• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ElementwiseToLinalg.cpp - conversion of elementwise to linalg ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Dialect/Linalg/Passes.h"
10 
11 #include "PassDetail.h"
12 #include "mlir/Dialect/Linalg/IR/LinalgOps.h"
13 #include "mlir/Dialect/StandardOps/IR/Ops.h"
14 #include "mlir/Transforms/DialectConversion.h"
15 
16 using namespace mlir;
17 
isElementwiseMappableOpOnRankedTensors(Operation * op)18 static bool isElementwiseMappableOpOnRankedTensors(Operation *op) {
19   if (!op->hasTrait<OpTrait::ElementwiseMappable>())
20     return false;
21 
22   // TODO: The conversion pattern can be made to work for `any_of` here, but
23   // it's more complex as it requires tracking which operands are scalars.
24   return llvm::all_of(op->getOperandTypes(),
25                       [](Type type) { return type.isa<RankedTensorType>(); });
26 }
27 
28 namespace {
29 struct ConvertAnyElementwiseMappableOpOnRankedTensors : public RewritePattern {
ConvertAnyElementwiseMappableOpOnRankedTensors__anon075008450211::ConvertAnyElementwiseMappableOpOnRankedTensors30   ConvertAnyElementwiseMappableOpOnRankedTensors()
31       : RewritePattern(/*benefit=*/1, MatchAnyOpTypeTag()) {}
matchAndRewrite__anon075008450211::ConvertAnyElementwiseMappableOpOnRankedTensors32   LogicalResult matchAndRewrite(Operation *op,
33                                 PatternRewriter &rewriter) const final {
34     if (!isElementwiseMappableOpOnRankedTensors(op))
35       return rewriter.notifyMatchFailure(
36           op, "requires elementwise op on ranked tensors");
37 
38     auto rank = op->getResult(0).getType().cast<RankedTensorType>().getRank();
39     SmallVector<AffineMap, 3> indexingMaps(
40         op->getNumResults() + op->getNumOperands(),
41         rewriter.getMultiDimIdentityMap(rank));
42     SmallVector<StringRef, 6> iteratorTypes(rank,
43                                             getParallelIteratorTypeName());
44     rewriter.replaceOpWithNewOp<linalg::GenericOp>(
45         op, /*resultTensorTypes=*/op->getResultTypes(),
46         /*inputs=*/op->getOperands(),
47         /*outputBuffers=*/ValueRange(),
48         /*initTensors=*/ValueRange(),
49         /*indexingMaps=*/indexingMaps,
50         /*iteratorTypes=*/iteratorTypes,
51         /*bodyBuilder=*/
52         [&](OpBuilder &builder, Location loc, ValueRange regionArgs) {
53           OperationState state(loc, op->getName());
54           state.addAttributes(op->getAttrs());
55           state.addOperands(regionArgs);
56           auto resultTypes = llvm::to_vector<6>(
57               llvm::map_range(op->getResultTypes(), [](Type type) {
58                 return type.cast<TensorType>().getElementType();
59               }));
60           state.addTypes(resultTypes);
61           auto *scalarOp = builder.createOperation(state);
62           builder.create<linalg::YieldOp>(loc, scalarOp->getResults());
63         });
64     return success();
65   }
66 };
67 } // namespace
68 
populateElementwiseToLinalgConversionPatterns(OwningRewritePatternList & patterns,MLIRContext *)69 void mlir::populateElementwiseToLinalgConversionPatterns(
70     OwningRewritePatternList &patterns, MLIRContext *) {
71   patterns.insert<ConvertAnyElementwiseMappableOpOnRankedTensors>();
72 }
73 
74 namespace {
75 class ConvertElementwiseToLinalgPass
76     : public ConvertElementwiseToLinalgBase<ConvertElementwiseToLinalgPass> {
77 
runOnFunction()78   void runOnFunction() final {
79     auto func = getOperation();
80     auto *context = &getContext();
81     ConversionTarget target(*context);
82     OwningRewritePatternList patterns;
83 
84     populateElementwiseToLinalgConversionPatterns(patterns, context);
85     target.markUnknownOpDynamicallyLegal([](Operation *op) {
86       return !isElementwiseMappableOpOnRankedTensors(op);
87     });
88 
89     if (failed(applyPartialConversion(func, target, std::move(patterns))))
90       signalPassFailure();
91   }
92 };
93 } // namespace
94 
95 std::unique_ptr<OperationPass<FuncOp>>
createConvertElementwiseToLinalgPass()96 mlir::createConvertElementwiseToLinalgPass() {
97   return std::make_unique<ConvertElementwiseToLinalgPass>();
98 }
99