     DEFINE_VFP_V_IDX(22),
1801     DEFINE_VFP_V_IDX(23),
1802     DEFINE_VFP_V_IDX(24),
1803     DEFINE_VFP_V_IDX(25),
1804     DEFINE_VFP_V_IDX(26),
1805     DEFINE_VFP_V_IDX(27),
1806     DEFINE_VFP_V_IDX(28),
1807     DEFINE_VFP_V_IDX(29),
1808     DEFINE_VFP_V_IDX(30),
1809     DEFINE_VFP_V_IDX(31),
1810     {e_regSetVFP, vfp_fpsr, "fpsr", NULL, Uint, Hex, 4,
1811      VFP_V_OFFSET_IDX(32) + 0, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1812      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1813     {e_regSetVFP, vfp_fpcr, "fpcr", NULL, Uint, Hex, 4,
1814      VFP_V_OFFSET_IDX(32) + 4, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1815      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL},
1816 
1817     DEFINE_PSEUDO_VFP_S_IDX(0),
1818     DEFINE_PSEUDO_VFP_S_IDX(1),
1819     DEFINE_PSEUDO_VFP_S_IDX(2),
1820     DEFINE_PSEUDO_VFP_S_IDX(3),
1821     DEFINE_PSEUDO_VFP_S_IDX(4),
1822     DEFINE_PSEUDO_VFP_S_IDX(5),
1823     DEFINE_PSEUDO_VFP_S_IDX(6),
1824     DEFINE_PSEUDO_VFP_S_IDX(7),
1825     DEFINE_PSEUDO_VFP_S_IDX(8),
1826     DEFINE_PSEUDO_VFP_S_IDX(9),
1827     DEFINE_PSEUDO_VFP_S_IDX(10),
1828     DEFINE_PSEUDO_VFP_S_IDX(11),
1829     DEFINE_PSEUDO_VFP_S_IDX(12),
1830     DEFINE_PSEUDO_VFP_S_IDX(13),
1831     DEFINE_PSEUDO_VFP_S_IDX(14),
1832     DEFINE_PSEUDO_VFP_S_IDX(15),
1833     DEFINE_PSEUDO_VFP_S_IDX(16),
1834     DEFINE_PSEUDO_VFP_S_IDX(17),
1835     DEFINE_PSEUDO_VFP_S_IDX(18),
1836     DEFINE_PSEUDO_VFP_S_IDX(19),
1837     DEFINE_PSEUDO_VFP_S_IDX(20),
1838     DEFINE_PSEUDO_VFP_S_IDX(21),
1839     DEFINE_PSEUDO_VFP_S_IDX(22),
1840     DEFINE_PSEUDO_VFP_S_IDX(23),
1841     DEFINE_PSEUDO_VFP_S_IDX(24),
1842     DEFINE_PSEUDO_VFP_S_IDX(25),
1843     DEFINE_PSEUDO_VFP_S_IDX(26),
1844     DEFINE_PSEUDO_VFP_S_IDX(27),
1845     DEFINE_PSEUDO_VFP_S_IDX(28),
1846     DEFINE_PSEUDO_VFP_S_IDX(29),
1847     DEFINE_PSEUDO_VFP_S_IDX(30),
1848     DEFINE_PSEUDO_VFP_S_IDX(31),
1849 
1850     DEFINE_PSEUDO_VFP_D_IDX(0),
1851     DEFINE_PSEUDO_VFP_D_IDX(1),
1852     DEFINE_PSEUDO_VFP_D_IDX(2),
1853     DEFINE_PSEUDO_VFP_D_IDX(3),
1854     DEFINE_PSEUDO_VFP_D_IDX(4),
1855     DEFINE_PSEUDO_VFP_D_IDX(5),
1856     DEFINE_PSEUDO_VFP_D_IDX(6),
1857     DEFINE_PSEUDO_VFP_D_IDX(7),
1858     DEFINE_PSEUDO_VFP_D_IDX(8),
1859     DEFINE_PSEUDO_VFP_D_IDX(9),
1860     DEFINE_PSEUDO_VFP_D_IDX(10),
1861     DEFINE_PSEUDO_VFP_D_IDX(11),
1862     DEFINE_PSEUDO_VFP_D_IDX(12),
1863     DEFINE_PSEUDO_VFP_D_IDX(13),
1864     DEFINE_PSEUDO_VFP_D_IDX(14),
1865     DEFINE_PSEUDO_VFP_D_IDX(15),
1866     DEFINE_PSEUDO_VFP_D_IDX(16),
1867     DEFINE_PSEUDO_VFP_D_IDX(17),
1868     DEFINE_PSEUDO_VFP_D_IDX(18),
1869     DEFINE_PSEUDO_VFP_D_IDX(19),
1870     DEFINE_PSEUDO_VFP_D_IDX(20),
1871     DEFINE_PSEUDO_VFP_D_IDX(21),
1872     DEFINE_PSEUDO_VFP_D_IDX(22),
1873     DEFINE_PSEUDO_VFP_D_IDX(23),
1874     DEFINE_PSEUDO_VFP_D_IDX(24),
1875     DEFINE_PSEUDO_VFP_D_IDX(25),
1876     DEFINE_PSEUDO_VFP_D_IDX(26),
1877     DEFINE_PSEUDO_VFP_D_IDX(27),
1878     DEFINE_PSEUDO_VFP_D_IDX(28),
1879     DEFINE_PSEUDO_VFP_D_IDX(29),
1880     DEFINE_PSEUDO_VFP_D_IDX(30),
1881     DEFINE_PSEUDO_VFP_D_IDX(31)
1882 
1883 };
1884 
1885 //_STRUCT_ARM_EXCEPTION_STATE64
1886 //{
1887 //	uint64_t	far; /* Virtual Fault Address */
1888 //	uint32_t	esr; /* Exception syndrome */
1889 //	uint32_t	exception; /* number of arm exception taken */
1890 //};
1891 
1892 // Exception registers
1893 const DNBRegisterInfo DNBArchMachARM64::g_exc_registers[] = {
1894     {e_regSetEXC, exc_far, "far", NULL, Uint, Hex, 8, EXC_OFFSET(__far),
1895      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1896      INVALID_NUB_REGNUM, NULL, NULL},
1897     {e_regSetEXC, exc_esr, "esr", NULL, Uint, Hex, 4, EXC_OFFSET(__esr),
1898      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1899      INVALID_NUB_REGNUM, NULL, NULL},
1900     {e_regSetEXC, exc_exception, "exception", NULL, Uint, Hex, 4,
1901      EXC_OFFSET(__exception), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM,
1902      INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL}};
1903 
1904 // Number of registers in each register set
1905 const size_t DNBArchMachARM64::k_num_gpr_registers =
1906     sizeof(g_gpr_registers) / sizeof(DNBRegisterInfo);
1907 const size_t DNBArchMachARM64::k_num_vfp_registers =
1908     sizeof(g_vfp_registers) / sizeof(DNBRegisterInfo);
1909 const size_t DNBArchMachARM64::k_num_exc_registers =
1910     sizeof(g_exc_registers) / sizeof(DNBRegisterInfo);
1911 const size_t DNBArchMachARM64::k_num_all_registers =
1912     k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers;
1913 
1914 // Register set definitions. The first definitions at register set index
1915 // of zero is for all registers, followed by other registers sets. The
1916 // register information for the all register set need not be filled in.
1917 const DNBRegisterSetInfo DNBArchMachARM64::g_reg_sets[] = {
1918     {"ARM64 Registers", NULL, k_num_all_registers},
1919     {"General Purpose Registers", g_gpr_registers, k_num_gpr_registers},
1920     {"Floating Point Registers", g_vfp_registers, k_num_vfp_registers},
1921     {"Exception State Registers", g_exc_registers, k_num_exc_registers}};
1922 // Total number of register sets for this architecture
1923 const size_t DNBArchMachARM64::k_num_register_sets =
1924     sizeof(g_reg_sets) / sizeof(DNBRegisterSetInfo);
1925 
1926 const DNBRegisterSetInfo *
GetRegisterSetInfo(nub_size_t * num_reg_sets)1927 DNBArchMachARM64::GetRegisterSetInfo(nub_size_t *num_reg_sets) {
1928   *num_reg_sets = k_num_register_sets;
1929   return g_reg_sets;
1930 }
1931 
FixGenericRegisterNumber(uint32_t & set,uint32_t & reg)1932 bool DNBArchMachARM64::FixGenericRegisterNumber(uint32_t &set, uint32_t &reg) {
1933   if (set == REGISTER_SET_GENERIC) {
1934     switch (reg) {
1935     case GENERIC_REGNUM_PC: // Program Counter
1936       set = e_regSetGPR;
1937       reg = gpr_pc;
1938       break;
1939 
1940     case GENERIC_REGNUM_SP: // Stack Pointer
1941       set = e_regSetGPR;
1942       reg = gpr_sp;
1943       break;
1944 
1945     case GENERIC_REGNUM_FP: // Frame Pointer
1946       set = e_regSetGPR;
1947       reg = gpr_fp;
1948       break;
1949 
1950     case GENERIC_REGNUM_RA: // Return Address
1951       set = e_regSetGPR;
1952       reg = gpr_lr;
1953       break;
1954 
1955     case GENERIC_REGNUM_FLAGS: // Processor flags register
1956       set = e_regSetGPR;
1957       reg = gpr_cpsr;
1958       break;
1959 
1960     case GENERIC_REGNUM_ARG1:
1961     case GENERIC_REGNUM_ARG2:
1962     case GENERIC_REGNUM_ARG3:
1963     case GENERIC_REGNUM_ARG4:
1964     case GENERIC_REGNUM_ARG5:
1965     case GENERIC_REGNUM_ARG6:
1966       set = e_regSetGPR;
1967       reg = gpr_x0 + reg - GENERIC_REGNUM_ARG1;
1968       break;
1969 
1970     default:
1971       return false;
1972     }
1973   }
1974   return true;
1975 }
GetRegisterValue(uint32_t set,uint32_t reg,DNBRegisterValue * value)1976 bool DNBArchMachARM64::GetRegisterValue(uint32_t set, uint32_t reg,
1977                                         DNBRegisterValue *value) {
1978   if (!FixGenericRegisterNumber(set, reg))
1979     return false;
1980 
1981   if (GetRegisterState(set, false) != KERN_SUCCESS)
1982     return false;
1983 
1984   const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
1985   if (regInfo) {
1986     value->info = *regInfo;
1987     switch (set) {
1988     case e_regSetGPR:
1989       if (reg <= gpr_pc) {
1990 #if defined(__LP64__)
1991         if (reg == gpr_pc)
1992           value->value.uint64 = arm_thread_state64_get_pc (m_state.context.gpr);
1993         else if (reg == gpr_lr)
1994           value->value.uint64 = arm_thread_state64_get_lr (m_state.context.gpr);
1995         else if (reg == gpr_sp)
1996           value->value.uint64 = arm_thread_state64_get_sp (m_state.context.gpr);
1997         else if (reg == gpr_fp)
1998           value->value.uint64 = arm_thread_state64_get_fp (m_state.context.gpr);
1999         else
2000         value->value.uint64 = m_state.context.gpr.__x[reg];
2001 #else
2002         value->value.uint64 = m_state.context.gpr.__x[reg];
2003 #endif
2004         return true;
2005       } else if (reg == gpr_cpsr) {
2006         value->value.uint32 = m_state.context.gpr.__cpsr;
2007         return true;
2008       }
2009       break;
2010 
2011     case e_regSetVFP:
2012 
2013       if (reg >= vfp_v0 && reg <= vfp_v31) {
2014 #if defined(__arm64__) || defined(__aarch64__)
2015         memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_v0],
2016                16);
2017 #else
2018         memcpy(&value->value.v_uint8,
2019                ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16),
2020                16);
2021 #endif
2022         return true;
2023       } else if (reg == vfp_fpsr) {
2024 #if defined(__arm64__) || defined(__aarch64__)
2025         memcpy(&value->value.uint32, &m_state.context.vfp.__fpsr, 4);
2026 #else
2027         memcpy(&value->value.uint32,
2028                ((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0, 4);
2029 #endif
2030         return true;
2031       } else if (reg == vfp_fpcr) {
2032 #if defined(__arm64__) || defined(__aarch64__)
2033         memcpy(&value->value.uint32, &m_state.context.vfp.__fpcr, 4);
2034 #else
2035         memcpy(&value->value.uint32,
2036                ((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 4, 4);
2037 #endif
2038         return true;
2039       } else if (reg >= vfp_s0 && reg <= vfp_s31) {
2040 #if defined(__arm64__) || defined(__aarch64__)
2041         memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_s0],
2042                4);
2043 #else
2044         memcpy(&value->value.v_uint8,
2045                ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16),
2046                4);
2047 #endif
2048         return true;
2049       } else if (reg >= vfp_d0 && reg <= vfp_d31) {
2050 #if defined(__arm64__) || defined(__aarch64__)
2051         memcpy(&value->value.v_uint8, &m_state.context.vfp.__v[reg - vfp_d0],
2052                8);
2053 #else
2054         memcpy(&value->value.v_uint8,
2055                ((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16),
2056                8);
2057 #endif
2058         return true;
2059       }
2060       break;
2061 
2062     case e_regSetEXC:
2063       if (reg == exc_far) {
2064         value->value.uint64 = m_state.context.exc.__far;
2065         return true;
2066       } else if (reg == exc_esr) {
2067         value->value.uint32 = m_state.context.exc.__esr;
2068         return true;
2069       } else if (reg == exc_exception) {
2070         value->value.uint32 = m_state.context.exc.__exception;
2071         return true;
2072       }
2073       break;
2074     }
2075   }
2076   return false;
2077 }
2078 
SetRegisterValue(uint32_t set,uint32_t reg,const DNBRegisterValue * value)2079 bool DNBArchMachARM64::SetRegisterValue(uint32_t set, uint32_t reg,
2080                                         const DNBRegisterValue *value) {
2081   if (!FixGenericRegisterNumber(set, reg))
2082     return false;
2083 
2084   if (GetRegisterState(set, false) != KERN_SUCCESS)
2085     return false;
2086 
2087   bool success = false;
2088   const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg);
2089   if (regInfo) {
2090     switch (set) {
2091     case e_regSetGPR:
2092       if (reg <= gpr_pc) {
2093 #if defined(__LP64__)
2094           uint64_t signed_value = value->value.uint64;
2095 #if __has_feature(ptrauth_calls)
2096           // The incoming value could be garbage.  Strip it to avoid
2097           // trapping when it gets resigned in the thread state.
2098           signed_value = (uint64_t) ptrauth_strip((void*) signed_value, ptrauth_key_function_pointer);
2099           signed_value = (uint64_t) ptrauth_sign_unauthenticated((void*) signed_value, ptrauth_key_function_pointer, 0);
2100 #endif
2101         if (reg == gpr_pc)
2102          arm_thread_state64_set_pc_fptr (m_state.context.gpr, (void*) signed_value);
2103         else if (reg == gpr_lr)
2104           arm_thread_state64_set_lr_fptr (m_state.context.gpr, (void*) signed_value);
2105         else if (reg == gpr_sp)
2106           arm_thread_state64_set_sp (m_state.context.gpr, value->value.uint64);
2107         else if (reg == gpr_fp)
2108           arm_thread_state64_set_fp (m_state.context.gpr, value->value.uint64);
2109         else
2110           m_state.context.gpr.__x[reg] = value->value.uint64;
2111 #else
2112         m_state.context.gpr.__x[reg] = value->value.uint64;
2113 #endif
2114         success = true;
2115       } else if (reg == gpr_cpsr) {
2116         m_state.context.gpr.__cpsr = value->value.uint32;
2117         success = true;
2118       }
2119       break;
2120 
2121     case e_regSetVFP:
2122       if (reg >= vfp_v0 && reg <= vfp_v31) {
2123 #if defined(__arm64__) || defined(__aarch64__)
2124         memcpy(&m_state.context.vfp.__v[reg - vfp_v0], &value->value.v_uint8,
2125                16);
2126 #else
2127         memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_v0) * 16),
2128                &value->value.v_uint8, 16);
2129 #endif
2130         success = true;
2131       } else if (reg == vfp_fpsr) {
2132 #if defined(__arm64__) || defined(__aarch64__)
2133         memcpy(&m_state.context.vfp.__fpsr, &value->value.uint32, 4);
2134 #else
2135         memcpy(((uint8_t *)&m_state.context.vfp.opaque) + (32 * 16) + 0,
2136                &value->value.uint32, 4);
2137 #endif
2138         success = true;
2139       } else if (reg == vfp_fpcr) {
2140 #if defined(__arm64__) || defined(__aarch64__)
2141         memcpy(&m_state.context.vfp.__fpcr, &value->value.uint32, 4);
2142 #else
2143         memcpy(((uint8_t *)m_state.context.vfp.opaque) + (32 * 16) + 4,
2144                &value->value.uint32, 4);
2145 #endif
2146         success = true;
2147       } else if (reg >= vfp_s0 && reg <= vfp_s31) {
2148 #if defined(__arm64__) || defined(__aarch64__)
2149         memcpy(&m_state.context.vfp.__v[reg - vfp_s0], &value->value.v_uint8,
2150                4);
2151 #else
2152         memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_s0) * 16),
2153                &value->value.v_uint8, 4);
2154 #endif
2155         success = true;
2156       } else if (reg >= vfp_d0 && reg <= vfp_d31) {
2157 #if defined(__arm64__) || defined(__aarch64__)
2158         memcpy(&m_state.context.vfp.__v[reg - vfp_d0], &value->value.v_uint8,
2159                8);
2160 #else
2161         memcpy(((uint8_t *)&m_state.context.vfp.opaque) + ((reg - vfp_d0) * 16),
2162                &value->value.v_uint8, 8);
2163 #endif
2164         success = true;
2165       }
2166       break;
2167 
2168     case e_regSetEXC:
2169       if (reg == exc_far) {
2170         m_state.context.exc.__far = value->value.uint64;
2171         success = true;
2172       } else if (reg == exc_esr) {
2173         m_state.context.exc.__esr = value->value.uint32;
2174         success = true;
2175       } else if (reg == exc_exception) {
2176         m_state.context.exc.__exception = value->value.uint32;
2177         success = true;
2178       }
2179       break;
2180     }
2181   }
2182   if (success)
2183     return SetRegisterState(set) == KERN_SUCCESS;
2184   return false;
2185 }
2186 
GetRegisterState(int set,bool force)2187 kern_return_t DNBArchMachARM64::GetRegisterState(int set, bool force) {
2188   switch (set) {
2189   case e_regSetALL:
2190     return GetGPRState(force) | GetVFPState(force) | GetEXCState(force) |
2191            GetDBGState(force);
2192   case e_regSetGPR:
2193     return GetGPRState(force);
2194   case e_regSetVFP:
2195     return GetVFPState(force);
2196   case e_regSetEXC:
2197     return GetEXCState(force);
2198   case e_regSetDBG:
2199     return GetDBGState(force);
2200   default:
2201     break;
2202   }
2203   return KERN_INVALID_ARGUMENT;
2204 }
2205 
SetRegisterState(int set)2206 kern_return_t DNBArchMachARM64::SetRegisterState(int set) {
2207   // Make sure we have a valid context to set.
2208   kern_return_t err = GetRegisterState(set, false);
2209   if (err != KERN_SUCCESS)
2210     return err;
2211 
2212   switch (set) {
2213   case e_regSetALL:
2214     return SetGPRState() | SetVFPState() | SetEXCState() | SetDBGState(false);
2215   case e_regSetGPR:
2216     return SetGPRState();
2217   case e_regSetVFP:
2218     return SetVFPState();
2219   case e_regSetEXC:
2220     return SetEXCState();
2221   case e_regSetDBG:
2222     return SetDBGState(false);
2223   default:
2224     break;
2225   }
2226   return KERN_INVALID_ARGUMENT;
2227 }
2228 
RegisterSetStateIsValid(int set) const2229 bool DNBArchMachARM64::RegisterSetStateIsValid(int set) const {
2230   return m_state.RegsAreValid(set);
2231 }
2232 
GetRegisterContext(void * buf,nub_size_t buf_len)2233 nub_size_t DNBArchMachARM64::GetRegisterContext(void *buf, nub_size_t buf_len) {
2234   nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
2235                     sizeof(m_state.context.exc);
2236 
2237   if (buf && buf_len) {
2238     if (size > buf_len)
2239       size = buf_len;
2240 
2241     bool force = false;
2242     if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force))
2243       return 0;
2244 
2245     // Copy each struct individually to avoid any padding that might be between
2246     // the structs in m_state.context
2247     uint8_t *p = (uint8_t *)buf;
2248     ::memcpy(p, &m_state.context.gpr, sizeof(m_state.context.gpr));
2249     p += sizeof(m_state.context.gpr);
2250     ::memcpy(p, &m_state.context.vfp, sizeof(m_state.context.vfp));
2251     p += sizeof(m_state.context.vfp);
2252     ::memcpy(p, &m_state.context.exc, sizeof(m_state.context.exc));
2253     p += sizeof(m_state.context.exc);
2254 
2255     size_t bytes_written = p - (uint8_t *)buf;
2256     UNUSED_IF_ASSERT_DISABLED(bytes_written);
2257     assert(bytes_written == size);
2258   }
2259   DNBLogThreadedIf(
2260       LOG_THREAD,
2261       "DNBArchMachARM64::GetRegisterContext (buf = %p, len = %zu) => %zu", buf,
2262       buf_len, size);
2263   // Return the size of the register context even if NULL was passed in
2264   return size;
2265 }
2266 
SetRegisterContext(const void * buf,nub_size_t buf_len)2267 nub_size_t DNBArchMachARM64::SetRegisterContext(const void *buf,
2268                                                 nub_size_t buf_len) {
2269   nub_size_t size = sizeof(m_state.context.gpr) + sizeof(m_state.context.vfp) +
2270                     sizeof(m_state.context.exc);
2271 
2272   if (buf == NULL || buf_len == 0)
2273     size = 0;
2274 
2275   if (size) {
2276     if (size > buf_len)
2277       size = buf_len;
2278 
2279     // Copy each struct individually to avoid any padding that might be between
2280     // the structs in m_state.context
2281     uint8_t *p = (uint8_t *)buf;
2282     ::memcpy(&m_state.context.gpr, p, sizeof(m_state.context.gpr));
2283     p += sizeof(m_state.context.gpr);
2284     ::memcpy(&m_state.context.vfp, p, sizeof(m_state.context.vfp));
2285     p += sizeof(m_state.context.vfp);
2286     ::memcpy(&m_state.context.exc, p, sizeof(m_state.context.exc));
2287     p += sizeof(m_state.context.exc);
2288 
2289     size_t bytes_written = p - (uint8_t *)buf;
2290     UNUSED_IF_ASSERT_DISABLED(bytes_written);
2291     assert(bytes_written == size);
2292     SetGPRState();
2293     SetVFPState();
2294     SetEXCState();
2295   }
2296   DNBLogThreadedIf(
2297       LOG_THREAD,
2298       "DNBArchMachARM64::SetRegisterContext (buf = %p, len = %zu) => %zu", buf,
2299       buf_len, size);
2300   return size;
2301 }
2302 
SaveRegisterState()2303 uint32_t DNBArchMachARM64::SaveRegisterState() {
2304   kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber());
2305   DNBLogThreadedIf(
2306       LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u "
2307                   "(SetGPRState() for stop_count = %u)",
2308       m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount());
2309 
2310   // Always re-read the registers because above we call thread_abort_safely();
2311   bool force = true;
2312 
2313   if ((kret = GetGPRState(force)) != KERN_SUCCESS) {
2314     DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () "
2315                                  "error: GPR regs failed to read: %u ",
2316                      kret);
2317   } else if ((kret = GetVFPState(force)) != KERN_SUCCESS) {
2318     DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::SaveRegisterState () "
2319                                  "error: %s regs failed to read: %u",
2320                      "VFP", kret);
2321   } else {
2322     const uint32_t save_id = GetNextRegisterStateSaveID();
2323     m_saved_register_states[save_id] = m_state.context;
2324     return save_id;
2325   }
2326   return UINT32_MAX;
2327 }
2328 
RestoreRegisterState(uint32_t save_id)2329 bool DNBArchMachARM64::RestoreRegisterState(uint32_t save_id) {
2330   SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id);
2331   if (pos != m_saved_register_states.end()) {
2332     m_state.context.gpr = pos->second.gpr;
2333     m_state.context.vfp = pos->second.vfp;
2334     kern_return_t kret;
2335     bool success = true;
2336     if ((kret = SetGPRState()) != KERN_SUCCESS) {
2337       DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState "
2338                                    "(save_id = %u) error: GPR regs failed to "
2339                                    "write: %u",
2340                        save_id, kret);
2341       success = false;
2342     } else if ((kret = SetVFPState()) != KERN_SUCCESS) {
2343       DNBLogThreadedIf(LOG_THREAD, "DNBArchMachARM64::RestoreRegisterState "
2344                                    "(save_id = %u) error: %s regs failed to "
2345                                    "write: %u",
2346                        save_id, "VFP", kret);
2347       success = false;
2348     }
2349     m_saved_register_states.erase(pos);
2350     return success;
2351   }
2352   return false;
2353 }
2354 
2355 #endif // #if defined (ARM_THREAD_STATE64_COUNT)
2356 #endif // #if defined (__arm__) || defined (__arm64__) || defined (__aarch64__)
2357