• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- KernelOutlining.cpp - Implementation of GPU kernel outlining -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the GPU dialect kernel outlining pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PassDetail.h"
14 #include "mlir/Dialect/GPU/GPUDialect.h"
15 #include "mlir/Dialect/GPU/Passes.h"
16 #include "mlir/Dialect/GPU/Utils.h"
17 #include "mlir/Dialect/StandardOps/IR/Ops.h"
18 #include "mlir/IR/BlockAndValueMapping.h"
19 #include "mlir/IR/Builders.h"
20 #include "mlir/IR/SymbolTable.h"
21 #include "mlir/Support/LLVM.h"
22 #include "mlir/Transforms/RegionUtils.h"
23 
24 using namespace mlir;
25 
26 template <typename OpTy>
createForAllDimensions(OpBuilder & builder,Location loc,SmallVectorImpl<Value> & values)27 static void createForAllDimensions(OpBuilder &builder, Location loc,
28                                    SmallVectorImpl<Value> &values) {
29   for (StringRef dim : {"x", "y", "z"}) {
30     Value v = builder.create<OpTy>(loc, builder.getIndexType(),
31                                    builder.getStringAttr(dim));
32     values.push_back(v);
33   }
34 }
35 
36 /// Adds operations generating block/thread ids and grid/block dimensions at the
37 /// beginning of the `launchFuncOpBody` region. Add mapping from argument in
38 /// entry block of `launchOpBody`, to the corresponding result value of the
39 /// added operations.
injectGpuIndexOperations(Location loc,Region & launchFuncOpBody,Region & launchOpBody,BlockAndValueMapping & map)40 static void injectGpuIndexOperations(Location loc, Region &launchFuncOpBody,
41                                      Region &launchOpBody,
42                                      BlockAndValueMapping &map) {
43   OpBuilder builder(loc->getContext());
44   Block &firstBlock = launchOpBody.front();
45   builder.setInsertionPointToStart(&launchFuncOpBody.front());
46   SmallVector<Value, 12> indexOps;
47   createForAllDimensions<gpu::BlockIdOp>(builder, loc, indexOps);
48   createForAllDimensions<gpu::ThreadIdOp>(builder, loc, indexOps);
49   createForAllDimensions<gpu::GridDimOp>(builder, loc, indexOps);
50   createForAllDimensions<gpu::BlockDimOp>(builder, loc, indexOps);
51   // Replace the leading 12 function args with the respective thread/block index
52   // operations. Iterate backwards since args are erased and indices change.
53   for (auto indexOp : enumerate(indexOps))
54     map.map(firstBlock.getArgument(indexOp.index()), indexOp.value());
55 }
56 
57 /// Identifies operations that are beneficial to sink into kernels. These
58 /// operations may not have side-effects, as otherwise sinking (and hence
59 /// duplicating them) is not legal.
isSinkingBeneficiary(Operation * op)60 static bool isSinkingBeneficiary(Operation *op) {
61   return isa<ConstantOp, DimOp, SelectOp, CmpIOp>(op);
62 }
63 
64 /// For a given operation `op`, computes whether it is beneficial to sink the
65 /// operation into the kernel. An operation can be sunk if doing so does not
66 /// introduce new kernel arguments. Whether a value is already available in the
67 /// kernel (and hence does not introduce new arguments) is checked by
68 /// querying `existingDependencies` and `availableValues`.
69 /// If an operand is not yet available, we recursively check whether it can be
70 /// made available by siking its defining op.
71 /// Operations that are indentified for sinking are added to `beneficiaryOps` in
72 /// the order they should appear in the kernel. Furthermore, `availableValues`
73 /// is updated with results that will be available after sinking the identified
74 /// ops.
75 static bool
extractBeneficiaryOps(Operation * op,llvm::SetVector<Value> existingDependencies,llvm::SetVector<Operation * > & beneficiaryOps,llvm::SmallPtrSetImpl<Value> & availableValues)76 extractBeneficiaryOps(Operation *op,
77                       llvm::SetVector<Value> existingDependencies,
78                       llvm::SetVector<Operation *> &beneficiaryOps,
79                       llvm::SmallPtrSetImpl<Value> &availableValues) {
80   if (beneficiaryOps.count(op))
81     return true;
82 
83   if (!isSinkingBeneficiary(op))
84     return false;
85 
86   for (Value operand : op->getOperands()) {
87     // It is already visible in the kernel, keep going.
88     if (availableValues.count(operand))
89       continue;
90     // Else check whether it can be made available via sinking or already is a
91     // dependency.
92     Operation *definingOp = operand.getDefiningOp();
93     if ((!definingOp ||
94          !extractBeneficiaryOps(definingOp, existingDependencies,
95                                 beneficiaryOps, availableValues)) &&
96         !existingDependencies.count(operand))
97       return false;
98   }
99   // We will sink the operation, mark its results as now available.
100   beneficiaryOps.insert(op);
101   for (Value result : op->getResults())
102     availableValues.insert(result);
103   return true;
104 }
105 
sinkOperationsIntoLaunchOp(gpu::LaunchOp launchOp)106 LogicalResult mlir::sinkOperationsIntoLaunchOp(gpu::LaunchOp launchOp) {
107   Region &launchOpBody = launchOp.body();
108 
109   // Identify uses from values defined outside of the scope of the launch
110   // operation.
111   llvm::SetVector<Value> sinkCandidates;
112   getUsedValuesDefinedAbove(launchOpBody, sinkCandidates);
113 
114   llvm::SetVector<Operation *> toBeSunk;
115   llvm::SmallPtrSet<Value, 4> availableValues;
116   for (Value operand : sinkCandidates) {
117     Operation *operandOp = operand.getDefiningOp();
118     if (!operandOp)
119       continue;
120     extractBeneficiaryOps(operandOp, sinkCandidates, toBeSunk, availableValues);
121   }
122 
123   // Insert operations so that the defs get cloned before uses.
124   BlockAndValueMapping map;
125   OpBuilder builder(launchOpBody);
126   for (Operation *op : toBeSunk) {
127     Operation *clonedOp = builder.clone(*op, map);
128     // Only replace uses within the launch op.
129     for (auto pair : llvm::zip(op->getResults(), clonedOp->getResults()))
130       replaceAllUsesInRegionWith(std::get<0>(pair), std::get<1>(pair),
131                                  launchOp.body());
132   }
133   return success();
134 }
135 
136 /// Outline the `gpu.launch` operation body into a kernel function. Replace
137 /// `gpu.terminator` operations by `gpu.return` in the generated function.
outlineKernelFuncImpl(gpu::LaunchOp launchOp,StringRef kernelFnName,llvm::SetVector<Value> & operands)138 static gpu::GPUFuncOp outlineKernelFuncImpl(gpu::LaunchOp launchOp,
139                                             StringRef kernelFnName,
140                                             llvm::SetVector<Value> &operands) {
141   Location loc = launchOp.getLoc();
142   // Create a builder with no insertion point, insertion will happen separately
143   // due to symbol table manipulation.
144   OpBuilder builder(launchOp.getContext());
145   Region &launchOpBody = launchOp.body();
146 
147   // Identify uses from values defined outside of the scope of the launch
148   // operation.
149   getUsedValuesDefinedAbove(launchOpBody, operands);
150 
151   // Create the gpu.func operation.
152   SmallVector<Type, 4> kernelOperandTypes;
153   kernelOperandTypes.reserve(operands.size());
154   for (Value operand : operands) {
155     kernelOperandTypes.push_back(operand.getType());
156   }
157   FunctionType type =
158       FunctionType::get(kernelOperandTypes, {}, launchOp.getContext());
159   auto outlinedFunc = builder.create<gpu::GPUFuncOp>(loc, kernelFnName, type);
160   outlinedFunc.setAttr(gpu::GPUDialect::getKernelFuncAttrName(),
161                        builder.getUnitAttr());
162   BlockAndValueMapping map;
163 
164   // Map the arguments corresponding to the launch parameters like blockIdx,
165   // threadIdx, etc.
166   Region &outlinedFuncBody = outlinedFunc.body();
167   injectGpuIndexOperations(loc, outlinedFuncBody, launchOpBody, map);
168 
169   // Map arguments from gpu.launch region to the arguments of the gpu.func
170   // operation.
171   Block &entryBlock = outlinedFuncBody.front();
172   for (auto operand : enumerate(operands))
173     map.map(operand.value(), entryBlock.getArgument(operand.index()));
174 
175   // Clone the region of the gpu.launch operation into the gpu.func operation.
176   // TODO: If cloneInto can be modified such that if a mapping for
177   // a block exists, that block will be used to clone operations into (at the
178   // end of the block), instead of creating a new block, this would be much
179   // cleaner.
180   launchOpBody.cloneInto(&outlinedFuncBody, map);
181 
182   // Branch from entry of the gpu.func operation to the block that is cloned
183   // from the entry block of the gpu.launch operation.
184   Block &launchOpEntry = launchOpBody.front();
185   Block *clonedLaunchOpEntry = map.lookup(&launchOpEntry);
186   builder.setInsertionPointToEnd(&entryBlock);
187   builder.create<BranchOp>(loc, clonedLaunchOpEntry);
188 
189   outlinedFunc.walk([](gpu::TerminatorOp op) {
190     OpBuilder replacer(op);
191     replacer.create<gpu::ReturnOp>(op.getLoc());
192     op.erase();
193   });
194   return outlinedFunc;
195 }
196 
outlineKernelFunc(gpu::LaunchOp launchOp,StringRef kernelFnName,llvm::SmallVectorImpl<Value> & operands)197 gpu::GPUFuncOp mlir::outlineKernelFunc(gpu::LaunchOp launchOp,
198                                        StringRef kernelFnName,
199                                        llvm::SmallVectorImpl<Value> &operands) {
200   DenseSet<Value> inputOperandSet;
201   inputOperandSet.insert(operands.begin(), operands.end());
202   llvm::SetVector<Value> operandSet(operands.begin(), operands.end());
203   auto funcOp = outlineKernelFuncImpl(launchOp, kernelFnName, operandSet);
204   for (auto operand : operandSet) {
205     if (!inputOperandSet.count(operand))
206       operands.push_back(operand);
207   }
208   return funcOp;
209 }
210 
211 /// Replace `gpu.launch` operations with an `gpu.launch_func` operation
212 /// launching `kernelFunc`. The kernel func contains the body of the
213 /// `gpu.launch` with constant region arguments inlined.
convertToLaunchFuncOp(gpu::LaunchOp launchOp,gpu::GPUFuncOp kernelFunc,ValueRange operands)214 static void convertToLaunchFuncOp(gpu::LaunchOp launchOp,
215                                   gpu::GPUFuncOp kernelFunc,
216                                   ValueRange operands) {
217   OpBuilder builder(launchOp);
218   builder.create<gpu::LaunchFuncOp>(
219       launchOp.getLoc(), kernelFunc, launchOp.getGridSizeOperandValues(),
220       launchOp.getBlockSizeOperandValues(), operands);
221   launchOp.erase();
222 }
223 
224 namespace {
225 /// Pass that moves the kernel of each LaunchOp into its separate nested module.
226 ///
227 /// This pass moves the kernel code of each LaunchOp into a function created
228 /// inside a nested module. It also creates an external function of the same
229 /// name in the parent module.
230 ///
231 /// The gpu.modules are intended to be compiled to a cubin blob independently in
232 /// a separate pass. The external functions can then be annotated with the
233 /// symbol of the cubin accessor function.
234 class GpuKernelOutliningPass
235     : public GpuKernelOutliningBase<GpuKernelOutliningPass> {
236 public:
runOnOperation()237   void runOnOperation() override {
238     SymbolTable symbolTable(getOperation());
239     bool modified = false;
240     for (auto func : getOperation().getOps<FuncOp>()) {
241       // Insert just after the function.
242       Block::iterator insertPt(func->getNextNode());
243       auto funcWalkResult = func.walk([&](gpu::LaunchOp op) {
244         llvm::SetVector<Value> operands;
245         std::string kernelFnName =
246             Twine(op->getParentOfType<FuncOp>().getName(), "_kernel").str();
247 
248         // Pull in instructions that can be sunk
249         if (failed(sinkOperationsIntoLaunchOp(op)))
250           return WalkResult::interrupt();
251         gpu::GPUFuncOp outlinedFunc =
252             outlineKernelFuncImpl(op, kernelFnName, operands);
253 
254         // Create nested module and insert outlinedFunc. The module will
255         // originally get the same name as the function, but may be renamed on
256         // insertion into the parent module.
257         auto kernelModule = createKernelModule(outlinedFunc, symbolTable);
258         symbolTable.insert(kernelModule, insertPt);
259 
260         // Potentially changes signature, pulling in constants.
261         convertToLaunchFuncOp(op, outlinedFunc, operands.getArrayRef());
262         modified = true;
263         return WalkResult::advance();
264       });
265       if (funcWalkResult.wasInterrupted())
266         return signalPassFailure();
267     }
268 
269     // If any new module was inserted in this module, annotate this module as
270     // a container module.
271     if (modified)
272       getOperation().setAttr(gpu::GPUDialect::getContainerModuleAttrName(),
273                              UnitAttr::get(&getContext()));
274   }
275 
276 private:
277   /// Returns a gpu.module containing kernelFunc and all callees (recursive).
createKernelModule(gpu::GPUFuncOp kernelFunc,const SymbolTable & parentSymbolTable)278   gpu::GPUModuleOp createKernelModule(gpu::GPUFuncOp kernelFunc,
279                                       const SymbolTable &parentSymbolTable) {
280     // TODO: This code cannot use an OpBuilder because it must be inserted into
281     // a SymbolTable by the caller. SymbolTable needs to be refactored to
282     // prevent manual building of Ops with symbols in code using SymbolTables
283     // and then this needs to use the OpBuilder.
284     auto context = getOperation().getContext();
285     OpBuilder builder(context);
286     OperationState state(kernelFunc.getLoc(),
287                          gpu::GPUModuleOp::getOperationName());
288     gpu::GPUModuleOp::build(builder, state, kernelFunc.getName());
289     auto kernelModule = cast<gpu::GPUModuleOp>(Operation::create(state));
290     SymbolTable symbolTable(kernelModule);
291     symbolTable.insert(kernelFunc);
292 
293     SmallVector<Operation *, 8> symbolDefWorklist = {kernelFunc};
294     while (!symbolDefWorklist.empty()) {
295       if (Optional<SymbolTable::UseRange> symbolUses =
296               SymbolTable::getSymbolUses(symbolDefWorklist.pop_back_val())) {
297         for (SymbolTable::SymbolUse symbolUse : *symbolUses) {
298           StringRef symbolName =
299               symbolUse.getSymbolRef().cast<FlatSymbolRefAttr>().getValue();
300           if (symbolTable.lookup(symbolName))
301             continue;
302 
303           Operation *symbolDefClone =
304               parentSymbolTable.lookup(symbolName)->clone();
305           symbolDefWorklist.push_back(symbolDefClone);
306           symbolTable.insert(symbolDefClone);
307         }
308       }
309     }
310 
311     return kernelModule;
312   }
313 };
314 
315 } // namespace
316 
createGpuKernelOutliningPass()317 std::unique_ptr<OperationPass<ModuleOp>> mlir::createGpuKernelOutliningPass() {
318   return std::make_unique<GpuKernelOutliningPass>();
319 }
320