1 //===--- AArch64CallLowering.cpp - Call lowering --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the lowering of LLVM calls to machine code calls for
11 /// GlobalISel.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "AArch64CallLowering.h"
16 #include "AArch64ISelLowering.h"
17 #include "AArch64MachineFunctionInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24 #include "llvm/CodeGen/GlobalISel/Utils.h"
25 #include "llvm/CodeGen/LowLevelType.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/CodeGen/ValueTypes.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/MachineValueType.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46
47 #define DEBUG_TYPE "aarch64-call-lowering"
48
49 using namespace llvm;
50
AArch64CallLowering(const AArch64TargetLowering & TLI)51 AArch64CallLowering::AArch64CallLowering(const AArch64TargetLowering &TLI)
52 : CallLowering(&TLI) {}
53
54 namespace {
55 struct IncomingArgHandler : public CallLowering::IncomingValueHandler {
IncomingArgHandler__anon6c94d2a40111::IncomingArgHandler56 IncomingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
57 CCAssignFn *AssignFn)
58 : IncomingValueHandler(MIRBuilder, MRI, AssignFn), StackUsed(0) {}
59
getStackAddress__anon6c94d2a40111::IncomingArgHandler60 Register getStackAddress(uint64_t Size, int64_t Offset,
61 MachinePointerInfo &MPO) override {
62 auto &MFI = MIRBuilder.getMF().getFrameInfo();
63 int FI = MFI.CreateFixedObject(Size, Offset, true);
64 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
65 auto AddrReg = MIRBuilder.buildFrameIndex(LLT::pointer(0, 64), FI);
66 StackUsed = std::max(StackUsed, Size + Offset);
67 return AddrReg.getReg(0);
68 }
69
assignValueToReg__anon6c94d2a40111::IncomingArgHandler70 void assignValueToReg(Register ValVReg, Register PhysReg,
71 CCValAssign &VA) override {
72 markPhysRegUsed(PhysReg);
73 switch (VA.getLocInfo()) {
74 default:
75 MIRBuilder.buildCopy(ValVReg, PhysReg);
76 break;
77 case CCValAssign::LocInfo::SExt:
78 case CCValAssign::LocInfo::ZExt:
79 case CCValAssign::LocInfo::AExt: {
80 auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
81 MIRBuilder.buildTrunc(ValVReg, Copy);
82 break;
83 }
84 }
85 }
86
assignValueToAddress__anon6c94d2a40111::IncomingArgHandler87 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
88 MachinePointerInfo &MPO, CCValAssign &VA) override {
89 MachineFunction &MF = MIRBuilder.getMF();
90
91 // The reported memory location may be wider than the value.
92 const LLT RegTy = MRI.getType(ValVReg);
93 MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);
94
95 auto MMO = MF.getMachineMemOperand(
96 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
97 inferAlignFromPtrInfo(MF, MPO));
98 MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
99 }
100
101 /// How the physical register gets marked varies between formal
102 /// parameters (it's a basic-block live-in), and a call instruction
103 /// (it's an implicit-def of the BL).
104 virtual void markPhysRegUsed(MCRegister PhysReg) = 0;
105
106 uint64_t StackUsed;
107 };
108
109 struct FormalArgHandler : public IncomingArgHandler {
FormalArgHandler__anon6c94d2a40111::FormalArgHandler110 FormalArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
111 CCAssignFn *AssignFn)
112 : IncomingArgHandler(MIRBuilder, MRI, AssignFn) {}
113
markPhysRegUsed__anon6c94d2a40111::FormalArgHandler114 void markPhysRegUsed(MCRegister PhysReg) override {
115 MIRBuilder.getMRI()->addLiveIn(PhysReg);
116 MIRBuilder.getMBB().addLiveIn(PhysReg);
117 }
118 };
119
120 struct CallReturnHandler : public IncomingArgHandler {
CallReturnHandler__anon6c94d2a40111::CallReturnHandler121 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
122 MachineInstrBuilder MIB, CCAssignFn *AssignFn)
123 : IncomingArgHandler(MIRBuilder, MRI, AssignFn), MIB(MIB) {}
124
markPhysRegUsed__anon6c94d2a40111::CallReturnHandler125 void markPhysRegUsed(MCRegister PhysReg) override {
126 MIB.addDef(PhysReg, RegState::Implicit);
127 }
128
129 MachineInstrBuilder MIB;
130 };
131
132 struct OutgoingArgHandler : public CallLowering::OutgoingValueHandler {
OutgoingArgHandler__anon6c94d2a40111::OutgoingArgHandler133 OutgoingArgHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
134 MachineInstrBuilder MIB, CCAssignFn *AssignFn,
135 CCAssignFn *AssignFnVarArg, bool IsTailCall = false,
136 int FPDiff = 0)
137 : OutgoingValueHandler(MIRBuilder, MRI, AssignFn), MIB(MIB),
138 AssignFnVarArg(AssignFnVarArg), IsTailCall(IsTailCall), FPDiff(FPDiff),
139 StackSize(0), SPReg(0) {}
140
getStackAddress__anon6c94d2a40111::OutgoingArgHandler141 Register getStackAddress(uint64_t Size, int64_t Offset,
142 MachinePointerInfo &MPO) override {
143 MachineFunction &MF = MIRBuilder.getMF();
144 LLT p0 = LLT::pointer(0, 64);
145 LLT s64 = LLT::scalar(64);
146
147 if (IsTailCall) {
148 Offset += FPDiff;
149 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
150 auto FIReg = MIRBuilder.buildFrameIndex(p0, FI);
151 MPO = MachinePointerInfo::getFixedStack(MF, FI);
152 return FIReg.getReg(0);
153 }
154
155 if (!SPReg)
156 SPReg = MIRBuilder.buildCopy(p0, Register(AArch64::SP)).getReg(0);
157
158 auto OffsetReg = MIRBuilder.buildConstant(s64, Offset);
159
160 auto AddrReg = MIRBuilder.buildPtrAdd(p0, SPReg, OffsetReg);
161
162 MPO = MachinePointerInfo::getStack(MF, Offset);
163 return AddrReg.getReg(0);
164 }
165
assignValueToReg__anon6c94d2a40111::OutgoingArgHandler166 void assignValueToReg(Register ValVReg, Register PhysReg,
167 CCValAssign &VA) override {
168 MIB.addUse(PhysReg, RegState::Implicit);
169 Register ExtReg = extendRegister(ValVReg, VA);
170 MIRBuilder.buildCopy(PhysReg, ExtReg);
171 }
172
assignValueToAddress__anon6c94d2a40111::OutgoingArgHandler173 void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
174 MachinePointerInfo &MPO, CCValAssign &VA) override {
175 MachineFunction &MF = MIRBuilder.getMF();
176 auto MMO = MF.getMachineMemOperand(MPO, MachineMemOperand::MOStore, Size,
177 inferAlignFromPtrInfo(MF, MPO));
178 MIRBuilder.buildStore(ValVReg, Addr, *MMO);
179 }
180
assignValueToAddress__anon6c94d2a40111::OutgoingArgHandler181 void assignValueToAddress(const CallLowering::ArgInfo &Arg, Register Addr,
182 uint64_t Size, MachinePointerInfo &MPO,
183 CCValAssign &VA) override {
184 unsigned MaxSize = Size * 8;
185 // For varargs, we always want to extend them to 8 bytes, in which case
186 // we disable setting a max.
187 if (!Arg.IsFixed)
188 MaxSize = 0;
189
190 assert(Arg.Regs.size() == 1);
191
192 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
193 ? extendRegister(Arg.Regs[0], VA, MaxSize)
194 : Arg.Regs[0];
195
196 // If we extended we might need to adjust the MMO's Size.
197 const LLT RegTy = MRI.getType(ValVReg);
198 if (RegTy.getSizeInBytes() > Size)
199 Size = RegTy.getSizeInBytes();
200
201 assignValueToAddress(ValVReg, Addr, Size, MPO, VA);
202 }
203
assignArg__anon6c94d2a40111::OutgoingArgHandler204 bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
205 CCValAssign::LocInfo LocInfo,
206 const CallLowering::ArgInfo &Info,
207 ISD::ArgFlagsTy Flags,
208 CCState &State) override {
209 bool Res;
210 if (Info.IsFixed)
211 Res = AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
212 else
213 Res = AssignFnVarArg(ValNo, ValVT, LocVT, LocInfo, Flags, State);
214
215 StackSize = State.getNextStackOffset();
216 return Res;
217 }
218
219 MachineInstrBuilder MIB;
220 CCAssignFn *AssignFnVarArg;
221 bool IsTailCall;
222
223 /// For tail calls, the byte offset of the call's argument area from the
224 /// callee's. Unused elsewhere.
225 int FPDiff;
226 uint64_t StackSize;
227
228 // Cache the SP register vreg if we need it more than once in this call site.
229 Register SPReg;
230 };
231 } // namespace
232
doesCalleeRestoreStack(CallingConv::ID CallConv,bool TailCallOpt)233 static bool doesCalleeRestoreStack(CallingConv::ID CallConv, bool TailCallOpt) {
234 return CallConv == CallingConv::Fast && TailCallOpt;
235 }
236
splitToValueTypes(const ArgInfo & OrigArg,SmallVectorImpl<ArgInfo> & SplitArgs,const DataLayout & DL,MachineRegisterInfo & MRI,CallingConv::ID CallConv) const237 void AArch64CallLowering::splitToValueTypes(
238 const ArgInfo &OrigArg, SmallVectorImpl<ArgInfo> &SplitArgs,
239 const DataLayout &DL, MachineRegisterInfo &MRI, CallingConv::ID CallConv) const {
240 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
241 LLVMContext &Ctx = OrigArg.Ty->getContext();
242
243 SmallVector<EVT, 4> SplitVTs;
244 SmallVector<uint64_t, 4> Offsets;
245 ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs, &Offsets, 0);
246
247 if (SplitVTs.size() == 0)
248 return;
249
250 if (SplitVTs.size() == 1) {
251 // No splitting to do, but we want to replace the original type (e.g. [1 x
252 // double] -> double).
253 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
254 OrigArg.Flags[0], OrigArg.IsFixed);
255 return;
256 }
257
258 // Create one ArgInfo for each virtual register in the original ArgInfo.
259 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
260
261 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
262 OrigArg.Ty, CallConv, false);
263 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
264 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
265 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.Flags[0],
266 OrigArg.IsFixed);
267 if (NeedsRegBlock)
268 SplitArgs.back().Flags[0].setInConsecutiveRegs();
269 }
270
271 SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
272 }
273
lowerReturn(MachineIRBuilder & MIRBuilder,const Value * Val,ArrayRef<Register> VRegs,Register SwiftErrorVReg) const274 bool AArch64CallLowering::lowerReturn(MachineIRBuilder &MIRBuilder,
275 const Value *Val,
276 ArrayRef<Register> VRegs,
277 Register SwiftErrorVReg) const {
278 auto MIB = MIRBuilder.buildInstrNoInsert(AArch64::RET_ReallyLR);
279 assert(((Val && !VRegs.empty()) || (!Val && VRegs.empty())) &&
280 "Return value without a vreg");
281
282 bool Success = true;
283 if (!VRegs.empty()) {
284 MachineFunction &MF = MIRBuilder.getMF();
285 const Function &F = MF.getFunction();
286
287 MachineRegisterInfo &MRI = MF.getRegInfo();
288 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
289 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(F.getCallingConv());
290 auto &DL = F.getParent()->getDataLayout();
291 LLVMContext &Ctx = Val->getType()->getContext();
292
293 SmallVector<EVT, 4> SplitEVTs;
294 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
295 assert(VRegs.size() == SplitEVTs.size() &&
296 "For each split Type there should be exactly one VReg.");
297
298 SmallVector<ArgInfo, 8> SplitArgs;
299 CallingConv::ID CC = F.getCallingConv();
300
301 for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
302 if (TLI.getNumRegistersForCallingConv(Ctx, CC, SplitEVTs[i]) > 1) {
303 LLVM_DEBUG(dbgs() << "Can't handle extended arg types which need split");
304 return false;
305 }
306
307 Register CurVReg = VRegs[i];
308 ArgInfo CurArgInfo = ArgInfo{CurVReg, SplitEVTs[i].getTypeForEVT(Ctx)};
309 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
310
311 // i1 is a special case because SDAG i1 true is naturally zero extended
312 // when widened using ANYEXT. We need to do it explicitly here.
313 if (MRI.getType(CurVReg).getSizeInBits() == 1) {
314 CurVReg = MIRBuilder.buildZExt(LLT::scalar(8), CurVReg).getReg(0);
315 } else {
316 // Some types will need extending as specified by the CC.
317 MVT NewVT = TLI.getRegisterTypeForCallingConv(Ctx, CC, SplitEVTs[i]);
318 if (EVT(NewVT) != SplitEVTs[i]) {
319 unsigned ExtendOp = TargetOpcode::G_ANYEXT;
320 if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
321 Attribute::SExt))
322 ExtendOp = TargetOpcode::G_SEXT;
323 else if (F.getAttributes().hasAttribute(AttributeList::ReturnIndex,
324 Attribute::ZExt))
325 ExtendOp = TargetOpcode::G_ZEXT;
326
327 LLT NewLLT(NewVT);
328 LLT OldLLT(MVT::getVT(CurArgInfo.Ty));
329 CurArgInfo.Ty = EVT(NewVT).getTypeForEVT(Ctx);
330 // Instead of an extend, we might have a vector type which needs
331 // padding with more elements, e.g. <2 x half> -> <4 x half>.
332 if (NewVT.isVector()) {
333 if (OldLLT.isVector()) {
334 if (NewLLT.getNumElements() > OldLLT.getNumElements()) {
335 // We don't handle VA types which are not exactly twice the
336 // size, but can easily be done in future.
337 if (NewLLT.getNumElements() != OldLLT.getNumElements() * 2) {
338 LLVM_DEBUG(dbgs() << "Outgoing vector ret has too many elts");
339 return false;
340 }
341 auto Undef = MIRBuilder.buildUndef({OldLLT});
342 CurVReg =
343 MIRBuilder.buildMerge({NewLLT}, {CurVReg, Undef}).getReg(0);
344 } else {
345 // Just do a vector extend.
346 CurVReg = MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg})
347 .getReg(0);
348 }
349 } else if (NewLLT.getNumElements() == 2) {
350 // We need to pad a <1 x S> type to <2 x S>. Since we don't have
351 // <1 x S> vector types in GISel we use a build_vector instead
352 // of a vector merge/concat.
353 auto Undef = MIRBuilder.buildUndef({OldLLT});
354 CurVReg =
355 MIRBuilder
356 .buildBuildVector({NewLLT}, {CurVReg, Undef.getReg(0)})
357 .getReg(0);
358 } else {
359 LLVM_DEBUG(dbgs() << "Could not handle ret ty");
360 return false;
361 }
362 } else {
363 // A scalar extend.
364 CurVReg =
365 MIRBuilder.buildInstr(ExtendOp, {NewLLT}, {CurVReg}).getReg(0);
366 }
367 }
368 }
369 if (CurVReg != CurArgInfo.Regs[0]) {
370 CurArgInfo.Regs[0] = CurVReg;
371 // Reset the arg flags after modifying CurVReg.
372 setArgFlags(CurArgInfo, AttributeList::ReturnIndex, DL, F);
373 }
374 splitToValueTypes(CurArgInfo, SplitArgs, DL, MRI, CC);
375 }
376
377 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFn, AssignFn);
378 Success = handleAssignments(MIRBuilder, SplitArgs, Handler);
379 }
380
381 if (SwiftErrorVReg) {
382 MIB.addUse(AArch64::X21, RegState::Implicit);
383 MIRBuilder.buildCopy(AArch64::X21, SwiftErrorVReg);
384 }
385
386 MIRBuilder.insertInstr(MIB);
387 return Success;
388 }
389
390 /// Helper function to compute forwarded registers for musttail calls. Computes
391 /// the forwarded registers, sets MBB liveness, and emits COPY instructions that
392 /// can be used to save + restore registers later.
handleMustTailForwardedRegisters(MachineIRBuilder & MIRBuilder,CCAssignFn * AssignFn)393 static void handleMustTailForwardedRegisters(MachineIRBuilder &MIRBuilder,
394 CCAssignFn *AssignFn) {
395 MachineBasicBlock &MBB = MIRBuilder.getMBB();
396 MachineFunction &MF = MIRBuilder.getMF();
397 MachineFrameInfo &MFI = MF.getFrameInfo();
398
399 if (!MFI.hasMustTailInVarArgFunc())
400 return;
401
402 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
403 const Function &F = MF.getFunction();
404 assert(F.isVarArg() && "Expected F to be vararg?");
405
406 // Compute the set of forwarded registers. The rest are scratch.
407 SmallVector<CCValAssign, 16> ArgLocs;
408 CCState CCInfo(F.getCallingConv(), /*IsVarArg=*/true, MF, ArgLocs,
409 F.getContext());
410 SmallVector<MVT, 2> RegParmTypes;
411 RegParmTypes.push_back(MVT::i64);
412 RegParmTypes.push_back(MVT::f128);
413
414 // Later on, we can use this vector to restore the registers if necessary.
415 SmallVectorImpl<ForwardedRegister> &Forwards =
416 FuncInfo->getForwardedMustTailRegParms();
417 CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, AssignFn);
418
419 // Conservatively forward X8, since it might be used for an aggregate
420 // return.
421 if (!CCInfo.isAllocated(AArch64::X8)) {
422 Register X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass);
423 Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64));
424 }
425
426 // Add the forwards to the MachineBasicBlock and MachineFunction.
427 for (const auto &F : Forwards) {
428 MBB.addLiveIn(F.PReg);
429 MIRBuilder.buildCopy(Register(F.VReg), Register(F.PReg));
430 }
431 }
432
fallBackToDAGISel(const Function & F) const433 bool AArch64CallLowering::fallBackToDAGISel(const Function &F) const {
434 if (isa<ScalableVectorType>(F.getReturnType()))
435 return true;
436 return llvm::any_of(F.args(), [](const Argument &A) {
437 return isa<ScalableVectorType>(A.getType());
438 });
439 }
440
lowerFormalArguments(MachineIRBuilder & MIRBuilder,const Function & F,ArrayRef<ArrayRef<Register>> VRegs) const441 bool AArch64CallLowering::lowerFormalArguments(
442 MachineIRBuilder &MIRBuilder, const Function &F,
443 ArrayRef<ArrayRef<Register>> VRegs) const {
444 MachineFunction &MF = MIRBuilder.getMF();
445 MachineBasicBlock &MBB = MIRBuilder.getMBB();
446 MachineRegisterInfo &MRI = MF.getRegInfo();
447 auto &DL = F.getParent()->getDataLayout();
448
449 SmallVector<ArgInfo, 8> SplitArgs;
450 unsigned i = 0;
451 for (auto &Arg : F.args()) {
452 if (DL.getTypeStoreSize(Arg.getType()).isZero())
453 continue;
454
455 ArgInfo OrigArg{VRegs[i], Arg.getType()};
456 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, F);
457
458 splitToValueTypes(OrigArg, SplitArgs, DL, MRI, F.getCallingConv());
459 ++i;
460 }
461
462 if (!MBB.empty())
463 MIRBuilder.setInstr(*MBB.begin());
464
465 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
466 CCAssignFn *AssignFn =
467 TLI.CCAssignFnForCall(F.getCallingConv(), /*IsVarArg=*/false);
468
469 FormalArgHandler Handler(MIRBuilder, MRI, AssignFn);
470 if (!handleAssignments(MIRBuilder, SplitArgs, Handler))
471 return false;
472
473 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
474 uint64_t StackOffset = Handler.StackUsed;
475 if (F.isVarArg()) {
476 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
477 if (!Subtarget.isTargetDarwin()) {
478 // FIXME: we need to reimplement saveVarArgsRegisters from
479 // AArch64ISelLowering.
480 return false;
481 }
482
483 // We currently pass all varargs at 8-byte alignment, or 4 in ILP32.
484 StackOffset = alignTo(Handler.StackUsed, Subtarget.isTargetILP32() ? 4 : 8);
485
486 auto &MFI = MIRBuilder.getMF().getFrameInfo();
487 FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true));
488 }
489
490 if (doesCalleeRestoreStack(F.getCallingConv(),
491 MF.getTarget().Options.GuaranteedTailCallOpt)) {
492 // We have a non-standard ABI, so why not make full use of the stack that
493 // we're going to pop? It must be aligned to 16 B in any case.
494 StackOffset = alignTo(StackOffset, 16);
495
496 // If we're expected to restore the stack (e.g. fastcc), then we'll be
497 // adding a multiple of 16.
498 FuncInfo->setArgumentStackToRestore(StackOffset);
499
500 // Our own callers will guarantee that the space is free by giving an
501 // aligned value to CALLSEQ_START.
502 }
503
504 // When we tail call, we need to check if the callee's arguments
505 // will fit on the caller's stack. So, whenever we lower formal arguments,
506 // we should keep track of this information, since we might lower a tail call
507 // in this function later.
508 FuncInfo->setBytesInStackArgArea(StackOffset);
509
510 auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
511 if (Subtarget.hasCustomCallingConv())
512 Subtarget.getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF);
513
514 handleMustTailForwardedRegisters(MIRBuilder, AssignFn);
515
516 // Move back to the end of the basic block.
517 MIRBuilder.setMBB(MBB);
518
519 return true;
520 }
521
522 /// Return true if the calling convention is one that we can guarantee TCO for.
canGuaranteeTCO(CallingConv::ID CC)523 static bool canGuaranteeTCO(CallingConv::ID CC) {
524 return CC == CallingConv::Fast;
525 }
526
527 /// Return true if we might ever do TCO for calls with this calling convention.
mayTailCallThisCC(CallingConv::ID CC)528 static bool mayTailCallThisCC(CallingConv::ID CC) {
529 switch (CC) {
530 case CallingConv::C:
531 case CallingConv::PreserveMost:
532 case CallingConv::Swift:
533 return true;
534 default:
535 return canGuaranteeTCO(CC);
536 }
537 }
538
539 /// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
540 /// CC.
541 static std::pair<CCAssignFn *, CCAssignFn *>
getAssignFnsForCC(CallingConv::ID CC,const AArch64TargetLowering & TLI)542 getAssignFnsForCC(CallingConv::ID CC, const AArch64TargetLowering &TLI) {
543 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
544 }
545
doCallerAndCalleePassArgsTheSameWay(CallLoweringInfo & Info,MachineFunction & MF,SmallVectorImpl<ArgInfo> & InArgs) const546 bool AArch64CallLowering::doCallerAndCalleePassArgsTheSameWay(
547 CallLoweringInfo &Info, MachineFunction &MF,
548 SmallVectorImpl<ArgInfo> &InArgs) const {
549 const Function &CallerF = MF.getFunction();
550 CallingConv::ID CalleeCC = Info.CallConv;
551 CallingConv::ID CallerCC = CallerF.getCallingConv();
552
553 // If the calling conventions match, then everything must be the same.
554 if (CalleeCC == CallerCC)
555 return true;
556
557 // Check if the caller and callee will handle arguments in the same way.
558 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
559 CCAssignFn *CalleeAssignFnFixed;
560 CCAssignFn *CalleeAssignFnVarArg;
561 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
562 getAssignFnsForCC(CalleeCC, TLI);
563
564 CCAssignFn *CallerAssignFnFixed;
565 CCAssignFn *CallerAssignFnVarArg;
566 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
567 getAssignFnsForCC(CallerCC, TLI);
568
569 if (!resultsCompatible(Info, MF, InArgs, *CalleeAssignFnFixed,
570 *CalleeAssignFnVarArg, *CallerAssignFnFixed,
571 *CallerAssignFnVarArg))
572 return false;
573
574 // Make sure that the caller and callee preserve all of the same registers.
575 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
576 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
577 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
578 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv()) {
579 TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved);
580 TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved);
581 }
582
583 return TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved);
584 }
585
areCalleeOutgoingArgsTailCallable(CallLoweringInfo & Info,MachineFunction & MF,SmallVectorImpl<ArgInfo> & OutArgs) const586 bool AArch64CallLowering::areCalleeOutgoingArgsTailCallable(
587 CallLoweringInfo &Info, MachineFunction &MF,
588 SmallVectorImpl<ArgInfo> &OutArgs) const {
589 // If there are no outgoing arguments, then we are done.
590 if (OutArgs.empty())
591 return true;
592
593 const Function &CallerF = MF.getFunction();
594 CallingConv::ID CalleeCC = Info.CallConv;
595 CallingConv::ID CallerCC = CallerF.getCallingConv();
596 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
597
598 CCAssignFn *AssignFnFixed;
599 CCAssignFn *AssignFnVarArg;
600 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
601
602 // We have outgoing arguments. Make sure that we can tail call with them.
603 SmallVector<CCValAssign, 16> OutLocs;
604 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
605
606 if (!analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg)) {
607 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
608 return false;
609 }
610
611 // Make sure that they can fit on the caller's stack.
612 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
613 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
614 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
615 return false;
616 }
617
618 // Verify that the parameters in callee-saved registers match.
619 // TODO: Port this over to CallLowering as general code once swiftself is
620 // supported.
621 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
622 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
623 MachineRegisterInfo &MRI = MF.getRegInfo();
624
625 for (unsigned i = 0; i < OutLocs.size(); ++i) {
626 auto &ArgLoc = OutLocs[i];
627 // If it's not a register, it's fine.
628 if (!ArgLoc.isRegLoc()) {
629 if (Info.IsVarArg) {
630 // Be conservative and disallow variadic memory operands to match SDAG's
631 // behaviour.
632 // FIXME: If the caller's calling convention is C, then we can
633 // potentially use its argument area. However, for cases like fastcc,
634 // we can't do anything.
635 LLVM_DEBUG(
636 dbgs()
637 << "... Cannot tail call vararg function with stack arguments\n");
638 return false;
639 }
640 continue;
641 }
642
643 Register Reg = ArgLoc.getLocReg();
644
645 // Only look at callee-saved registers.
646 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
647 continue;
648
649 LLVM_DEBUG(
650 dbgs()
651 << "... Call has an argument passed in a callee-saved register.\n");
652
653 // Check if it was copied from.
654 ArgInfo &OutInfo = OutArgs[i];
655
656 if (OutInfo.Regs.size() > 1) {
657 LLVM_DEBUG(
658 dbgs() << "... Cannot handle arguments in multiple registers.\n");
659 return false;
660 }
661
662 // Check if we copy the register, walking through copies from virtual
663 // registers. Note that getDefIgnoringCopies does not ignore copies from
664 // physical registers.
665 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
666 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
667 LLVM_DEBUG(
668 dbgs()
669 << "... Parameter was not copied into a VReg, cannot tail call.\n");
670 return false;
671 }
672
673 // Got a copy. Verify that it's the same as the register we want.
674 Register CopyRHS = RegDef->getOperand(1).getReg();
675 if (CopyRHS != Reg) {
676 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
677 "VReg, cannot tail call.\n");
678 return false;
679 }
680 }
681
682 return true;
683 }
684
isEligibleForTailCallOptimization(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info,SmallVectorImpl<ArgInfo> & InArgs,SmallVectorImpl<ArgInfo> & OutArgs) const685 bool AArch64CallLowering::isEligibleForTailCallOptimization(
686 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
687 SmallVectorImpl<ArgInfo> &InArgs,
688 SmallVectorImpl<ArgInfo> &OutArgs) const {
689
690 // Must pass all target-independent checks in order to tail call optimize.
691 if (!Info.IsTailCall)
692 return false;
693
694 CallingConv::ID CalleeCC = Info.CallConv;
695 MachineFunction &MF = MIRBuilder.getMF();
696 const Function &CallerF = MF.getFunction();
697
698 LLVM_DEBUG(dbgs() << "Attempting to lower call as tail call\n");
699
700 if (Info.SwiftErrorVReg) {
701 // TODO: We should handle this.
702 // Note that this is also handled by the check for no outgoing arguments.
703 // Proactively disabling this though, because the swifterror handling in
704 // lowerCall inserts a COPY *after* the location of the call.
705 LLVM_DEBUG(dbgs() << "... Cannot handle tail calls with swifterror yet.\n");
706 return false;
707 }
708
709 if (!mayTailCallThisCC(CalleeCC)) {
710 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
711 return false;
712 }
713
714 // Byval parameters hand the function a pointer directly into the stack area
715 // we want to reuse during a tail call. Working around this *is* possible (see
716 // X86).
717 //
718 // FIXME: In AArch64ISelLowering, this isn't worked around. Can/should we try
719 // it?
720 //
721 // On Windows, "inreg" attributes signify non-aggregate indirect returns.
722 // In this case, it is necessary to save/restore X0 in the callee. Tail
723 // call opt interferes with this. So we disable tail call opt when the
724 // caller has an argument with "inreg" attribute.
725 //
726 // FIXME: Check whether the callee also has an "inreg" argument.
727 //
728 // When the caller has a swifterror argument, we don't want to tail call
729 // because would have to move into the swifterror register before the
730 // tail call.
731 if (any_of(CallerF.args(), [](const Argument &A) {
732 return A.hasByValAttr() || A.hasInRegAttr() || A.hasSwiftErrorAttr();
733 })) {
734 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval, "
735 "inreg, or swifterror arguments\n");
736 return false;
737 }
738
739 // Externally-defined functions with weak linkage should not be
740 // tail-called on AArch64 when the OS does not support dynamic
741 // pre-emption of symbols, as the AAELF spec requires normal calls
742 // to undefined weak functions to be replaced with a NOP or jump to the
743 // next instruction. The behaviour of branch instructions in this
744 // situation (as used for tail calls) is implementation-defined, so we
745 // cannot rely on the linker replacing the tail call with a return.
746 if (Info.Callee.isGlobal()) {
747 const GlobalValue *GV = Info.Callee.getGlobal();
748 const Triple &TT = MF.getTarget().getTargetTriple();
749 if (GV->hasExternalWeakLinkage() &&
750 (!TT.isOSWindows() || TT.isOSBinFormatELF() ||
751 TT.isOSBinFormatMachO())) {
752 LLVM_DEBUG(dbgs() << "... Cannot tail call externally-defined function "
753 "with weak linkage for this OS.\n");
754 return false;
755 }
756 }
757
758 // If we have -tailcallopt, then we're done.
759 if (MF.getTarget().Options.GuaranteedTailCallOpt)
760 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
761
762 // We don't have -tailcallopt, so we're allowed to change the ABI (sibcall).
763 // Try to find cases where we can do that.
764
765 // I want anyone implementing a new calling convention to think long and hard
766 // about this assert.
767 assert((!Info.IsVarArg || CalleeCC == CallingConv::C) &&
768 "Unexpected variadic calling convention");
769
770 // Verify that the incoming and outgoing arguments from the callee are
771 // safe to tail call.
772 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
773 LLVM_DEBUG(
774 dbgs()
775 << "... Caller and callee have incompatible calling conventions.\n");
776 return false;
777 }
778
779 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
780 return false;
781
782 LLVM_DEBUG(
783 dbgs() << "... Call is eligible for tail call optimization.\n");
784 return true;
785 }
786
getCallOpcode(const MachineFunction & CallerF,bool IsIndirect,bool IsTailCall)787 static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
788 bool IsTailCall) {
789 if (!IsTailCall)
790 return IsIndirect ? getBLRCallOpcode(CallerF) : (unsigned)AArch64::BL;
791
792 if (!IsIndirect)
793 return AArch64::TCRETURNdi;
794
795 // When BTI is enabled, we need to use TCRETURNriBTI to make sure that we use
796 // x16 or x17.
797 if (CallerF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement())
798 return AArch64::TCRETURNriBTI;
799
800 return AArch64::TCRETURNri;
801 }
802
lowerTailCall(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info,SmallVectorImpl<ArgInfo> & OutArgs) const803 bool AArch64CallLowering::lowerTailCall(
804 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
805 SmallVectorImpl<ArgInfo> &OutArgs) const {
806 MachineFunction &MF = MIRBuilder.getMF();
807 const Function &F = MF.getFunction();
808 MachineRegisterInfo &MRI = MF.getRegInfo();
809 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
810 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>();
811
812 // True when we're tail calling, but without -tailcallopt.
813 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
814
815 // TODO: Right now, regbankselect doesn't know how to handle the rtcGPR64
816 // register class. Until we can do that, we should fall back here.
817 if (MF.getInfo<AArch64FunctionInfo>()->branchTargetEnforcement()) {
818 LLVM_DEBUG(
819 dbgs() << "Cannot lower indirect tail calls with BTI enabled yet.\n");
820 return false;
821 }
822
823 // Find out which ABI gets to decide where things go.
824 CallingConv::ID CalleeCC = Info.CallConv;
825 CCAssignFn *AssignFnFixed;
826 CCAssignFn *AssignFnVarArg;
827 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
828
829 MachineInstrBuilder CallSeqStart;
830 if (!IsSibCall)
831 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
832
833 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true);
834 auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
835 MIB.add(Info.Callee);
836
837 // Byte offset for the tail call. When we are sibcalling, this will always
838 // be 0.
839 MIB.addImm(0);
840
841 // Tell the call which registers are clobbered.
842 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
843 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
844 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
845 TRI->UpdateCustomCallPreservedMask(MF, &Mask);
846 MIB.addRegMask(Mask);
847
848 if (TRI->isAnyArgRegReserved(MF))
849 TRI->emitReservedArgRegCallError(MF);
850
851 // FPDiff is the byte offset of the call's argument area from the callee's.
852 // Stores to callee stack arguments will be placed in FixedStackSlots offset
853 // by this amount for a tail call. In a sibling call it must be 0 because the
854 // caller will deallocate the entire stack and the callee still expects its
855 // arguments to begin at SP+0.
856 int FPDiff = 0;
857
858 // This will be 0 for sibcalls, potentially nonzero for tail calls produced
859 // by -tailcallopt. For sibcalls, the memory operands for the call are
860 // already available in the caller's incoming argument space.
861 unsigned NumBytes = 0;
862 if (!IsSibCall) {
863 // We aren't sibcalling, so we need to compute FPDiff. We need to do this
864 // before handling assignments, because FPDiff must be known for memory
865 // arguments.
866 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
867 SmallVector<CCValAssign, 16> OutLocs;
868 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
869 analyzeArgInfo(OutInfo, OutArgs, *AssignFnFixed, *AssignFnVarArg);
870
871 // The callee will pop the argument stack as a tail call. Thus, we must
872 // keep it 16-byte aligned.
873 NumBytes = alignTo(OutInfo.getNextStackOffset(), 16);
874
875 // FPDiff will be negative if this tail call requires more space than we
876 // would automatically have in our incoming argument space. Positive if we
877 // actually shrink the stack.
878 FPDiff = NumReusableBytes - NumBytes;
879
880 // The stack pointer must be 16-byte aligned at all times it's used for a
881 // memory operation, which in practice means at *all* times and in
882 // particular across call boundaries. Therefore our own arguments started at
883 // a 16-byte aligned SP and the delta applied for the tail call should
884 // satisfy the same constraint.
885 assert(FPDiff % 16 == 0 && "unaligned stack on tail call");
886 }
887
888 const auto &Forwards = FuncInfo->getForwardedMustTailRegParms();
889
890 // Do the actual argument marshalling.
891 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
892 AssignFnVarArg, true, FPDiff);
893 if (!handleAssignments(MIRBuilder, OutArgs, Handler))
894 return false;
895
896 if (Info.IsVarArg && Info.IsMustTailCall) {
897 // Now we know what's being passed to the function. Add uses to the call for
898 // the forwarded registers that we *aren't* passing as parameters. This will
899 // preserve the copies we build earlier.
900 for (const auto &F : Forwards) {
901 Register ForwardedReg = F.PReg;
902 // If the register is already passed, or aliases a register which is
903 // already being passed, then skip it.
904 if (any_of(MIB->uses(), [&ForwardedReg, &TRI](const MachineOperand &Use) {
905 if (!Use.isReg())
906 return false;
907 return TRI->regsOverlap(Use.getReg(), ForwardedReg);
908 }))
909 continue;
910
911 // We aren't passing it already, so we should add it to the call.
912 MIRBuilder.buildCopy(ForwardedReg, Register(F.VReg));
913 MIB.addReg(ForwardedReg, RegState::Implicit);
914 }
915 }
916
917 // If we have -tailcallopt, we need to adjust the stack. We'll do the call
918 // sequence start and end here.
919 if (!IsSibCall) {
920 MIB->getOperand(1).setImm(FPDiff);
921 CallSeqStart.addImm(NumBytes).addImm(0);
922 // End the call sequence *before* emitting the call. Normally, we would
923 // tidy the frame up after the call. However, here, we've laid out the
924 // parameters so that when SP is reset, they will be in the correct
925 // location.
926 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP).addImm(NumBytes).addImm(0);
927 }
928
929 // Now we can add the actual call instruction to the correct basic block.
930 MIRBuilder.insertInstr(MIB);
931
932 // If Callee is a reg, since it is used by a target specific instruction,
933 // it must have a register class matching the constraint of that instruction.
934 if (Info.Callee.isReg())
935 MIB->getOperand(0).setReg(constrainOperandRegClass(
936 MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
937 *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
938 0));
939
940 MF.getFrameInfo().setHasTailCall();
941 Info.LoweredTailCall = true;
942 return true;
943 }
944
lowerCall(MachineIRBuilder & MIRBuilder,CallLoweringInfo & Info) const945 bool AArch64CallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
946 CallLoweringInfo &Info) const {
947 MachineFunction &MF = MIRBuilder.getMF();
948 const Function &F = MF.getFunction();
949 MachineRegisterInfo &MRI = MF.getRegInfo();
950 auto &DL = F.getParent()->getDataLayout();
951 const AArch64TargetLowering &TLI = *getTLI<AArch64TargetLowering>();
952
953 SmallVector<ArgInfo, 8> OutArgs;
954 for (auto &OrigArg : Info.OrigArgs) {
955 splitToValueTypes(OrigArg, OutArgs, DL, MRI, Info.CallConv);
956 // AAPCS requires that we zero-extend i1 to 8 bits by the caller.
957 if (OrigArg.Ty->isIntegerTy(1))
958 OutArgs.back().Flags[0].setZExt();
959 }
960
961 SmallVector<ArgInfo, 8> InArgs;
962 if (!Info.OrigRet.Ty->isVoidTy())
963 splitToValueTypes(Info.OrigRet, InArgs, DL, MRI, F.getCallingConv());
964
965 // If we can lower as a tail call, do that instead.
966 bool CanTailCallOpt =
967 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
968
969 // We must emit a tail call if we have musttail.
970 if (Info.IsMustTailCall && !CanTailCallOpt) {
971 // There are types of incoming/outgoing arguments we can't handle yet, so
972 // it doesn't make sense to actually die here like in ISelLowering. Instead,
973 // fall back to SelectionDAG and let it try to handle this.
974 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
975 return false;
976 }
977
978 if (CanTailCallOpt)
979 return lowerTailCall(MIRBuilder, Info, OutArgs);
980
981 // Find out which ABI gets to decide where things go.
982 CCAssignFn *AssignFnFixed;
983 CCAssignFn *AssignFnVarArg;
984 std::tie(AssignFnFixed, AssignFnVarArg) =
985 getAssignFnsForCC(Info.CallConv, TLI);
986
987 MachineInstrBuilder CallSeqStart;
988 CallSeqStart = MIRBuilder.buildInstr(AArch64::ADJCALLSTACKDOWN);
989
990 // Create a temporarily-floating call instruction so we can add the implicit
991 // uses of arg registers.
992 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false);
993
994 auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
995 MIB.add(Info.Callee);
996
997 // Tell the call which registers are clobbered.
998 auto TRI = MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
999 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1000 if (MF.getSubtarget<AArch64Subtarget>().hasCustomCallingConv())
1001 TRI->UpdateCustomCallPreservedMask(MF, &Mask);
1002 MIB.addRegMask(Mask);
1003
1004 if (TRI->isAnyArgRegReserved(MF))
1005 TRI->emitReservedArgRegCallError(MF);
1006
1007 // Do the actual argument marshalling.
1008 OutgoingArgHandler Handler(MIRBuilder, MRI, MIB, AssignFnFixed,
1009 AssignFnVarArg, false);
1010 if (!handleAssignments(MIRBuilder, OutArgs, Handler))
1011 return false;
1012
1013 // Now we can add the actual call instruction to the correct basic block.
1014 MIRBuilder.insertInstr(MIB);
1015
1016 // If Callee is a reg, since it is used by a target specific
1017 // instruction, it must have a register class matching the
1018 // constraint of that instruction.
1019 if (Info.Callee.isReg())
1020 MIB->getOperand(0).setReg(constrainOperandRegClass(
1021 MF, *TRI, MRI, *MF.getSubtarget().getInstrInfo(),
1022 *MF.getSubtarget().getRegBankInfo(), *MIB, MIB->getDesc(), Info.Callee,
1023 0));
1024
1025 // Finally we can copy the returned value back into its virtual-register. In
1026 // symmetry with the arguments, the physical register must be an
1027 // implicit-define of the call instruction.
1028 if (!Info.OrigRet.Ty->isVoidTy()) {
1029 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv);
1030 CallReturnHandler Handler(MIRBuilder, MRI, MIB, RetAssignFn);
1031 if (!handleAssignments(MIRBuilder, InArgs, Handler))
1032 return false;
1033 }
1034
1035 if (Info.SwiftErrorVReg) {
1036 MIB.addDef(AArch64::X21, RegState::Implicit);
1037 MIRBuilder.buildCopy(Info.SwiftErrorVReg, Register(AArch64::X21));
1038 }
1039
1040 uint64_t CalleePopBytes =
1041 doesCalleeRestoreStack(Info.CallConv,
1042 MF.getTarget().Options.GuaranteedTailCallOpt)
1043 ? alignTo(Handler.StackSize, 16)
1044 : 0;
1045
1046 CallSeqStart.addImm(Handler.StackSize).addImm(0);
1047 MIRBuilder.buildInstr(AArch64::ADJCALLSTACKUP)
1048 .addImm(Handler.StackSize)
1049 .addImm(CalleePopBytes);
1050
1051 return true;
1052 }
1053