1 //===-- DWARFCallFrameInfo.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "lldb/Symbol/DWARFCallFrameInfo.h"
10 #include "lldb/Core/Module.h"
11 #include "lldb/Core/Section.h"
12 #include "lldb/Core/dwarf.h"
13 #include "lldb/Host/Host.h"
14 #include "lldb/Symbol/ObjectFile.h"
15 #include "lldb/Symbol/UnwindPlan.h"
16 #include "lldb/Target/RegisterContext.h"
17 #include "lldb/Target/Thread.h"
18 #include "lldb/Utility/ArchSpec.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/Timer.h"
21 #include <list>
22 #include <cstring>
23
24 using namespace lldb;
25 using namespace lldb_private;
26
27 // GetDwarfEHPtr
28 //
29 // Used for calls when the value type is specified by a DWARF EH Frame pointer
30 // encoding.
31 static uint64_t
GetGNUEHPointer(const DataExtractor & DE,offset_t * offset_ptr,uint32_t eh_ptr_enc,addr_t pc_rel_addr,addr_t text_addr,addr_t data_addr)32 GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr,
33 uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr,
34 addr_t data_addr) //, BSDRelocs *data_relocs) const
35 {
36 if (eh_ptr_enc == DW_EH_PE_omit)
37 return ULLONG_MAX; // Value isn't in the buffer...
38
39 uint64_t baseAddress = 0;
40 uint64_t addressValue = 0;
41 const uint32_t addr_size = DE.GetAddressByteSize();
42 assert(addr_size == 4 || addr_size == 8);
43
44 bool signExtendValue = false;
45 // Decode the base part or adjust our offset
46 switch (eh_ptr_enc & 0x70) {
47 case DW_EH_PE_pcrel:
48 signExtendValue = true;
49 baseAddress = *offset_ptr;
50 if (pc_rel_addr != LLDB_INVALID_ADDRESS)
51 baseAddress += pc_rel_addr;
52 // else
53 // Log::GlobalWarning ("PC relative pointer encoding found with
54 // invalid pc relative address.");
55 break;
56
57 case DW_EH_PE_textrel:
58 signExtendValue = true;
59 if (text_addr != LLDB_INVALID_ADDRESS)
60 baseAddress = text_addr;
61 // else
62 // Log::GlobalWarning ("text relative pointer encoding being
63 // decoded with invalid text section address, setting base address
64 // to zero.");
65 break;
66
67 case DW_EH_PE_datarel:
68 signExtendValue = true;
69 if (data_addr != LLDB_INVALID_ADDRESS)
70 baseAddress = data_addr;
71 // else
72 // Log::GlobalWarning ("data relative pointer encoding being
73 // decoded with invalid data section address, setting base address
74 // to zero.");
75 break;
76
77 case DW_EH_PE_funcrel:
78 signExtendValue = true;
79 break;
80
81 case DW_EH_PE_aligned: {
82 // SetPointerSize should be called prior to extracting these so the pointer
83 // size is cached
84 assert(addr_size != 0);
85 if (addr_size) {
86 // Align to a address size boundary first
87 uint32_t alignOffset = *offset_ptr % addr_size;
88 if (alignOffset)
89 offset_ptr += addr_size - alignOffset;
90 }
91 } break;
92
93 default:
94 break;
95 }
96
97 // Decode the value part
98 switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
99 case DW_EH_PE_absptr: {
100 addressValue = DE.GetAddress(offset_ptr);
101 // if (data_relocs)
102 // addressValue = data_relocs->Relocate(*offset_ptr -
103 // addr_size, *this, addressValue);
104 } break;
105 case DW_EH_PE_uleb128:
106 addressValue = DE.GetULEB128(offset_ptr);
107 break;
108 case DW_EH_PE_udata2:
109 addressValue = DE.GetU16(offset_ptr);
110 break;
111 case DW_EH_PE_udata4:
112 addressValue = DE.GetU32(offset_ptr);
113 break;
114 case DW_EH_PE_udata8:
115 addressValue = DE.GetU64(offset_ptr);
116 break;
117 case DW_EH_PE_sleb128:
118 addressValue = DE.GetSLEB128(offset_ptr);
119 break;
120 case DW_EH_PE_sdata2:
121 addressValue = (int16_t)DE.GetU16(offset_ptr);
122 break;
123 case DW_EH_PE_sdata4:
124 addressValue = (int32_t)DE.GetU32(offset_ptr);
125 break;
126 case DW_EH_PE_sdata8:
127 addressValue = (int64_t)DE.GetU64(offset_ptr);
128 break;
129 default:
130 // Unhandled encoding type
131 assert(eh_ptr_enc);
132 break;
133 }
134
135 // Since we promote everything to 64 bit, we may need to sign extend
136 if (signExtendValue && addr_size < sizeof(baseAddress)) {
137 uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
138 if (sign_bit & addressValue) {
139 uint64_t mask = ~sign_bit + 1;
140 addressValue |= mask;
141 }
142 }
143 return baseAddress + addressValue;
144 }
145
DWARFCallFrameInfo(ObjectFile & objfile,SectionSP & section_sp,Type type)146 DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile,
147 SectionSP §ion_sp, Type type)
148 : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {}
149
GetUnwindPlan(const Address & addr,UnwindPlan & unwind_plan)150 bool DWARFCallFrameInfo::GetUnwindPlan(const Address &addr,
151 UnwindPlan &unwind_plan) {
152 return GetUnwindPlan(AddressRange(addr, 1), unwind_plan);
153 }
154
GetUnwindPlan(const AddressRange & range,UnwindPlan & unwind_plan)155 bool DWARFCallFrameInfo::GetUnwindPlan(const AddressRange &range,
156 UnwindPlan &unwind_plan) {
157 FDEEntryMap::Entry fde_entry;
158 Address addr = range.GetBaseAddress();
159
160 // Make sure that the Address we're searching for is the same object file as
161 // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
162 ModuleSP module_sp = addr.GetModule();
163 if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
164 module_sp->GetObjectFile() != &m_objfile)
165 return false;
166
167 if (llvm::Optional<FDEEntryMap::Entry> entry = GetFirstFDEEntryInRange(range))
168 return FDEToUnwindPlan(entry->data, addr, unwind_plan);
169 return false;
170 }
171
GetAddressRange(Address addr,AddressRange & range)172 bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) {
173
174 // Make sure that the Address we're searching for is the same object file as
175 // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
176 ModuleSP module_sp = addr.GetModule();
177 if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
178 module_sp->GetObjectFile() != &m_objfile)
179 return false;
180
181 if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
182 return false;
183 GetFDEIndex();
184 FDEEntryMap::Entry *fde_entry =
185 m_fde_index.FindEntryThatContains(addr.GetFileAddress());
186 if (!fde_entry)
187 return false;
188
189 range = AddressRange(fde_entry->base, fde_entry->size,
190 m_objfile.GetSectionList());
191 return true;
192 }
193
194 llvm::Optional<DWARFCallFrameInfo::FDEEntryMap::Entry>
GetFirstFDEEntryInRange(const AddressRange & range)195 DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange &range) {
196 if (!m_section_sp || m_section_sp->IsEncrypted())
197 return llvm::None;
198
199 GetFDEIndex();
200
201 addr_t start_file_addr = range.GetBaseAddress().GetFileAddress();
202 const FDEEntryMap::Entry *fde =
203 m_fde_index.FindEntryThatContainsOrFollows(start_file_addr);
204 if (fde && fde->DoesIntersect(
205 FDEEntryMap::Range(start_file_addr, range.GetByteSize())))
206 return *fde;
207
208 return llvm::None;
209 }
210
GetFunctionAddressAndSizeVector(FunctionAddressAndSizeVector & function_info)211 void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector(
212 FunctionAddressAndSizeVector &function_info) {
213 GetFDEIndex();
214 const size_t count = m_fde_index.GetSize();
215 function_info.Clear();
216 if (count > 0)
217 function_info.Reserve(count);
218 for (size_t i = 0; i < count; ++i) {
219 const FDEEntryMap::Entry *func_offset_data_entry =
220 m_fde_index.GetEntryAtIndex(i);
221 if (func_offset_data_entry) {
222 FunctionAddressAndSizeVector::Entry function_offset_entry(
223 func_offset_data_entry->base, func_offset_data_entry->size);
224 function_info.Append(function_offset_entry);
225 }
226 }
227 }
228
229 const DWARFCallFrameInfo::CIE *
GetCIE(dw_offset_t cie_offset)230 DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) {
231 cie_map_t::iterator pos = m_cie_map.find(cie_offset);
232
233 if (pos != m_cie_map.end()) {
234 // Parse and cache the CIE
235 if (pos->second == nullptr)
236 pos->second = ParseCIE(cie_offset);
237
238 return pos->second.get();
239 }
240 return nullptr;
241 }
242
243 DWARFCallFrameInfo::CIESP
ParseCIE(const dw_offset_t cie_offset)244 DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) {
245 CIESP cie_sp(new CIE(cie_offset));
246 lldb::offset_t offset = cie_offset;
247 if (!m_cfi_data_initialized)
248 GetCFIData();
249 uint32_t length = m_cfi_data.GetU32(&offset);
250 dw_offset_t cie_id, end_offset;
251 bool is_64bit = (length == UINT32_MAX);
252 if (is_64bit) {
253 length = m_cfi_data.GetU64(&offset);
254 cie_id = m_cfi_data.GetU64(&offset);
255 end_offset = cie_offset + length + 12;
256 } else {
257 cie_id = m_cfi_data.GetU32(&offset);
258 end_offset = cie_offset + length + 4;
259 }
260 if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) ||
261 (m_type == EH && cie_id == 0ul))) {
262 size_t i;
263 // cie.offset = cie_offset;
264 // cie.length = length;
265 // cie.cieID = cieID;
266 cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
267 cie_sp->version = m_cfi_data.GetU8(&offset);
268 if (cie_sp->version > CFI_VERSION4) {
269 Host::SystemLog(Host::eSystemLogError,
270 "CIE parse error: CFI version %d is not supported\n",
271 cie_sp->version);
272 return nullptr;
273 }
274
275 for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) {
276 cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
277 if (cie_sp->augmentation[i] == '\0') {
278 // Zero out remaining bytes in augmentation string
279 for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j)
280 cie_sp->augmentation[j] = '\0';
281
282 break;
283 }
284 }
285
286 if (i == CFI_AUG_MAX_SIZE &&
287 cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') {
288 Host::SystemLog(Host::eSystemLogError,
289 "CIE parse error: CIE augmentation string was too large "
290 "for the fixed sized buffer of %d bytes.\n",
291 CFI_AUG_MAX_SIZE);
292 return nullptr;
293 }
294
295 // m_cfi_data uses address size from target architecture of the process may
296 // ignore these fields?
297 if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) {
298 cie_sp->address_size = m_cfi_data.GetU8(&offset);
299 cie_sp->segment_size = m_cfi_data.GetU8(&offset);
300 }
301
302 cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
303 cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
304
305 cie_sp->return_addr_reg_num =
306 m_type == DWARF && cie_sp->version >= CFI_VERSION3
307 ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset))
308 : m_cfi_data.GetU8(&offset);
309
310 if (cie_sp->augmentation[0]) {
311 // Get the length of the eh_frame augmentation data which starts with a
312 // ULEB128 length in bytes
313 const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
314 const size_t aug_data_end = offset + aug_data_len;
315 const size_t aug_str_len = strlen(cie_sp->augmentation);
316 // A 'z' may be present as the first character of the string.
317 // If present, the Augmentation Data field shall be present. The contents
318 // of the Augmentation Data shall be interpreted according to other
319 // characters in the Augmentation String.
320 if (cie_sp->augmentation[0] == 'z') {
321 // Extract the Augmentation Data
322 size_t aug_str_idx = 0;
323 for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) {
324 char aug = cie_sp->augmentation[aug_str_idx];
325 switch (aug) {
326 case 'L':
327 // Indicates the presence of one argument in the Augmentation Data
328 // of the CIE, and a corresponding argument in the Augmentation
329 // Data of the FDE. The argument in the Augmentation Data of the
330 // CIE is 1-byte and represents the pointer encoding used for the
331 // argument in the Augmentation Data of the FDE, which is the
332 // address of a language-specific data area (LSDA). The size of the
333 // LSDA pointer is specified by the pointer encoding used.
334 cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
335 break;
336
337 case 'P':
338 // Indicates the presence of two arguments in the Augmentation Data
339 // of the CIE. The first argument is 1-byte and represents the
340 // pointer encoding used for the second argument, which is the
341 // address of a personality routine handler. The size of the
342 // personality routine pointer is specified by the pointer encoding
343 // used.
344 //
345 // The address of the personality function will be stored at this
346 // location. Pre-execution, it will be all zero's so don't read it
347 // until we're trying to do an unwind & the reloc has been
348 // resolved.
349 {
350 uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
351 const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
352 cie_sp->personality_loc = GetGNUEHPointer(
353 m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr,
354 LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
355 }
356 break;
357
358 case 'R':
359 // A 'R' may be present at any position after the
360 // first character of the string. The Augmentation Data shall
361 // include a 1 byte argument that represents the pointer encoding
362 // for the address pointers used in the FDE. Example: 0x1B ==
363 // DW_EH_PE_pcrel | DW_EH_PE_sdata4
364 cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
365 break;
366 }
367 }
368 } else if (strcmp(cie_sp->augmentation, "eh") == 0) {
369 // If the Augmentation string has the value "eh", then the EH Data
370 // field shall be present
371 }
372
373 // Set the offset to be the end of the augmentation data just in case we
374 // didn't understand any of the data.
375 offset = (uint32_t)aug_data_end;
376 }
377
378 if (end_offset > offset) {
379 cie_sp->inst_offset = offset;
380 cie_sp->inst_length = end_offset - offset;
381 }
382 while (offset < end_offset) {
383 uint8_t inst = m_cfi_data.GetU8(&offset);
384 uint8_t primary_opcode = inst & 0xC0;
385 uint8_t extended_opcode = inst & 0x3F;
386
387 if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode,
388 cie_sp->data_align, offset,
389 cie_sp->initial_row))
390 break; // Stop if we hit an unrecognized opcode
391 }
392 }
393
394 return cie_sp;
395 }
396
GetCFIData()397 void DWARFCallFrameInfo::GetCFIData() {
398 if (!m_cfi_data_initialized) {
399 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
400 if (log)
401 m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
402 m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data);
403 m_cfi_data_initialized = true;
404 }
405 }
406 // Scan through the eh_frame or debug_frame section looking for FDEs and noting
407 // the start/end addresses of the functions and a pointer back to the
408 // function's FDE for later expansion. Internalize CIEs as we come across them.
409
GetFDEIndex()410 void DWARFCallFrameInfo::GetFDEIndex() {
411 if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
412 return;
413
414 if (m_fde_index_initialized)
415 return;
416
417 std::lock_guard<std::mutex> guard(m_fde_index_mutex);
418
419 if (m_fde_index_initialized) // if two threads hit the locker
420 return;
421
422 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
423 Timer scoped_timer(func_cat, "%s - %s", LLVM_PRETTY_FUNCTION,
424 m_objfile.GetFileSpec().GetFilename().AsCString(""));
425
426 bool clear_address_zeroth_bit = false;
427 if (ArchSpec arch = m_objfile.GetArchitecture()) {
428 if (arch.GetTriple().getArch() == llvm::Triple::arm ||
429 arch.GetTriple().getArch() == llvm::Triple::thumb)
430 clear_address_zeroth_bit = true;
431 }
432
433 lldb::offset_t offset = 0;
434 if (!m_cfi_data_initialized)
435 GetCFIData();
436 while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) {
437 const dw_offset_t current_entry = offset;
438 dw_offset_t cie_id, next_entry, cie_offset;
439 uint32_t len = m_cfi_data.GetU32(&offset);
440 bool is_64bit = (len == UINT32_MAX);
441 if (is_64bit) {
442 len = m_cfi_data.GetU64(&offset);
443 cie_id = m_cfi_data.GetU64(&offset);
444 next_entry = current_entry + len + 12;
445 cie_offset = current_entry + 12 - cie_id;
446 } else {
447 cie_id = m_cfi_data.GetU32(&offset);
448 next_entry = current_entry + len + 4;
449 cie_offset = current_entry + 4 - cie_id;
450 }
451
452 if (next_entry > m_cfi_data.GetByteSize() + 1) {
453 Host::SystemLog(Host::eSystemLogError, "error: Invalid fde/cie next "
454 "entry offset of 0x%x found in "
455 "cie/fde at 0x%x\n",
456 next_entry, current_entry);
457 // Don't trust anything in this eh_frame section if we find blatantly
458 // invalid data.
459 m_fde_index.Clear();
460 m_fde_index_initialized = true;
461 return;
462 }
463
464 // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
465 // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So,
466 // variable cie_offset should be equal to cie_id for debug_frame.
467 // FDE entries with cie_id == 0 shouldn't be ignored for it.
468 if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) {
469 auto cie_sp = ParseCIE(current_entry);
470 if (!cie_sp) {
471 // Cannot parse, the reason is already logged
472 m_fde_index.Clear();
473 m_fde_index_initialized = true;
474 return;
475 }
476
477 m_cie_map[current_entry] = std::move(cie_sp);
478 offset = next_entry;
479 continue;
480 }
481
482 if (m_type == DWARF)
483 cie_offset = cie_id;
484
485 if (cie_offset > m_cfi_data.GetByteSize()) {
486 Host::SystemLog(Host::eSystemLogError,
487 "error: Invalid cie offset of 0x%x "
488 "found in cie/fde at 0x%x\n",
489 cie_offset, current_entry);
490 // Don't trust anything in this eh_frame section if we find blatantly
491 // invalid data.
492 m_fde_index.Clear();
493 m_fde_index_initialized = true;
494 return;
495 }
496
497 const CIE *cie = GetCIE(cie_offset);
498 if (cie) {
499 const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
500 const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
501 const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
502
503 lldb::addr_t addr =
504 GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
505 text_addr, data_addr);
506 if (clear_address_zeroth_bit)
507 addr &= ~1ull;
508
509 lldb::addr_t length = GetGNUEHPointer(
510 m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
511 pc_rel_addr, text_addr, data_addr);
512 FDEEntryMap::Entry fde(addr, length, current_entry);
513 m_fde_index.Append(fde);
514 } else {
515 Host::SystemLog(Host::eSystemLogError, "error: unable to find CIE at "
516 "0x%8.8x for cie_id = 0x%8.8x for "
517 "entry at 0x%8.8x.\n",
518 cie_offset, cie_id, current_entry);
519 }
520 offset = next_entry;
521 }
522 m_fde_index.Sort();
523 m_fde_index_initialized = true;
524 }
525
FDEToUnwindPlan(dw_offset_t dwarf_offset,Address startaddr,UnwindPlan & unwind_plan)526 bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset,
527 Address startaddr,
528 UnwindPlan &unwind_plan) {
529 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND);
530 lldb::offset_t offset = dwarf_offset;
531 lldb::offset_t current_entry = offset;
532
533 if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
534 return false;
535
536 if (!m_cfi_data_initialized)
537 GetCFIData();
538
539 uint32_t length = m_cfi_data.GetU32(&offset);
540 dw_offset_t cie_offset;
541 bool is_64bit = (length == UINT32_MAX);
542 if (is_64bit) {
543 length = m_cfi_data.GetU64(&offset);
544 cie_offset = m_cfi_data.GetU64(&offset);
545 } else {
546 cie_offset = m_cfi_data.GetU32(&offset);
547 }
548
549 // FDE entries with zeroth cie_offset may occur for debug_frame.
550 assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX);
551
552 // Translate the CIE_id from the eh_frame format, which is relative to the
553 // FDE offset, into a __eh_frame section offset
554 if (m_type == EH) {
555 unwind_plan.SetSourceName("eh_frame CFI");
556 cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
557 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
558 } else {
559 unwind_plan.SetSourceName("DWARF CFI");
560 // In theory the debug_frame info should be valid at all call sites
561 // ("asynchronous unwind info" as it is sometimes called) but in practice
562 // gcc et al all emit call frame info for the prologue and call sites, but
563 // not for the epilogue or all the other locations during the function
564 // reliably.
565 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
566 }
567 unwind_plan.SetSourcedFromCompiler(eLazyBoolYes);
568
569 const CIE *cie = GetCIE(cie_offset);
570 assert(cie != nullptr);
571
572 const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);
573
574 const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
575 const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
576 const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
577 lldb::addr_t range_base =
578 GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
579 text_addr, data_addr);
580 lldb::addr_t range_len = GetGNUEHPointer(
581 m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
582 pc_rel_addr, text_addr, data_addr);
583 AddressRange range(range_base, m_objfile.GetAddressByteSize(),
584 m_objfile.GetSectionList());
585 range.SetByteSize(range_len);
586
587 addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;
588
589 if (cie->augmentation[0] == 'z') {
590 uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
591 if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) {
592 offset_t saved_offset = offset;
593 lsda_data_file_address =
594 GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding,
595 pc_rel_addr, text_addr, data_addr);
596 if (offset - saved_offset != aug_data_len) {
597 // There is more in the augmentation region than we know how to process;
598 // don't read anything.
599 lsda_data_file_address = LLDB_INVALID_ADDRESS;
600 }
601 offset = saved_offset;
602 }
603 offset += aug_data_len;
604 }
605 unwind_plan.SetUnwindPlanForSignalTrap(
606 strchr(cie->augmentation, 'S') ? eLazyBoolYes : eLazyBoolNo);
607
608 Address lsda_data;
609 Address personality_function_ptr;
610
611 if (lsda_data_file_address != LLDB_INVALID_ADDRESS &&
612 cie->personality_loc != LLDB_INVALID_ADDRESS) {
613 m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address,
614 lsda_data);
615 m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc,
616 personality_function_ptr);
617 }
618
619 if (lsda_data.IsValid() && personality_function_ptr.IsValid()) {
620 unwind_plan.SetLSDAAddress(lsda_data);
621 unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr);
622 }
623
624 uint32_t code_align = cie->code_align;
625 int32_t data_align = cie->data_align;
626
627 unwind_plan.SetPlanValidAddressRange(range);
628 UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
629 *cie_initial_row = cie->initial_row;
630 UnwindPlan::RowSP row(cie_initial_row);
631
632 unwind_plan.SetRegisterKind(GetRegisterKind());
633 unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num);
634
635 std::vector<UnwindPlan::RowSP> stack;
636
637 UnwindPlan::Row::RegisterLocation reg_location;
638 while (m_cfi_data.ValidOffset(offset) && offset < end_offset) {
639 uint8_t inst = m_cfi_data.GetU8(&offset);
640 uint8_t primary_opcode = inst & 0xC0;
641 uint8_t extended_opcode = inst & 0x3F;
642
643 if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align,
644 offset, *row)) {
645 if (primary_opcode) {
646 switch (primary_opcode) {
647 case DW_CFA_advance_loc: // (Row Creation Instruction)
648 { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
649 // takes a single argument that represents a constant delta. The
650 // required action is to create a new table row with a location value
651 // that is computed by taking the current entry's location value and
652 // adding (delta * code_align). All other values in the new row are
653 // initially identical to the current row.
654 unwind_plan.AppendRow(row);
655 UnwindPlan::Row *newrow = new UnwindPlan::Row;
656 *newrow = *row.get();
657 row.reset(newrow);
658 row->SlideOffset(extended_opcode * code_align);
659 break;
660 }
661
662 case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
663 // register
664 // takes a single argument that represents a register number. The
665 // required action is to change the rule for the indicated register
666 // to the rule assigned it by the initial_instructions in the CIE.
667 uint32_t reg_num = extended_opcode;
668 // We only keep enough register locations around to unwind what is in
669 // our thread, and these are organized by the register index in that
670 // state, so we need to convert our eh_frame register number from the
671 // EH frame info, to a register index
672
673 if (unwind_plan.IsValidRowIndex(0) &&
674 unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
675 reg_location))
676 row->SetRegisterInfo(reg_num, reg_location);
677 break;
678 }
679 }
680 } else {
681 switch (extended_opcode) {
682 case DW_CFA_set_loc: // 0x1 (Row Creation Instruction)
683 {
684 // DW_CFA_set_loc takes a single argument that represents an address.
685 // The required action is to create a new table row using the
686 // specified address as the location. All other values in the new row
687 // are initially identical to the current row. The new location value
688 // should always be greater than the current one.
689 unwind_plan.AppendRow(row);
690 UnwindPlan::Row *newrow = new UnwindPlan::Row;
691 *newrow = *row.get();
692 row.reset(newrow);
693 row->SetOffset(m_cfi_data.GetAddress(&offset) -
694 startaddr.GetFileAddress());
695 break;
696 }
697
698 case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction)
699 {
700 // takes a single uword argument that represents a constant delta.
701 // This instruction is identical to DW_CFA_advance_loc except for the
702 // encoding and size of the delta argument.
703 unwind_plan.AppendRow(row);
704 UnwindPlan::Row *newrow = new UnwindPlan::Row;
705 *newrow = *row.get();
706 row.reset(newrow);
707 row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align);
708 break;
709 }
710
711 case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction)
712 {
713 // takes a single uword argument that represents a constant delta.
714 // This instruction is identical to DW_CFA_advance_loc except for the
715 // encoding and size of the delta argument.
716 unwind_plan.AppendRow(row);
717 UnwindPlan::Row *newrow = new UnwindPlan::Row;
718 *newrow = *row.get();
719 row.reset(newrow);
720 row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align);
721 break;
722 }
723
724 case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction)
725 {
726 // takes a single uword argument that represents a constant delta.
727 // This instruction is identical to DW_CFA_advance_loc except for the
728 // encoding and size of the delta argument.
729 unwind_plan.AppendRow(row);
730 UnwindPlan::Row *newrow = new UnwindPlan::Row;
731 *newrow = *row.get();
732 row.reset(newrow);
733 row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align);
734 break;
735 }
736
737 case DW_CFA_restore_extended: // 0x6
738 {
739 // takes a single unsigned LEB128 argument that represents a register
740 // number. This instruction is identical to DW_CFA_restore except for
741 // the encoding and size of the register argument.
742 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
743 if (unwind_plan.IsValidRowIndex(0) &&
744 unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
745 reg_location))
746 row->SetRegisterInfo(reg_num, reg_location);
747 break;
748 }
749
750 case DW_CFA_remember_state: // 0xA
751 {
752 // These instructions define a stack of information. Encountering the
753 // DW_CFA_remember_state instruction means to save the rules for
754 // every register on the current row on the stack. Encountering the
755 // DW_CFA_restore_state instruction means to pop the set of rules off
756 // the stack and place them in the current row. (This operation is
757 // useful for compilers that move epilogue code into the body of a
758 // function.)
759 stack.push_back(row);
760 UnwindPlan::Row *newrow = new UnwindPlan::Row;
761 *newrow = *row.get();
762 row.reset(newrow);
763 break;
764 }
765
766 case DW_CFA_restore_state: // 0xB
767 {
768 // These instructions define a stack of information. Encountering the
769 // DW_CFA_remember_state instruction means to save the rules for
770 // every register on the current row on the stack. Encountering the
771 // DW_CFA_restore_state instruction means to pop the set of rules off
772 // the stack and place them in the current row. (This operation is
773 // useful for compilers that move epilogue code into the body of a
774 // function.)
775 if (stack.empty()) {
776 LLDB_LOGF(log,
777 "DWARFCallFrameInfo::%s(dwarf_offset: %" PRIx32
778 ", startaddr: %" PRIx64
779 " encountered DW_CFA_restore_state but state stack "
780 "is empty. Corrupt unwind info?",
781 __FUNCTION__, dwarf_offset, startaddr.GetFileAddress());
782 break;
783 }
784 lldb::addr_t offset = row->GetOffset();
785 row = stack.back();
786 stack.pop_back();
787 row->SetOffset(offset);
788 break;
789 }
790
791 case DW_CFA_GNU_args_size: // 0x2e
792 {
793 // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
794 // operand representing an argument size. This instruction specifies
795 // the total of the size of the arguments which have been pushed onto
796 // the stack.
797
798 // TODO: Figure out how we should handle this.
799 m_cfi_data.GetULEB128(&offset);
800 break;
801 }
802
803 case DW_CFA_val_offset: // 0x14
804 case DW_CFA_val_offset_sf: // 0x15
805 default:
806 break;
807 }
808 }
809 }
810 }
811 unwind_plan.AppendRow(row);
812
813 return true;
814 }
815
HandleCommonDwarfOpcode(uint8_t primary_opcode,uint8_t extended_opcode,int32_t data_align,lldb::offset_t & offset,UnwindPlan::Row & row)816 bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
817 uint8_t extended_opcode,
818 int32_t data_align,
819 lldb::offset_t &offset,
820 UnwindPlan::Row &row) {
821 UnwindPlan::Row::RegisterLocation reg_location;
822
823 if (primary_opcode) {
824 switch (primary_opcode) {
825 case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
826 // register
827 // takes two arguments: an unsigned LEB128 constant representing a
828 // factored offset and a register number. The required action is to
829 // change the rule for the register indicated by the register number to
830 // be an offset(N) rule with a value of (N = factored offset *
831 // data_align).
832 uint8_t reg_num = extended_opcode;
833 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
834 reg_location.SetAtCFAPlusOffset(op_offset);
835 row.SetRegisterInfo(reg_num, reg_location);
836 return true;
837 }
838 }
839 } else {
840 switch (extended_opcode) {
841 case DW_CFA_nop: // 0x0
842 return true;
843
844 case DW_CFA_offset_extended: // 0x5
845 {
846 // takes two unsigned LEB128 arguments representing a register number and
847 // a factored offset. This instruction is identical to DW_CFA_offset
848 // except for the encoding and size of the register argument.
849 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
850 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
851 UnwindPlan::Row::RegisterLocation reg_location;
852 reg_location.SetAtCFAPlusOffset(op_offset);
853 row.SetRegisterInfo(reg_num, reg_location);
854 return true;
855 }
856
857 case DW_CFA_undefined: // 0x7
858 {
859 // takes a single unsigned LEB128 argument that represents a register
860 // number. The required action is to set the rule for the specified
861 // register to undefined.
862 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
863 UnwindPlan::Row::RegisterLocation reg_location;
864 reg_location.SetUndefined();
865 row.SetRegisterInfo(reg_num, reg_location);
866 return true;
867 }
868
869 case DW_CFA_same_value: // 0x8
870 {
871 // takes a single unsigned LEB128 argument that represents a register
872 // number. The required action is to set the rule for the specified
873 // register to same value.
874 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
875 UnwindPlan::Row::RegisterLocation reg_location;
876 reg_location.SetSame();
877 row.SetRegisterInfo(reg_num, reg_location);
878 return true;
879 }
880
881 case DW_CFA_register: // 0x9
882 {
883 // takes two unsigned LEB128 arguments representing register numbers. The
884 // required action is to set the rule for the first register to be the
885 // second register.
886 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
887 uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
888 UnwindPlan::Row::RegisterLocation reg_location;
889 reg_location.SetInRegister(other_reg_num);
890 row.SetRegisterInfo(reg_num, reg_location);
891 return true;
892 }
893
894 case DW_CFA_def_cfa: // 0xC (CFA Definition Instruction)
895 {
896 // Takes two unsigned LEB128 operands representing a register number and
897 // a (non-factored) offset. The required action is to define the current
898 // CFA rule to use the provided register and offset.
899 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
900 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
901 row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
902 return true;
903 }
904
905 case DW_CFA_def_cfa_register: // 0xD (CFA Definition Instruction)
906 {
907 // takes a single unsigned LEB128 argument representing a register
908 // number. The required action is to define the current CFA rule to use
909 // the provided register (but to keep the old offset).
910 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
911 row.GetCFAValue().SetIsRegisterPlusOffset(reg_num,
912 row.GetCFAValue().GetOffset());
913 return true;
914 }
915
916 case DW_CFA_def_cfa_offset: // 0xE (CFA Definition Instruction)
917 {
918 // Takes a single unsigned LEB128 operand representing a (non-factored)
919 // offset. The required action is to define the current CFA rule to use
920 // the provided offset (but to keep the old register).
921 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
922 row.GetCFAValue().SetIsRegisterPlusOffset(
923 row.GetCFAValue().GetRegisterNumber(), op_offset);
924 return true;
925 }
926
927 case DW_CFA_def_cfa_expression: // 0xF (CFA Definition Instruction)
928 {
929 size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
930 const uint8_t *block_data =
931 static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
932 row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
933 return true;
934 }
935
936 case DW_CFA_expression: // 0x10
937 {
938 // Takes two operands: an unsigned LEB128 value representing a register
939 // number, and a DW_FORM_block value representing a DWARF expression. The
940 // required action is to change the rule for the register indicated by
941 // the register number to be an expression(E) rule where E is the DWARF
942 // expression. That is, the DWARF expression computes the address. The
943 // value of the CFA is pushed on the DWARF evaluation stack prior to
944 // execution of the DWARF expression.
945 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
946 uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
947 const uint8_t *block_data =
948 static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
949 UnwindPlan::Row::RegisterLocation reg_location;
950 reg_location.SetAtDWARFExpression(block_data, block_len);
951 row.SetRegisterInfo(reg_num, reg_location);
952 return true;
953 }
954
955 case DW_CFA_offset_extended_sf: // 0x11
956 {
957 // takes two operands: an unsigned LEB128 value representing a register
958 // number and a signed LEB128 factored offset. This instruction is
959 // identical to DW_CFA_offset_extended except that the second operand is
960 // signed and factored.
961 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
962 int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
963 UnwindPlan::Row::RegisterLocation reg_location;
964 reg_location.SetAtCFAPlusOffset(op_offset);
965 row.SetRegisterInfo(reg_num, reg_location);
966 return true;
967 }
968
969 case DW_CFA_def_cfa_sf: // 0x12 (CFA Definition Instruction)
970 {
971 // Takes two operands: an unsigned LEB128 value representing a register
972 // number and a signed LEB128 factored offset. This instruction is
973 // identical to DW_CFA_def_cfa except that the second operand is signed
974 // and factored.
975 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
976 int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
977 row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
978 return true;
979 }
980
981 case DW_CFA_def_cfa_offset_sf: // 0x13 (CFA Definition Instruction)
982 {
983 // takes a signed LEB128 operand representing a factored offset. This
984 // instruction is identical to DW_CFA_def_cfa_offset except that the
985 // operand is signed and factored.
986 int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
987 uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
988 row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
989 return true;
990 }
991
992 case DW_CFA_val_expression: // 0x16
993 {
994 // takes two operands: an unsigned LEB128 value representing a register
995 // number, and a DW_FORM_block value representing a DWARF expression. The
996 // required action is to change the rule for the register indicated by
997 // the register number to be a val_expression(E) rule where E is the
998 // DWARF expression. That is, the DWARF expression computes the value of
999 // the given register. The value of the CFA is pushed on the DWARF
1000 // evaluation stack prior to execution of the DWARF expression.
1001 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
1002 uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
1003 const uint8_t *block_data =
1004 (const uint8_t *)m_cfi_data.GetData(&offset, block_len);
1005 reg_location.SetIsDWARFExpression(block_data, block_len);
1006 row.SetRegisterInfo(reg_num, reg_location);
1007 return true;
1008 }
1009 }
1010 }
1011 return false;
1012 }
1013
ForEachFDEEntries(const std::function<bool (lldb::addr_t,uint32_t,dw_offset_t)> & callback)1014 void DWARFCallFrameInfo::ForEachFDEEntries(
1015 const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) {
1016 GetFDEIndex();
1017
1018 for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) {
1019 const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i);
1020 if (!callback(entry.base, entry.size, entry.data))
1021 break;
1022 }
1023 }
1024