1 //===-- EfficiencySanitizer.cpp - performance tuner -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of EfficiencySanitizer, a family of performance tuners
11 // that detects multiple performance issues via separate sub-tools.
12 //
13 // The instrumentation phase is straightforward:
14 // - Take action on every memory access: either inlined instrumentation,
15 // or Inserted calls to our run-time library.
16 // - Optimizations may apply to avoid instrumenting some of the accesses.
17 // - Turn mem{set,cpy,move} instrinsics into library calls.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
20
21 #include "llvm/Transforms/Instrumentation.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/ModuleUtils.h"
38
39 using namespace llvm;
40
41 #define DEBUG_TYPE "esan"
42
43 // The tool type must be just one of these ClTool* options, as the tools
44 // cannot be combined due to shadow memory constraints.
45 static cl::opt<bool>
46 ClToolCacheFrag("esan-cache-frag", cl::init(false),
47 cl::desc("Detect data cache fragmentation"), cl::Hidden);
48 static cl::opt<bool>
49 ClToolWorkingSet("esan-working-set", cl::init(false),
50 cl::desc("Measure the working set size"), cl::Hidden);
51 // Each new tool will get its own opt flag here.
52 // These are converted to EfficiencySanitizerOptions for use
53 // in the code.
54
55 static cl::opt<bool> ClInstrumentLoadsAndStores(
56 "esan-instrument-loads-and-stores", cl::init(true),
57 cl::desc("Instrument loads and stores"), cl::Hidden);
58 static cl::opt<bool> ClInstrumentMemIntrinsics(
59 "esan-instrument-memintrinsics", cl::init(true),
60 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
61 static cl::opt<bool> ClInstrumentFastpath(
62 "esan-instrument-fastpath", cl::init(true),
63 cl::desc("Instrument fastpath"), cl::Hidden);
64 static cl::opt<bool> ClAuxFieldInfo(
65 "esan-aux-field-info", cl::init(true),
66 cl::desc("Generate binary with auxiliary struct field information"),
67 cl::Hidden);
68
69 // Experiments show that the performance difference can be 2x or more,
70 // and accuracy loss is typically negligible, so we turn this on by default.
71 static cl::opt<bool> ClAssumeIntraCacheLine(
72 "esan-assume-intra-cache-line", cl::init(true),
73 cl::desc("Assume each memory access touches just one cache line, for "
74 "better performance but with a potential loss of accuracy."),
75 cl::Hidden);
76
77 STATISTIC(NumInstrumentedLoads, "Number of instrumented loads");
78 STATISTIC(NumInstrumentedStores, "Number of instrumented stores");
79 STATISTIC(NumFastpaths, "Number of instrumented fastpaths");
80 STATISTIC(NumAccessesWithIrregularSize,
81 "Number of accesses with a size outside our targeted callout sizes");
82 STATISTIC(NumIgnoredStructs, "Number of ignored structs");
83 STATISTIC(NumIgnoredGEPs, "Number of ignored GEP instructions");
84 STATISTIC(NumInstrumentedGEPs, "Number of instrumented GEP instructions");
85 STATISTIC(NumAssumedIntraCacheLine,
86 "Number of accesses assumed to be intra-cache-line");
87
88 static const uint64_t EsanCtorAndDtorPriority = 0;
89 static const char *const EsanModuleCtorName = "esan.module_ctor";
90 static const char *const EsanModuleDtorName = "esan.module_dtor";
91 static const char *const EsanInitName = "__esan_init";
92 static const char *const EsanExitName = "__esan_exit";
93
94 // We need to specify the tool to the runtime earlier than
95 // the ctor is called in some cases, so we set a global variable.
96 static const char *const EsanWhichToolName = "__esan_which_tool";
97
98 // We must keep these Shadow* constants consistent with the esan runtime.
99 // FIXME: Try to place these shadow constants, the names of the __esan_*
100 // interface functions, and the ToolType enum into a header shared between
101 // llvm and compiler-rt.
102 static const uint64_t ShadowMask = 0x00000fffffffffffull;
103 static const uint64_t ShadowOffs[3] = { // Indexed by scale
104 0x0000130000000000ull,
105 0x0000220000000000ull,
106 0x0000440000000000ull,
107 };
108 // This array is indexed by the ToolType enum.
109 static const int ShadowScale[] = {
110 0, // ESAN_None.
111 2, // ESAN_CacheFrag: 4B:1B, so 4 to 1 == >>2.
112 6, // ESAN_WorkingSet: 64B:1B, so 64 to 1 == >>6.
113 };
114
115 // MaxStructCounterNameSize is a soft size limit to avoid insanely long
116 // names for those extremely large structs.
117 static const unsigned MaxStructCounterNameSize = 512;
118
119 namespace {
120
121 static EfficiencySanitizerOptions
OverrideOptionsFromCL(EfficiencySanitizerOptions Options)122 OverrideOptionsFromCL(EfficiencySanitizerOptions Options) {
123 if (ClToolCacheFrag)
124 Options.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag;
125 else if (ClToolWorkingSet)
126 Options.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet;
127
128 // Direct opt invocation with no params will have the default ESAN_None.
129 // We run the default tool in that case.
130 if (Options.ToolType == EfficiencySanitizerOptions::ESAN_None)
131 Options.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag;
132
133 return Options;
134 }
135
136 // Create a constant for Str so that we can pass it to the run-time lib.
createPrivateGlobalForString(Module & M,StringRef Str,bool AllowMerging)137 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
138 bool AllowMerging) {
139 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
140 // We use private linkage for module-local strings. If they can be merged
141 // with another one, we set the unnamed_addr attribute.
142 GlobalVariable *GV =
143 new GlobalVariable(M, StrConst->getType(), true,
144 GlobalValue::PrivateLinkage, StrConst, "");
145 if (AllowMerging)
146 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
147 GV->setAlignment(1); // Strings may not be merged w/o setting align 1.
148 return GV;
149 }
150
151 /// EfficiencySanitizer: instrument each module to find performance issues.
152 class EfficiencySanitizer : public ModulePass {
153 public:
EfficiencySanitizer(const EfficiencySanitizerOptions & Opts=EfficiencySanitizerOptions ())154 EfficiencySanitizer(
155 const EfficiencySanitizerOptions &Opts = EfficiencySanitizerOptions())
156 : ModulePass(ID), Options(OverrideOptionsFromCL(Opts)) {}
157 const char *getPassName() const override;
158 void getAnalysisUsage(AnalysisUsage &AU) const override;
159 bool runOnModule(Module &M) override;
160 static char ID;
161
162 private:
163 bool initOnModule(Module &M);
164 void initializeCallbacks(Module &M);
165 bool shouldIgnoreStructType(StructType *StructTy);
166 void createStructCounterName(
167 StructType *StructTy, SmallString<MaxStructCounterNameSize> &NameStr);
168 void createCacheFragAuxGV(
169 Module &M, const DataLayout &DL, StructType *StructTy,
170 GlobalVariable *&TypeNames, GlobalVariable *&Offsets, GlobalVariable *&Size);
171 GlobalVariable *createCacheFragInfoGV(Module &M, const DataLayout &DL,
172 Constant *UnitName);
173 Constant *createEsanInitToolInfoArg(Module &M, const DataLayout &DL);
174 void createDestructor(Module &M, Constant *ToolInfoArg);
175 bool runOnFunction(Function &F, Module &M);
176 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
177 bool instrumentMemIntrinsic(MemIntrinsic *MI);
178 bool instrumentGetElementPtr(Instruction *I, Module &M);
179 bool insertCounterUpdate(Instruction *I, StructType *StructTy,
180 unsigned CounterIdx);
getFieldCounterIdx(StructType * StructTy)181 unsigned getFieldCounterIdx(StructType *StructTy) {
182 return 0;
183 }
getArrayCounterIdx(StructType * StructTy)184 unsigned getArrayCounterIdx(StructType *StructTy) {
185 return StructTy->getNumElements();
186 }
getStructCounterSize(StructType * StructTy)187 unsigned getStructCounterSize(StructType *StructTy) {
188 // The struct counter array includes:
189 // - one counter for each struct field,
190 // - one counter for the struct access within an array.
191 return (StructTy->getNumElements()/*field*/ + 1/*array*/);
192 }
193 bool shouldIgnoreMemoryAccess(Instruction *I);
194 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
195 Value *appToShadow(Value *Shadow, IRBuilder<> &IRB);
196 bool instrumentFastpath(Instruction *I, const DataLayout &DL, bool IsStore,
197 Value *Addr, unsigned Alignment);
198 // Each tool has its own fastpath routine:
199 bool instrumentFastpathCacheFrag(Instruction *I, const DataLayout &DL,
200 Value *Addr, unsigned Alignment);
201 bool instrumentFastpathWorkingSet(Instruction *I, const DataLayout &DL,
202 Value *Addr, unsigned Alignment);
203
204 EfficiencySanitizerOptions Options;
205 LLVMContext *Ctx;
206 Type *IntptrTy;
207 // Our slowpath involves callouts to the runtime library.
208 // Access sizes are powers of two: 1, 2, 4, 8, 16.
209 static const size_t NumberOfAccessSizes = 5;
210 Function *EsanAlignedLoad[NumberOfAccessSizes];
211 Function *EsanAlignedStore[NumberOfAccessSizes];
212 Function *EsanUnalignedLoad[NumberOfAccessSizes];
213 Function *EsanUnalignedStore[NumberOfAccessSizes];
214 // For irregular sizes of any alignment:
215 Function *EsanUnalignedLoadN, *EsanUnalignedStoreN;
216 Function *MemmoveFn, *MemcpyFn, *MemsetFn;
217 Function *EsanCtorFunction;
218 Function *EsanDtorFunction;
219 // Remember the counter variable for each struct type to avoid
220 // recomputing the variable name later during instrumentation.
221 std::map<Type *, GlobalVariable *> StructTyMap;
222 };
223 } // namespace
224
225 char EfficiencySanitizer::ID = 0;
226 INITIALIZE_PASS_BEGIN(
227 EfficiencySanitizer, "esan",
228 "EfficiencySanitizer: finds performance issues.", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)229 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
230 INITIALIZE_PASS_END(
231 EfficiencySanitizer, "esan",
232 "EfficiencySanitizer: finds performance issues.", false, false)
233
234 const char *EfficiencySanitizer::getPassName() const {
235 return "EfficiencySanitizer";
236 }
237
getAnalysisUsage(AnalysisUsage & AU) const238 void EfficiencySanitizer::getAnalysisUsage(AnalysisUsage &AU) const {
239 AU.addRequired<TargetLibraryInfoWrapperPass>();
240 }
241
242 ModulePass *
createEfficiencySanitizerPass(const EfficiencySanitizerOptions & Options)243 llvm::createEfficiencySanitizerPass(const EfficiencySanitizerOptions &Options) {
244 return new EfficiencySanitizer(Options);
245 }
246
initializeCallbacks(Module & M)247 void EfficiencySanitizer::initializeCallbacks(Module &M) {
248 IRBuilder<> IRB(M.getContext());
249 // Initialize the callbacks.
250 for (size_t Idx = 0; Idx < NumberOfAccessSizes; ++Idx) {
251 const unsigned ByteSize = 1U << Idx;
252 std::string ByteSizeStr = utostr(ByteSize);
253 // We'll inline the most common (i.e., aligned and frequent sizes)
254 // load + store instrumentation: these callouts are for the slowpath.
255 SmallString<32> AlignedLoadName("__esan_aligned_load" + ByteSizeStr);
256 EsanAlignedLoad[Idx] =
257 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
258 AlignedLoadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
259 SmallString<32> AlignedStoreName("__esan_aligned_store" + ByteSizeStr);
260 EsanAlignedStore[Idx] =
261 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
262 AlignedStoreName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
263 SmallString<32> UnalignedLoadName("__esan_unaligned_load" + ByteSizeStr);
264 EsanUnalignedLoad[Idx] =
265 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
266 UnalignedLoadName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
267 SmallString<32> UnalignedStoreName("__esan_unaligned_store" + ByteSizeStr);
268 EsanUnalignedStore[Idx] =
269 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
270 UnalignedStoreName, IRB.getVoidTy(), IRB.getInt8PtrTy(), nullptr));
271 }
272 EsanUnalignedLoadN = checkSanitizerInterfaceFunction(
273 M.getOrInsertFunction("__esan_unaligned_loadN", IRB.getVoidTy(),
274 IRB.getInt8PtrTy(), IntptrTy, nullptr));
275 EsanUnalignedStoreN = checkSanitizerInterfaceFunction(
276 M.getOrInsertFunction("__esan_unaligned_storeN", IRB.getVoidTy(),
277 IRB.getInt8PtrTy(), IntptrTy, nullptr));
278 MemmoveFn = checkSanitizerInterfaceFunction(
279 M.getOrInsertFunction("memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
280 IRB.getInt8PtrTy(), IntptrTy, nullptr));
281 MemcpyFn = checkSanitizerInterfaceFunction(
282 M.getOrInsertFunction("memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
283 IRB.getInt8PtrTy(), IntptrTy, nullptr));
284 MemsetFn = checkSanitizerInterfaceFunction(
285 M.getOrInsertFunction("memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
286 IRB.getInt32Ty(), IntptrTy, nullptr));
287 }
288
shouldIgnoreStructType(StructType * StructTy)289 bool EfficiencySanitizer::shouldIgnoreStructType(StructType *StructTy) {
290 if (StructTy == nullptr || StructTy->isOpaque() /* no struct body */)
291 return true;
292 return false;
293 }
294
createStructCounterName(StructType * StructTy,SmallString<MaxStructCounterNameSize> & NameStr)295 void EfficiencySanitizer::createStructCounterName(
296 StructType *StructTy, SmallString<MaxStructCounterNameSize> &NameStr) {
297 // Append NumFields and field type ids to avoid struct conflicts
298 // with the same name but different fields.
299 if (StructTy->hasName())
300 NameStr += StructTy->getName();
301 else
302 NameStr += "struct.anon";
303 // We allow the actual size of the StructCounterName to be larger than
304 // MaxStructCounterNameSize and append #NumFields and at least one
305 // field type id.
306 // Append #NumFields.
307 NameStr += "#";
308 Twine(StructTy->getNumElements()).toVector(NameStr);
309 // Append struct field type ids in the reverse order.
310 for (int i = StructTy->getNumElements() - 1; i >= 0; --i) {
311 NameStr += "#";
312 Twine(StructTy->getElementType(i)->getTypeID()).toVector(NameStr);
313 if (NameStr.size() >= MaxStructCounterNameSize)
314 break;
315 }
316 if (StructTy->isLiteral()) {
317 // End with # for literal struct.
318 NameStr += "#";
319 }
320 }
321
322 // Create global variables with auxiliary information (e.g., struct field size,
323 // offset, and type name) for better user report.
createCacheFragAuxGV(Module & M,const DataLayout & DL,StructType * StructTy,GlobalVariable * & TypeName,GlobalVariable * & Offset,GlobalVariable * & Size)324 void EfficiencySanitizer::createCacheFragAuxGV(
325 Module &M, const DataLayout &DL, StructType *StructTy,
326 GlobalVariable *&TypeName, GlobalVariable *&Offset,
327 GlobalVariable *&Size) {
328 auto *Int8PtrTy = Type::getInt8PtrTy(*Ctx);
329 auto *Int32Ty = Type::getInt32Ty(*Ctx);
330 // FieldTypeName.
331 auto *TypeNameArrayTy = ArrayType::get(Int8PtrTy, StructTy->getNumElements());
332 TypeName = new GlobalVariable(M, TypeNameArrayTy, true,
333 GlobalVariable::InternalLinkage, nullptr);
334 SmallVector<Constant *, 16> TypeNameVec;
335 // FieldOffset.
336 auto *OffsetArrayTy = ArrayType::get(Int32Ty, StructTy->getNumElements());
337 Offset = new GlobalVariable(M, OffsetArrayTy, true,
338 GlobalVariable::InternalLinkage, nullptr);
339 SmallVector<Constant *, 16> OffsetVec;
340 // FieldSize
341 auto *SizeArrayTy = ArrayType::get(Int32Ty, StructTy->getNumElements());
342 Size = new GlobalVariable(M, SizeArrayTy, true,
343 GlobalVariable::InternalLinkage, nullptr);
344 SmallVector<Constant *, 16> SizeVec;
345 for (unsigned i = 0; i < StructTy->getNumElements(); ++i) {
346 Type *Ty = StructTy->getElementType(i);
347 std::string Str;
348 raw_string_ostream StrOS(Str);
349 Ty->print(StrOS);
350 TypeNameVec.push_back(
351 ConstantExpr::getPointerCast(
352 createPrivateGlobalForString(M, StrOS.str(), true),
353 Int8PtrTy));
354 OffsetVec.push_back(
355 ConstantInt::get(Int32Ty,
356 DL.getStructLayout(StructTy)->getElementOffset(i)));
357 SizeVec.push_back(ConstantInt::get(Int32Ty,
358 DL.getTypeAllocSize(Ty)));
359 }
360 TypeName->setInitializer(ConstantArray::get(TypeNameArrayTy, TypeNameVec));
361 Offset->setInitializer(ConstantArray::get(OffsetArrayTy, OffsetVec));
362 Size->setInitializer(ConstantArray::get(SizeArrayTy, SizeVec));
363 }
364
365 // Create the global variable for the cache-fragmentation tool.
createCacheFragInfoGV(Module & M,const DataLayout & DL,Constant * UnitName)366 GlobalVariable *EfficiencySanitizer::createCacheFragInfoGV(
367 Module &M, const DataLayout &DL, Constant *UnitName) {
368 assert(Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag);
369
370 auto *Int8PtrTy = Type::getInt8PtrTy(*Ctx);
371 auto *Int8PtrPtrTy = Int8PtrTy->getPointerTo();
372 auto *Int32Ty = Type::getInt32Ty(*Ctx);
373 auto *Int32PtrTy = Type::getInt32PtrTy(*Ctx);
374 auto *Int64Ty = Type::getInt64Ty(*Ctx);
375 auto *Int64PtrTy = Type::getInt64PtrTy(*Ctx);
376 // This structure should be kept consistent with the StructInfo struct
377 // in the runtime library.
378 // struct StructInfo {
379 // const char *StructName;
380 // u32 Size;
381 // u32 NumFields;
382 // u32 *FieldOffset; // auxiliary struct field info.
383 // u32 *FieldSize; // auxiliary struct field info.
384 // const char **FieldTypeName; // auxiliary struct field info.
385 // u64 *FieldCounters;
386 // u64 *ArrayCounter;
387 // };
388 auto *StructInfoTy =
389 StructType::get(Int8PtrTy, Int32Ty, Int32Ty, Int32PtrTy, Int32PtrTy,
390 Int8PtrPtrTy, Int64PtrTy, Int64PtrTy, nullptr);
391 auto *StructInfoPtrTy = StructInfoTy->getPointerTo();
392 // This structure should be kept consistent with the CacheFragInfo struct
393 // in the runtime library.
394 // struct CacheFragInfo {
395 // const char *UnitName;
396 // u32 NumStructs;
397 // StructInfo *Structs;
398 // };
399 auto *CacheFragInfoTy =
400 StructType::get(Int8PtrTy, Int32Ty, StructInfoPtrTy, nullptr);
401
402 std::vector<StructType *> Vec = M.getIdentifiedStructTypes();
403 unsigned NumStructs = 0;
404 SmallVector<Constant *, 16> Initializers;
405
406 for (auto &StructTy : Vec) {
407 if (shouldIgnoreStructType(StructTy)) {
408 ++NumIgnoredStructs;
409 continue;
410 }
411 ++NumStructs;
412
413 // StructName.
414 SmallString<MaxStructCounterNameSize> CounterNameStr;
415 createStructCounterName(StructTy, CounterNameStr);
416 GlobalVariable *StructCounterName = createPrivateGlobalForString(
417 M, CounterNameStr, /*AllowMerging*/true);
418
419 // Counters.
420 // We create the counter array with StructCounterName and weak linkage
421 // so that the structs with the same name and layout from different
422 // compilation units will be merged into one.
423 auto *CounterArrayTy = ArrayType::get(Int64Ty,
424 getStructCounterSize(StructTy));
425 GlobalVariable *Counters =
426 new GlobalVariable(M, CounterArrayTy, false,
427 GlobalVariable::WeakAnyLinkage,
428 ConstantAggregateZero::get(CounterArrayTy),
429 CounterNameStr);
430
431 // Remember the counter variable for each struct type.
432 StructTyMap.insert(std::pair<Type *, GlobalVariable *>(StructTy, Counters));
433
434 // We pass the field type name array, offset array, and size array to
435 // the runtime for better reporting.
436 GlobalVariable *TypeName = nullptr, *Offset = nullptr, *Size = nullptr;
437 if (ClAuxFieldInfo)
438 createCacheFragAuxGV(M, DL, StructTy, TypeName, Offset, Size);
439
440 Constant *FieldCounterIdx[2];
441 FieldCounterIdx[0] = ConstantInt::get(Int32Ty, 0);
442 FieldCounterIdx[1] = ConstantInt::get(Int32Ty,
443 getFieldCounterIdx(StructTy));
444 Constant *ArrayCounterIdx[2];
445 ArrayCounterIdx[0] = ConstantInt::get(Int32Ty, 0);
446 ArrayCounterIdx[1] = ConstantInt::get(Int32Ty,
447 getArrayCounterIdx(StructTy));
448 Initializers.push_back(
449 ConstantStruct::get(
450 StructInfoTy,
451 ConstantExpr::getPointerCast(StructCounterName, Int8PtrTy),
452 ConstantInt::get(Int32Ty,
453 DL.getStructLayout(StructTy)->getSizeInBytes()),
454 ConstantInt::get(Int32Ty, StructTy->getNumElements()),
455 Offset == nullptr ? ConstantPointerNull::get(Int32PtrTy) :
456 ConstantExpr::getPointerCast(Offset, Int32PtrTy),
457 Size == nullptr ? ConstantPointerNull::get(Int32PtrTy) :
458 ConstantExpr::getPointerCast(Size, Int32PtrTy),
459 TypeName == nullptr ? ConstantPointerNull::get(Int8PtrPtrTy) :
460 ConstantExpr::getPointerCast(TypeName, Int8PtrPtrTy),
461 ConstantExpr::getGetElementPtr(CounterArrayTy, Counters,
462 FieldCounterIdx),
463 ConstantExpr::getGetElementPtr(CounterArrayTy, Counters,
464 ArrayCounterIdx),
465 nullptr));
466 }
467 // Structs.
468 Constant *StructInfo;
469 if (NumStructs == 0) {
470 StructInfo = ConstantPointerNull::get(StructInfoPtrTy);
471 } else {
472 auto *StructInfoArrayTy = ArrayType::get(StructInfoTy, NumStructs);
473 StructInfo = ConstantExpr::getPointerCast(
474 new GlobalVariable(M, StructInfoArrayTy, false,
475 GlobalVariable::InternalLinkage,
476 ConstantArray::get(StructInfoArrayTy, Initializers)),
477 StructInfoPtrTy);
478 }
479
480 auto *CacheFragInfoGV = new GlobalVariable(
481 M, CacheFragInfoTy, true, GlobalVariable::InternalLinkage,
482 ConstantStruct::get(CacheFragInfoTy,
483 UnitName,
484 ConstantInt::get(Int32Ty, NumStructs),
485 StructInfo,
486 nullptr));
487 return CacheFragInfoGV;
488 }
489
490 // Create the tool-specific argument passed to EsanInit and EsanExit.
createEsanInitToolInfoArg(Module & M,const DataLayout & DL)491 Constant *EfficiencySanitizer::createEsanInitToolInfoArg(Module &M,
492 const DataLayout &DL) {
493 // This structure contains tool-specific information about each compilation
494 // unit (module) and is passed to the runtime library.
495 GlobalVariable *ToolInfoGV = nullptr;
496
497 auto *Int8PtrTy = Type::getInt8PtrTy(*Ctx);
498 // Compilation unit name.
499 auto *UnitName = ConstantExpr::getPointerCast(
500 createPrivateGlobalForString(M, M.getModuleIdentifier(), true),
501 Int8PtrTy);
502
503 // Create the tool-specific variable.
504 if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag)
505 ToolInfoGV = createCacheFragInfoGV(M, DL, UnitName);
506
507 if (ToolInfoGV != nullptr)
508 return ConstantExpr::getPointerCast(ToolInfoGV, Int8PtrTy);
509
510 // Create the null pointer if no tool-specific variable created.
511 return ConstantPointerNull::get(Int8PtrTy);
512 }
513
createDestructor(Module & M,Constant * ToolInfoArg)514 void EfficiencySanitizer::createDestructor(Module &M, Constant *ToolInfoArg) {
515 PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx);
516 EsanDtorFunction = Function::Create(FunctionType::get(Type::getVoidTy(*Ctx),
517 false),
518 GlobalValue::InternalLinkage,
519 EsanModuleDtorName, &M);
520 ReturnInst::Create(*Ctx, BasicBlock::Create(*Ctx, "", EsanDtorFunction));
521 IRBuilder<> IRB_Dtor(EsanDtorFunction->getEntryBlock().getTerminator());
522 Function *EsanExit = checkSanitizerInterfaceFunction(
523 M.getOrInsertFunction(EsanExitName, IRB_Dtor.getVoidTy(),
524 Int8PtrTy, nullptr));
525 EsanExit->setLinkage(Function::ExternalLinkage);
526 IRB_Dtor.CreateCall(EsanExit, {ToolInfoArg});
527 appendToGlobalDtors(M, EsanDtorFunction, EsanCtorAndDtorPriority);
528 }
529
initOnModule(Module & M)530 bool EfficiencySanitizer::initOnModule(Module &M) {
531 Ctx = &M.getContext();
532 const DataLayout &DL = M.getDataLayout();
533 IRBuilder<> IRB(M.getContext());
534 IntegerType *OrdTy = IRB.getInt32Ty();
535 PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx);
536 IntptrTy = DL.getIntPtrType(M.getContext());
537 // Create the variable passed to EsanInit and EsanExit.
538 Constant *ToolInfoArg = createEsanInitToolInfoArg(M, DL);
539 // Constructor
540 // We specify the tool type both in the EsanWhichToolName global
541 // and as an arg to the init routine as a sanity check.
542 std::tie(EsanCtorFunction, std::ignore) = createSanitizerCtorAndInitFunctions(
543 M, EsanModuleCtorName, EsanInitName, /*InitArgTypes=*/{OrdTy, Int8PtrTy},
544 /*InitArgs=*/{
545 ConstantInt::get(OrdTy, static_cast<int>(Options.ToolType)),
546 ToolInfoArg});
547 appendToGlobalCtors(M, EsanCtorFunction, EsanCtorAndDtorPriority);
548
549 createDestructor(M, ToolInfoArg);
550
551 new GlobalVariable(M, OrdTy, true,
552 GlobalValue::WeakAnyLinkage,
553 ConstantInt::get(OrdTy,
554 static_cast<int>(Options.ToolType)),
555 EsanWhichToolName);
556
557 return true;
558 }
559
appToShadow(Value * Shadow,IRBuilder<> & IRB)560 Value *EfficiencySanitizer::appToShadow(Value *Shadow, IRBuilder<> &IRB) {
561 // Shadow = ((App & Mask) + Offs) >> Scale
562 Shadow = IRB.CreateAnd(Shadow, ConstantInt::get(IntptrTy, ShadowMask));
563 uint64_t Offs;
564 int Scale = ShadowScale[Options.ToolType];
565 if (Scale <= 2)
566 Offs = ShadowOffs[Scale];
567 else
568 Offs = ShadowOffs[0] << Scale;
569 Shadow = IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Offs));
570 if (Scale > 0)
571 Shadow = IRB.CreateLShr(Shadow, Scale);
572 return Shadow;
573 }
574
shouldIgnoreMemoryAccess(Instruction * I)575 bool EfficiencySanitizer::shouldIgnoreMemoryAccess(Instruction *I) {
576 if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) {
577 // We'd like to know about cache fragmentation in vtable accesses and
578 // constant data references, so we do not currently ignore anything.
579 return false;
580 } else if (Options.ToolType == EfficiencySanitizerOptions::ESAN_WorkingSet) {
581 // TODO: the instrumentation disturbs the data layout on the stack, so we
582 // may want to add an option to ignore stack references (if we can
583 // distinguish them) to reduce overhead.
584 }
585 // TODO(bruening): future tools will be returning true for some cases.
586 return false;
587 }
588
runOnModule(Module & M)589 bool EfficiencySanitizer::runOnModule(Module &M) {
590 bool Res = initOnModule(M);
591 initializeCallbacks(M);
592 for (auto &F : M) {
593 Res |= runOnFunction(F, M);
594 }
595 return Res;
596 }
597
runOnFunction(Function & F,Module & M)598 bool EfficiencySanitizer::runOnFunction(Function &F, Module &M) {
599 // This is required to prevent instrumenting the call to __esan_init from
600 // within the module constructor.
601 if (&F == EsanCtorFunction)
602 return false;
603 SmallVector<Instruction *, 8> LoadsAndStores;
604 SmallVector<Instruction *, 8> MemIntrinCalls;
605 SmallVector<Instruction *, 8> GetElementPtrs;
606 bool Res = false;
607 const DataLayout &DL = M.getDataLayout();
608 const TargetLibraryInfo *TLI =
609 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
610
611 for (auto &BB : F) {
612 for (auto &Inst : BB) {
613 if ((isa<LoadInst>(Inst) || isa<StoreInst>(Inst) ||
614 isa<AtomicRMWInst>(Inst) || isa<AtomicCmpXchgInst>(Inst)) &&
615 !shouldIgnoreMemoryAccess(&Inst))
616 LoadsAndStores.push_back(&Inst);
617 else if (isa<MemIntrinsic>(Inst))
618 MemIntrinCalls.push_back(&Inst);
619 else if (isa<GetElementPtrInst>(Inst))
620 GetElementPtrs.push_back(&Inst);
621 else if (CallInst *CI = dyn_cast<CallInst>(&Inst))
622 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
623 }
624 }
625
626 if (ClInstrumentLoadsAndStores) {
627 for (auto Inst : LoadsAndStores) {
628 Res |= instrumentLoadOrStore(Inst, DL);
629 }
630 }
631
632 if (ClInstrumentMemIntrinsics) {
633 for (auto Inst : MemIntrinCalls) {
634 Res |= instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
635 }
636 }
637
638 if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) {
639 for (auto Inst : GetElementPtrs) {
640 Res |= instrumentGetElementPtr(Inst, M);
641 }
642 }
643
644 return Res;
645 }
646
instrumentLoadOrStore(Instruction * I,const DataLayout & DL)647 bool EfficiencySanitizer::instrumentLoadOrStore(Instruction *I,
648 const DataLayout &DL) {
649 IRBuilder<> IRB(I);
650 bool IsStore;
651 Value *Addr;
652 unsigned Alignment;
653 if (LoadInst *Load = dyn_cast<LoadInst>(I)) {
654 IsStore = false;
655 Alignment = Load->getAlignment();
656 Addr = Load->getPointerOperand();
657 } else if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
658 IsStore = true;
659 Alignment = Store->getAlignment();
660 Addr = Store->getPointerOperand();
661 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
662 IsStore = true;
663 Alignment = 0;
664 Addr = RMW->getPointerOperand();
665 } else if (AtomicCmpXchgInst *Xchg = dyn_cast<AtomicCmpXchgInst>(I)) {
666 IsStore = true;
667 Alignment = 0;
668 Addr = Xchg->getPointerOperand();
669 } else
670 llvm_unreachable("Unsupported mem access type");
671
672 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
673 const uint32_t TypeSizeBytes = DL.getTypeStoreSizeInBits(OrigTy) / 8;
674 Value *OnAccessFunc = nullptr;
675
676 // Convert 0 to the default alignment.
677 if (Alignment == 0)
678 Alignment = DL.getPrefTypeAlignment(OrigTy);
679
680 if (IsStore)
681 NumInstrumentedStores++;
682 else
683 NumInstrumentedLoads++;
684 int Idx = getMemoryAccessFuncIndex(Addr, DL);
685 if (Idx < 0) {
686 OnAccessFunc = IsStore ? EsanUnalignedStoreN : EsanUnalignedLoadN;
687 IRB.CreateCall(OnAccessFunc,
688 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
689 ConstantInt::get(IntptrTy, TypeSizeBytes)});
690 } else {
691 if (ClInstrumentFastpath &&
692 instrumentFastpath(I, DL, IsStore, Addr, Alignment)) {
693 NumFastpaths++;
694 return true;
695 }
696 if (Alignment == 0 || (Alignment % TypeSizeBytes) == 0)
697 OnAccessFunc = IsStore ? EsanAlignedStore[Idx] : EsanAlignedLoad[Idx];
698 else
699 OnAccessFunc = IsStore ? EsanUnalignedStore[Idx] : EsanUnalignedLoad[Idx];
700 IRB.CreateCall(OnAccessFunc,
701 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
702 }
703 return true;
704 }
705
706 // It's simplest to replace the memset/memmove/memcpy intrinsics with
707 // calls that the runtime library intercepts.
708 // Our pass is late enough that calls should not turn back into intrinsics.
instrumentMemIntrinsic(MemIntrinsic * MI)709 bool EfficiencySanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
710 IRBuilder<> IRB(MI);
711 bool Res = false;
712 if (isa<MemSetInst>(MI)) {
713 IRB.CreateCall(
714 MemsetFn,
715 {IRB.CreatePointerCast(MI->getArgOperand(0), IRB.getInt8PtrTy()),
716 IRB.CreateIntCast(MI->getArgOperand(1), IRB.getInt32Ty(), false),
717 IRB.CreateIntCast(MI->getArgOperand(2), IntptrTy, false)});
718 MI->eraseFromParent();
719 Res = true;
720 } else if (isa<MemTransferInst>(MI)) {
721 IRB.CreateCall(
722 isa<MemCpyInst>(MI) ? MemcpyFn : MemmoveFn,
723 {IRB.CreatePointerCast(MI->getArgOperand(0), IRB.getInt8PtrTy()),
724 IRB.CreatePointerCast(MI->getArgOperand(1), IRB.getInt8PtrTy()),
725 IRB.CreateIntCast(MI->getArgOperand(2), IntptrTy, false)});
726 MI->eraseFromParent();
727 Res = true;
728 } else
729 llvm_unreachable("Unsupported mem intrinsic type");
730 return Res;
731 }
732
instrumentGetElementPtr(Instruction * I,Module & M)733 bool EfficiencySanitizer::instrumentGetElementPtr(Instruction *I, Module &M) {
734 GetElementPtrInst *GepInst = dyn_cast<GetElementPtrInst>(I);
735 bool Res = false;
736 if (GepInst == nullptr || GepInst->getNumIndices() == 1) {
737 ++NumIgnoredGEPs;
738 return false;
739 }
740 Type *SourceTy = GepInst->getSourceElementType();
741 StructType *StructTy;
742 ConstantInt *Idx;
743 // Check if GEP calculates address from a struct array.
744 if (isa<StructType>(SourceTy)) {
745 StructTy = cast<StructType>(SourceTy);
746 Idx = dyn_cast<ConstantInt>(GepInst->getOperand(1));
747 if ((Idx == nullptr || Idx->getSExtValue() != 0) &&
748 !shouldIgnoreStructType(StructTy) && StructTyMap.count(StructTy) != 0)
749 Res |= insertCounterUpdate(I, StructTy, getArrayCounterIdx(StructTy));
750 }
751 // Iterate all (except the first and the last) idx within each GEP instruction
752 // for possible nested struct field address calculation.
753 for (unsigned i = 1; i < GepInst->getNumIndices(); ++i) {
754 SmallVector<Value *, 8> IdxVec(GepInst->idx_begin(),
755 GepInst->idx_begin() + i);
756 Type *Ty = GetElementPtrInst::getIndexedType(SourceTy, IdxVec);
757 unsigned CounterIdx = 0;
758 if (isa<ArrayType>(Ty)) {
759 ArrayType *ArrayTy = cast<ArrayType>(Ty);
760 StructTy = dyn_cast<StructType>(ArrayTy->getElementType());
761 if (shouldIgnoreStructType(StructTy) || StructTyMap.count(StructTy) == 0)
762 continue;
763 // The last counter for struct array access.
764 CounterIdx = getArrayCounterIdx(StructTy);
765 } else if (isa<StructType>(Ty)) {
766 StructTy = cast<StructType>(Ty);
767 if (shouldIgnoreStructType(StructTy) || StructTyMap.count(StructTy) == 0)
768 continue;
769 // Get the StructTy's subfield index.
770 Idx = cast<ConstantInt>(GepInst->getOperand(i+1));
771 assert(Idx->getSExtValue() >= 0 &&
772 Idx->getSExtValue() < StructTy->getNumElements());
773 CounterIdx = getFieldCounterIdx(StructTy) + Idx->getSExtValue();
774 }
775 Res |= insertCounterUpdate(I, StructTy, CounterIdx);
776 }
777 if (Res)
778 ++NumInstrumentedGEPs;
779 else
780 ++NumIgnoredGEPs;
781 return Res;
782 }
783
insertCounterUpdate(Instruction * I,StructType * StructTy,unsigned CounterIdx)784 bool EfficiencySanitizer::insertCounterUpdate(Instruction *I,
785 StructType *StructTy,
786 unsigned CounterIdx) {
787 GlobalVariable *CounterArray = StructTyMap[StructTy];
788 if (CounterArray == nullptr)
789 return false;
790 IRBuilder<> IRB(I);
791 Constant *Indices[2];
792 // Xref http://llvm.org/docs/LangRef.html#i-getelementptr and
793 // http://llvm.org/docs/GetElementPtr.html.
794 // The first index of the GEP instruction steps through the first operand,
795 // i.e., the array itself.
796 Indices[0] = ConstantInt::get(IRB.getInt32Ty(), 0);
797 // The second index is the index within the array.
798 Indices[1] = ConstantInt::get(IRB.getInt32Ty(), CounterIdx);
799 Constant *Counter =
800 ConstantExpr::getGetElementPtr(
801 ArrayType::get(IRB.getInt64Ty(), getStructCounterSize(StructTy)),
802 CounterArray, Indices);
803 Value *Load = IRB.CreateLoad(Counter);
804 IRB.CreateStore(IRB.CreateAdd(Load, ConstantInt::get(IRB.getInt64Ty(), 1)),
805 Counter);
806 return true;
807 }
808
getMemoryAccessFuncIndex(Value * Addr,const DataLayout & DL)809 int EfficiencySanitizer::getMemoryAccessFuncIndex(Value *Addr,
810 const DataLayout &DL) {
811 Type *OrigPtrTy = Addr->getType();
812 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
813 assert(OrigTy->isSized());
814 // The size is always a multiple of 8.
815 uint32_t TypeSizeBytes = DL.getTypeStoreSizeInBits(OrigTy) / 8;
816 if (TypeSizeBytes != 1 && TypeSizeBytes != 2 && TypeSizeBytes != 4 &&
817 TypeSizeBytes != 8 && TypeSizeBytes != 16) {
818 // Irregular sizes do not have per-size call targets.
819 NumAccessesWithIrregularSize++;
820 return -1;
821 }
822 size_t Idx = countTrailingZeros(TypeSizeBytes);
823 assert(Idx < NumberOfAccessSizes);
824 return Idx;
825 }
826
instrumentFastpath(Instruction * I,const DataLayout & DL,bool IsStore,Value * Addr,unsigned Alignment)827 bool EfficiencySanitizer::instrumentFastpath(Instruction *I,
828 const DataLayout &DL, bool IsStore,
829 Value *Addr, unsigned Alignment) {
830 if (Options.ToolType == EfficiencySanitizerOptions::ESAN_CacheFrag) {
831 return instrumentFastpathCacheFrag(I, DL, Addr, Alignment);
832 } else if (Options.ToolType == EfficiencySanitizerOptions::ESAN_WorkingSet) {
833 return instrumentFastpathWorkingSet(I, DL, Addr, Alignment);
834 }
835 return false;
836 }
837
instrumentFastpathCacheFrag(Instruction * I,const DataLayout & DL,Value * Addr,unsigned Alignment)838 bool EfficiencySanitizer::instrumentFastpathCacheFrag(Instruction *I,
839 const DataLayout &DL,
840 Value *Addr,
841 unsigned Alignment) {
842 // Do nothing.
843 return true; // Return true to avoid slowpath instrumentation.
844 }
845
instrumentFastpathWorkingSet(Instruction * I,const DataLayout & DL,Value * Addr,unsigned Alignment)846 bool EfficiencySanitizer::instrumentFastpathWorkingSet(
847 Instruction *I, const DataLayout &DL, Value *Addr, unsigned Alignment) {
848 assert(ShadowScale[Options.ToolType] == 6); // The code below assumes this
849 IRBuilder<> IRB(I);
850 Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
851 const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
852 // Bail to the slowpath if the access might touch multiple cache lines.
853 // An access aligned to its size is guaranteed to be intra-cache-line.
854 // getMemoryAccessFuncIndex has already ruled out a size larger than 16
855 // and thus larger than a cache line for platforms this tool targets
856 // (and our shadow memory setup assumes 64-byte cache lines).
857 assert(TypeSize <= 128);
858 if (!(TypeSize == 8 ||
859 (Alignment % (TypeSize / 8)) == 0)) {
860 if (ClAssumeIntraCacheLine)
861 ++NumAssumedIntraCacheLine;
862 else
863 return false;
864 }
865
866 // We inline instrumentation to set the corresponding shadow bits for
867 // each cache line touched by the application. Here we handle a single
868 // load or store where we've already ruled out the possibility that it
869 // might touch more than one cache line and thus we simply update the
870 // shadow memory for a single cache line.
871 // Our shadow memory model is fine with races when manipulating shadow values.
872 // We generate the following code:
873 //
874 // const char BitMask = 0x81;
875 // char *ShadowAddr = appToShadow(AppAddr);
876 // if ((*ShadowAddr & BitMask) != BitMask)
877 // *ShadowAddr |= Bitmask;
878 //
879 Value *AddrPtr = IRB.CreatePointerCast(Addr, IntptrTy);
880 Value *ShadowPtr = appToShadow(AddrPtr, IRB);
881 Type *ShadowTy = IntegerType::get(*Ctx, 8U);
882 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
883 // The bottom bit is used for the current sampling period's working set.
884 // The top bit is used for the total working set. We set both on each
885 // memory access, if they are not already set.
886 Value *ValueMask = ConstantInt::get(ShadowTy, 0x81); // 10000001B
887
888 Value *OldValue = IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
889 // The AND and CMP will be turned into a TEST instruction by the compiler.
890 Value *Cmp = IRB.CreateICmpNE(IRB.CreateAnd(OldValue, ValueMask), ValueMask);
891 TerminatorInst *CmpTerm = SplitBlockAndInsertIfThen(Cmp, I, false);
892 // FIXME: do I need to call SetCurrentDebugLocation?
893 IRB.SetInsertPoint(CmpTerm);
894 // We use OR to set the shadow bits to avoid corrupting the middle 6 bits,
895 // which are used by the runtime library.
896 Value *NewVal = IRB.CreateOr(OldValue, ValueMask);
897 IRB.CreateStore(NewVal, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
898 IRB.SetInsertPoint(I);
899
900 return true;
901 }
902