• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file VarLocBasedImpl.cpp
10 ///
11 /// LiveDebugValues is an optimistic "available expressions" dataflow
12 /// algorithm. The set of expressions is the set of machine locations
13 /// (registers, spill slots, constants) that a variable fragment might be
14 /// located, qualified by a DIExpression and indirect-ness flag, while each
15 /// variable is identified by a DebugVariable object. The availability of an
16 /// expression begins when a DBG_VALUE instruction specifies the location of a
17 /// DebugVariable, and continues until that location is clobbered or
18 /// re-specified by a different DBG_VALUE for the same DebugVariable.
19 ///
20 /// The output of LiveDebugValues is additional DBG_VALUE instructions,
21 /// placed to extend variable locations as far they're available. This file
22 /// and the VarLocBasedLDV class is an implementation that explicitly tracks
23 /// locations, using the VarLoc class.
24 ///
25 /// The canonical "available expressions" problem doesn't have expression
26 /// clobbering, instead when a variable is re-assigned, any expressions using
27 /// that variable get invalidated. LiveDebugValues can map onto "available
28 /// expressions" by having every register represented by a variable, which is
29 /// used in an expression that becomes available at a DBG_VALUE instruction.
30 /// When the register is clobbered, its variable is effectively reassigned, and
31 /// expressions computed from it become unavailable. A similar construct is
32 /// needed when a DebugVariable has its location re-specified, to invalidate
33 /// all other locations for that DebugVariable.
34 ///
35 /// Using the dataflow analysis to compute the available expressions, we create
36 /// a DBG_VALUE at the beginning of each block where the expression is
37 /// live-in. This propagates variable locations into every basic block where
38 /// the location can be determined, rather than only having DBG_VALUEs in blocks
39 /// where locations are specified due to an assignment or some optimization.
40 /// Movements of values between registers and spill slots are annotated with
41 /// DBG_VALUEs too to track variable values bewteen locations. All this allows
42 /// DbgEntityHistoryCalculator to focus on only the locations within individual
43 /// blocks, facilitating testing and improving modularity.
44 ///
45 /// We follow an optimisic dataflow approach, with this lattice:
46 ///
47 /// \verbatim
48 ///                    ┬ "Unknown"
49 ///                          |
50 ///                          v
51 ///                         True
52 ///                          |
53 ///                          v
54 ///                      ⊥ False
55 /// \endverbatim With "True" signifying that the expression is available (and
56 /// thus a DebugVariable's location is the corresponding register), while
57 /// "False" signifies that the expression is unavailable. "Unknown"s never
58 /// survive to the end of the analysis (see below).
59 ///
60 /// Formally, all DebugVariable locations that are live-out of a block are
61 /// initialized to \top.  A blocks live-in values take the meet of the lattice
62 /// value for every predecessors live-outs, except for the entry block, where
63 /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
64 /// function for a block assigns an expression for a DebugVariable to be "True"
65 /// if a DBG_VALUE in the block specifies it; "False" if the location is
66 /// clobbered; or the live-in value if it is unaffected by the block. We
67 /// visit each block in reverse post order until a fixedpoint is reached. The
68 /// solution produced is maximal.
69 ///
70 /// Intuitively, we start by assuming that every expression / variable location
71 /// is at least "True", and then propagate "False" from the entry block and any
72 /// clobbers until there are no more changes to make. This gives us an accurate
73 /// solution because all incorrect locations will have a "False" propagated into
74 /// them. It also gives us a solution that copes well with loops by assuming
75 /// that variable locations are live-through every loop, and then removing those
76 /// that are not through dataflow.
77 ///
78 /// Within LiveDebugValues: each variable location is represented by a
79 /// VarLoc object that identifies the source variable, its current
80 /// machine-location, and the DBG_VALUE inst that specifies the location. Each
81 /// VarLoc is indexed in the (function-scope) \p VarLocMap, giving each VarLoc a
82 /// unique index. Rather than operate directly on machine locations, the
83 /// dataflow analysis in this pass identifies locations by their index in the
84 /// VarLocMap, meaning all the variable locations in a block can be described
85 /// by a sparse vector of VarLocMap indicies.
86 ///
87 /// All the storage for the dataflow analysis is local to the ExtendRanges
88 /// method and passed down to helper methods. "OutLocs" and "InLocs" record the
89 /// in and out lattice values for each block. "OpenRanges" maintains a list of
90 /// variable locations and, with the "process" method, evaluates the transfer
91 /// function of each block. "flushPendingLocs" installs DBG_VALUEs for each
92 /// live-in location at the start of blocks, while "Transfers" records
93 /// transfers of values between machine-locations.
94 ///
95 /// We avoid explicitly representing the "Unknown" (\top) lattice value in the
96 /// implementation. Instead, unvisited blocks implicitly have all lattice
97 /// values set as "Unknown". After being visited, there will be path back to
98 /// the entry block where the lattice value is "False", and as the transfer
99 /// function cannot make new "Unknown" locations, there are no scenarios where
100 /// a block can have an "Unknown" location after being visited. Similarly, we
101 /// don't enumerate all possible variable locations before exploring the
102 /// function: when a new location is discovered, all blocks previously explored
103 /// were implicitly "False" but unrecorded, and become explicitly "False" when
104 /// a new VarLoc is created with its bit not set in predecessor InLocs or
105 /// OutLocs.
106 ///
107 //===----------------------------------------------------------------------===//
108 
109 #include "LiveDebugValues.h"
110 
111 #include "llvm/ADT/CoalescingBitVector.h"
112 #include "llvm/ADT/DenseMap.h"
113 #include "llvm/ADT/PostOrderIterator.h"
114 #include "llvm/ADT/SmallPtrSet.h"
115 #include "llvm/ADT/SmallSet.h"
116 #include "llvm/ADT/SmallVector.h"
117 #include "llvm/ADT/Statistic.h"
118 #include "llvm/ADT/UniqueVector.h"
119 #include "llvm/CodeGen/LexicalScopes.h"
120 #include "llvm/CodeGen/MachineBasicBlock.h"
121 #include "llvm/CodeGen/MachineFrameInfo.h"
122 #include "llvm/CodeGen/MachineFunction.h"
123 #include "llvm/CodeGen/MachineFunctionPass.h"
124 #include "llvm/CodeGen/MachineInstr.h"
125 #include "llvm/CodeGen/MachineInstrBuilder.h"
126 #include "llvm/CodeGen/MachineMemOperand.h"
127 #include "llvm/CodeGen/MachineOperand.h"
128 #include "llvm/CodeGen/PseudoSourceValue.h"
129 #include "llvm/CodeGen/RegisterScavenging.h"
130 #include "llvm/CodeGen/TargetFrameLowering.h"
131 #include "llvm/CodeGen/TargetInstrInfo.h"
132 #include "llvm/CodeGen/TargetLowering.h"
133 #include "llvm/CodeGen/TargetPassConfig.h"
134 #include "llvm/CodeGen/TargetRegisterInfo.h"
135 #include "llvm/CodeGen/TargetSubtargetInfo.h"
136 #include "llvm/Config/llvm-config.h"
137 #include "llvm/IR/DIBuilder.h"
138 #include "llvm/IR/DebugInfoMetadata.h"
139 #include "llvm/IR/DebugLoc.h"
140 #include "llvm/IR/Function.h"
141 #include "llvm/IR/Module.h"
142 #include "llvm/InitializePasses.h"
143 #include "llvm/MC/MCRegisterInfo.h"
144 #include "llvm/Pass.h"
145 #include "llvm/Support/Casting.h"
146 #include "llvm/Support/Compiler.h"
147 #include "llvm/Support/Debug.h"
148 #include "llvm/Support/raw_ostream.h"
149 #include "llvm/Target/TargetMachine.h"
150 #include <algorithm>
151 #include <cassert>
152 #include <cstdint>
153 #include <functional>
154 #include <queue>
155 #include <tuple>
156 #include <utility>
157 #include <vector>
158 
159 using namespace llvm;
160 
161 #define DEBUG_TYPE "livedebugvalues"
162 
163 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
164 
165 // Options to prevent pathological compile-time behavior. If InputBBLimit and
166 // InputDbgValueLimit are both exceeded, range extension is disabled.
167 static cl::opt<unsigned> InputBBLimit(
168     "livedebugvalues-input-bb-limit",
169     cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"),
170     cl::init(10000), cl::Hidden);
171 static cl::opt<unsigned> InputDbgValueLimit(
172     "livedebugvalues-input-dbg-value-limit",
173     cl::desc(
174         "Maximum input DBG_VALUE insts supported by debug range extension"),
175     cl::init(50000), cl::Hidden);
176 
177 // If @MI is a DBG_VALUE with debug value described by a defined
178 // register, returns the number of this register. In the other case, returns 0.
isDbgValueDescribedByReg(const MachineInstr & MI)179 static Register isDbgValueDescribedByReg(const MachineInstr &MI) {
180   assert(MI.isDebugValue() && "expected a DBG_VALUE");
181   assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
182   // If location of variable is described using a register (directly
183   // or indirectly), this register is always a first operand.
184   return MI.getDebugOperand(0).isReg() ? MI.getDebugOperand(0).getReg()
185                                        : Register();
186 }
187 
188 /// If \p Op is a stack or frame register return true, otherwise return false.
189 /// This is used to avoid basing the debug entry values on the registers, since
190 /// we do not support it at the moment.
isRegOtherThanSPAndFP(const MachineOperand & Op,const MachineInstr & MI,const TargetRegisterInfo * TRI)191 static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
192                                   const MachineInstr &MI,
193                                   const TargetRegisterInfo *TRI) {
194   if (!Op.isReg())
195     return false;
196 
197   const MachineFunction *MF = MI.getParent()->getParent();
198   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
199   Register SP = TLI->getStackPointerRegisterToSaveRestore();
200   Register FP = TRI->getFrameRegister(*MF);
201   Register Reg = Op.getReg();
202 
203   return Reg && Reg != SP && Reg != FP;
204 }
205 
206 namespace {
207 
208 // Max out the number of statically allocated elements in DefinedRegsSet, as
209 // this prevents fallback to std::set::count() operations.
210 using DefinedRegsSet = SmallSet<Register, 32>;
211 
212 using VarLocSet = CoalescingBitVector<uint64_t>;
213 
214 /// A type-checked pair of {Register Location (or 0), Index}, used to index
215 /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
216 /// for insertion into a \ref VarLocSet, and efficiently converted back. The
217 /// type-checker helps ensure that the conversions aren't lossy.
218 ///
219 /// Why encode a location /into/ the VarLocMap index? This makes it possible
220 /// to find the open VarLocs killed by a register def very quickly. This is a
221 /// performance-critical operation for LiveDebugValues.
222 struct LocIndex {
223   using u32_location_t = uint32_t;
224   using u32_index_t = uint32_t;
225 
226   u32_location_t Location; // Physical registers live in the range [1;2^30) (see
227                            // \ref MCRegister), so we have plenty of range left
228                            // here to encode non-register locations.
229   u32_index_t Index;
230 
231   /// The first location greater than 0 that is not reserved for VarLocs of
232   /// kind RegisterKind.
233   static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
234 
235   /// A special location reserved for VarLocs of kind SpillLocKind.
236   static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
237 
238   /// A special location reserved for VarLocs of kind EntryValueBackupKind and
239   /// EntryValueCopyBackupKind.
240   static constexpr u32_location_t kEntryValueBackupLocation =
241       kFirstInvalidRegLocation + 1;
242 
LocIndex__anon87d824590111::LocIndex243   LocIndex(u32_location_t Location, u32_index_t Index)
244       : Location(Location), Index(Index) {}
245 
getAsRawInteger__anon87d824590111::LocIndex246   uint64_t getAsRawInteger() const {
247     return (static_cast<uint64_t>(Location) << 32) | Index;
248   }
249 
fromRawInteger__anon87d824590111::LocIndex250   template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
251     static_assert(std::is_unsigned<IntT>::value &&
252                       sizeof(ID) == sizeof(uint64_t),
253                   "Cannot convert raw integer to LocIndex");
254     return {static_cast<u32_location_t>(ID >> 32),
255             static_cast<u32_index_t>(ID)};
256   }
257 
258   /// Get the start of the interval reserved for VarLocs of kind RegisterKind
259   /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
rawIndexForReg__anon87d824590111::LocIndex260   static uint64_t rawIndexForReg(uint32_t Reg) {
261     return LocIndex(Reg, 0).getAsRawInteger();
262   }
263 
264   /// Return a range covering all set indices in the interval reserved for
265   /// \p Location in \p Set.
indexRangeForLocation__anon87d824590111::LocIndex266   static auto indexRangeForLocation(const VarLocSet &Set,
267                                     u32_location_t Location) {
268     uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
269     uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
270     return Set.half_open_range(Start, End);
271   }
272 };
273 
274 class VarLocBasedLDV : public LDVImpl {
275 private:
276   const TargetRegisterInfo *TRI;
277   const TargetInstrInfo *TII;
278   const TargetFrameLowering *TFI;
279   TargetPassConfig *TPC;
280   BitVector CalleeSavedRegs;
281   LexicalScopes LS;
282   VarLocSet::Allocator Alloc;
283 
284   enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
285 
286   using FragmentInfo = DIExpression::FragmentInfo;
287   using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
288 
289   /// A pair of debug variable and value location.
290   struct VarLoc {
291     // The location at which a spilled variable resides. It consists of a
292     // register and an offset.
293     struct SpillLoc {
294       unsigned SpillBase;
295       int SpillOffset;
operator ==__anon87d824590111::VarLocBasedLDV::VarLoc::SpillLoc296       bool operator==(const SpillLoc &Other) const {
297         return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
298       }
operator !=__anon87d824590111::VarLocBasedLDV::VarLoc::SpillLoc299       bool operator!=(const SpillLoc &Other) const {
300         return !(*this == Other);
301       }
302     };
303 
304     /// Identity of the variable at this location.
305     const DebugVariable Var;
306 
307     /// The expression applied to this location.
308     const DIExpression *Expr;
309 
310     /// DBG_VALUE to clone var/expr information from if this location
311     /// is moved.
312     const MachineInstr &MI;
313 
314     enum VarLocKind {
315       InvalidKind = 0,
316       RegisterKind,
317       SpillLocKind,
318       ImmediateKind,
319       EntryValueKind,
320       EntryValueBackupKind,
321       EntryValueCopyBackupKind
322     } Kind = InvalidKind;
323 
324     /// The value location. Stored separately to avoid repeatedly
325     /// extracting it from MI.
326     union {
327       uint64_t RegNo;
328       SpillLoc SpillLocation;
329       uint64_t Hash;
330       int64_t Immediate;
331       const ConstantFP *FPImm;
332       const ConstantInt *CImm;
333     } Loc;
334 
VarLoc__anon87d824590111::VarLocBasedLDV::VarLoc335     VarLoc(const MachineInstr &MI, LexicalScopes &LS)
336         : Var(MI.getDebugVariable(), MI.getDebugExpression(),
337               MI.getDebugLoc()->getInlinedAt()),
338           Expr(MI.getDebugExpression()), MI(MI) {
339       static_assert((sizeof(Loc) == sizeof(uint64_t)),
340                     "hash does not cover all members of Loc");
341       assert(MI.isDebugValue() && "not a DBG_VALUE");
342       assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
343       if (int RegNo = isDbgValueDescribedByReg(MI)) {
344         Kind = RegisterKind;
345         Loc.RegNo = RegNo;
346       } else if (MI.getDebugOperand(0).isImm()) {
347         Kind = ImmediateKind;
348         Loc.Immediate = MI.getDebugOperand(0).getImm();
349       } else if (MI.getDebugOperand(0).isFPImm()) {
350         Kind = ImmediateKind;
351         Loc.FPImm = MI.getDebugOperand(0).getFPImm();
352       } else if (MI.getDebugOperand(0).isCImm()) {
353         Kind = ImmediateKind;
354         Loc.CImm = MI.getDebugOperand(0).getCImm();
355       }
356 
357       // We create the debug entry values from the factory functions rather than
358       // from this ctor.
359       assert(Kind != EntryValueKind && !isEntryBackupLoc());
360     }
361 
362     /// Take the variable and machine-location in DBG_VALUE MI, and build an
363     /// entry location using the given expression.
CreateEntryLoc__anon87d824590111::VarLocBasedLDV::VarLoc364     static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
365                                  const DIExpression *EntryExpr, Register Reg) {
366       VarLoc VL(MI, LS);
367       assert(VL.Kind == RegisterKind);
368       VL.Kind = EntryValueKind;
369       VL.Expr = EntryExpr;
370       VL.Loc.RegNo = Reg;
371       return VL;
372     }
373 
374     /// Take the variable and machine-location from the DBG_VALUE (from the
375     /// function entry), and build an entry value backup location. The backup
376     /// location will turn into the normal location if the backup is valid at
377     /// the time of the primary location clobbering.
CreateEntryBackupLoc__anon87d824590111::VarLocBasedLDV::VarLoc378     static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
379                                        LexicalScopes &LS,
380                                        const DIExpression *EntryExpr) {
381       VarLoc VL(MI, LS);
382       assert(VL.Kind == RegisterKind);
383       VL.Kind = EntryValueBackupKind;
384       VL.Expr = EntryExpr;
385       return VL;
386     }
387 
388     /// Take the variable and machine-location from the DBG_VALUE (from the
389     /// function entry), and build a copy of an entry value backup location by
390     /// setting the register location to NewReg.
CreateEntryCopyBackupLoc__anon87d824590111::VarLocBasedLDV::VarLoc391     static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
392                                            LexicalScopes &LS,
393                                            const DIExpression *EntryExpr,
394                                            Register NewReg) {
395       VarLoc VL(MI, LS);
396       assert(VL.Kind == RegisterKind);
397       VL.Kind = EntryValueCopyBackupKind;
398       VL.Expr = EntryExpr;
399       VL.Loc.RegNo = NewReg;
400       return VL;
401     }
402 
403     /// Copy the register location in DBG_VALUE MI, updating the register to
404     /// be NewReg.
CreateCopyLoc__anon87d824590111::VarLocBasedLDV::VarLoc405     static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS,
406                                 Register NewReg) {
407       VarLoc VL(MI, LS);
408       assert(VL.Kind == RegisterKind);
409       VL.Loc.RegNo = NewReg;
410       return VL;
411     }
412 
413     /// Take the variable described by DBG_VALUE MI, and create a VarLoc
414     /// locating it in the specified spill location.
CreateSpillLoc__anon87d824590111::VarLocBasedLDV::VarLoc415     static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase,
416                                  int SpillOffset, LexicalScopes &LS) {
417       VarLoc VL(MI, LS);
418       assert(VL.Kind == RegisterKind);
419       VL.Kind = SpillLocKind;
420       VL.Loc.SpillLocation = {SpillBase, SpillOffset};
421       return VL;
422     }
423 
424     /// Create a DBG_VALUE representing this VarLoc in the given function.
425     /// Copies variable-specific information such as DILocalVariable and
426     /// inlining information from the original DBG_VALUE instruction, which may
427     /// have been several transfers ago.
BuildDbgValue__anon87d824590111::VarLocBasedLDV::VarLoc428     MachineInstr *BuildDbgValue(MachineFunction &MF) const {
429       const DebugLoc &DbgLoc = MI.getDebugLoc();
430       bool Indirect = MI.isIndirectDebugValue();
431       const auto &IID = MI.getDesc();
432       const DILocalVariable *Var = MI.getDebugVariable();
433       const DIExpression *DIExpr = MI.getDebugExpression();
434       NumInserted++;
435 
436       switch (Kind) {
437       case EntryValueKind:
438         // An entry value is a register location -- but with an updated
439         // expression. The register location of such DBG_VALUE is always the one
440         // from the entry DBG_VALUE, it does not matter if the entry value was
441         // copied in to another register due to some optimizations.
442         return BuildMI(MF, DbgLoc, IID, Indirect,
443                        MI.getDebugOperand(0).getReg(), Var, Expr);
444       case RegisterKind:
445         // Register locations are like the source DBG_VALUE, but with the
446         // register number from this VarLoc.
447         return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr);
448       case SpillLocKind: {
449         // Spills are indirect DBG_VALUEs, with a base register and offset.
450         // Use the original DBG_VALUEs expression to build the spilt location
451         // on top of. FIXME: spill locations created before this pass runs
452         // are not recognized, and not handled here.
453         auto *SpillExpr = DIExpression::prepend(
454             DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset);
455         unsigned Base = Loc.SpillLocation.SpillBase;
456         return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr);
457       }
458       case ImmediateKind: {
459         MachineOperand MO = MI.getDebugOperand(0);
460         return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr);
461       }
462       case EntryValueBackupKind:
463       case EntryValueCopyBackupKind:
464       case InvalidKind:
465         llvm_unreachable(
466             "Tried to produce DBG_VALUE for invalid or backup VarLoc");
467       }
468       llvm_unreachable("Unrecognized VarLocBasedLDV.VarLoc.Kind enum");
469     }
470 
471     /// Is the Loc field a constant or constant object?
isConstant__anon87d824590111::VarLocBasedLDV::VarLoc472     bool isConstant() const { return Kind == ImmediateKind; }
473 
474     /// Check if the Loc field is an entry backup location.
isEntryBackupLoc__anon87d824590111::VarLocBasedLDV::VarLoc475     bool isEntryBackupLoc() const {
476       return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind;
477     }
478 
479     /// If this variable is described by a register holding the entry value,
480     /// return it, otherwise return 0.
getEntryValueBackupReg__anon87d824590111::VarLocBasedLDV::VarLoc481     unsigned getEntryValueBackupReg() const {
482       if (Kind == EntryValueBackupKind)
483         return Loc.RegNo;
484       return 0;
485     }
486 
487     /// If this variable is described by a register holding the copy of the
488     /// entry value, return it, otherwise return 0.
getEntryValueCopyBackupReg__anon87d824590111::VarLocBasedLDV::VarLoc489     unsigned getEntryValueCopyBackupReg() const {
490       if (Kind == EntryValueCopyBackupKind)
491         return Loc.RegNo;
492       return 0;
493     }
494 
495     /// If this variable is described by a register, return it,
496     /// otherwise return 0.
isDescribedByReg__anon87d824590111::VarLocBasedLDV::VarLoc497     unsigned isDescribedByReg() const {
498       if (Kind == RegisterKind)
499         return Loc.RegNo;
500       return 0;
501     }
502 
503     /// Determine whether the lexical scope of this value's debug location
504     /// dominates MBB.
dominates__anon87d824590111::VarLocBasedLDV::VarLoc505     bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
506       return LS.dominates(MI.getDebugLoc().get(), &MBB);
507     }
508 
509 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
510     // TRI can be null.
dump__anon87d824590111::VarLocBasedLDV::VarLoc511     void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
512       Out << "VarLoc(";
513       switch (Kind) {
514       case RegisterKind:
515       case EntryValueKind:
516       case EntryValueBackupKind:
517       case EntryValueCopyBackupKind:
518         Out << printReg(Loc.RegNo, TRI);
519         break;
520       case SpillLocKind:
521         Out << printReg(Loc.SpillLocation.SpillBase, TRI);
522         Out << "[" << Loc.SpillLocation.SpillOffset << "]";
523         break;
524       case ImmediateKind:
525         Out << Loc.Immediate;
526         break;
527       case InvalidKind:
528         llvm_unreachable("Invalid VarLoc in dump method");
529       }
530 
531       Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
532       if (Var.getInlinedAt())
533         Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
534       else
535         Out << "(null))";
536 
537       if (isEntryBackupLoc())
538         Out << " (backup loc)\n";
539       else
540         Out << "\n";
541     }
542 #endif
543 
operator ==__anon87d824590111::VarLocBasedLDV::VarLoc544     bool operator==(const VarLoc &Other) const {
545       return Kind == Other.Kind && Var == Other.Var &&
546              Loc.Hash == Other.Loc.Hash && Expr == Other.Expr;
547     }
548 
549     /// This operator guarantees that VarLocs are sorted by Variable first.
operator <__anon87d824590111::VarLocBasedLDV::VarLoc550     bool operator<(const VarLoc &Other) const {
551       return std::tie(Var, Kind, Loc.Hash, Expr) <
552              std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr);
553     }
554   };
555 
556   /// VarLocMap is used for two things:
557   /// 1) Assigning a unique LocIndex to a VarLoc. This LocIndex can be used to
558   ///    virtually insert a VarLoc into a VarLocSet.
559   /// 2) Given a LocIndex, look up the unique associated VarLoc.
560   class VarLocMap {
561     /// Map a VarLoc to an index within the vector reserved for its location
562     /// within Loc2Vars.
563     std::map<VarLoc, LocIndex::u32_index_t> Var2Index;
564 
565     /// Map a location to a vector which holds VarLocs which live in that
566     /// location.
567     SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
568 
569     /// Determine the 32-bit location reserved for \p VL, based on its kind.
getLocationForVar(const VarLoc & VL)570     static LocIndex::u32_location_t getLocationForVar(const VarLoc &VL) {
571       switch (VL.Kind) {
572       case VarLoc::RegisterKind:
573         assert((VL.Loc.RegNo < LocIndex::kFirstInvalidRegLocation) &&
574                "Physreg out of range?");
575         return VL.Loc.RegNo;
576       case VarLoc::SpillLocKind:
577         return LocIndex::kSpillLocation;
578       case VarLoc::EntryValueBackupKind:
579       case VarLoc::EntryValueCopyBackupKind:
580         return LocIndex::kEntryValueBackupLocation;
581       default:
582         return 0;
583       }
584     }
585 
586   public:
587     /// Retrieve a unique LocIndex for \p VL.
insert(const VarLoc & VL)588     LocIndex insert(const VarLoc &VL) {
589       LocIndex::u32_location_t Location = getLocationForVar(VL);
590       LocIndex::u32_index_t &Index = Var2Index[VL];
591       if (!Index) {
592         auto &Vars = Loc2Vars[Location];
593         Vars.push_back(VL);
594         Index = Vars.size();
595       }
596       return {Location, Index - 1};
597     }
598 
599     /// Retrieve the unique VarLoc associated with \p ID.
operator [](LocIndex ID) const600     const VarLoc &operator[](LocIndex ID) const {
601       auto LocIt = Loc2Vars.find(ID.Location);
602       assert(LocIt != Loc2Vars.end() && "Location not tracked");
603       return LocIt->second[ID.Index];
604     }
605   };
606 
607   using VarLocInMBB =
608       SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
609   struct TransferDebugPair {
610     MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
611     LocIndex LocationID;        ///< Location number for the transfer dest.
612   };
613   using TransferMap = SmallVector<TransferDebugPair, 4>;
614 
615   // Types for recording sets of variable fragments that overlap. For a given
616   // local variable, we record all other fragments of that variable that could
617   // overlap it, to reduce search time.
618   using FragmentOfVar =
619       std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
620   using OverlapMap =
621       DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
622 
623   // Helper while building OverlapMap, a map of all fragments seen for a given
624   // DILocalVariable.
625   using VarToFragments =
626       DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
627 
628   /// This holds the working set of currently open ranges. For fast
629   /// access, this is done both as a set of VarLocIDs, and a map of
630   /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
631   /// previous open ranges for the same variable. In addition, we keep
632   /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
633   /// methods act differently depending on whether a VarLoc is primary
634   /// location or backup one. In the case the VarLoc is backup location
635   /// we will erase/insert from the EntryValuesBackupVars map, otherwise
636   /// we perform the operation on the Vars.
637   class OpenRangesSet {
638     VarLocSet VarLocs;
639     // Map the DebugVariable to recent primary location ID.
640     SmallDenseMap<DebugVariable, LocIndex, 8> Vars;
641     // Map the DebugVariable to recent backup location ID.
642     SmallDenseMap<DebugVariable, LocIndex, 8> EntryValuesBackupVars;
643     OverlapMap &OverlappingFragments;
644 
645   public:
OpenRangesSet(VarLocSet::Allocator & Alloc,OverlapMap & _OLapMap)646     OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
647         : VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
648 
getVarLocs() const649     const VarLocSet &getVarLocs() const { return VarLocs; }
650 
651     /// Terminate all open ranges for VL.Var by removing it from the set.
652     void erase(const VarLoc &VL);
653 
654     /// Terminate all open ranges listed in \c KillSet by removing
655     /// them from the set.
656     void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs);
657 
658     /// Insert a new range into the set.
659     void insert(LocIndex VarLocID, const VarLoc &VL);
660 
661     /// Insert a set of ranges.
insertFromLocSet(const VarLocSet & ToLoad,const VarLocMap & Map)662     void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) {
663       for (uint64_t ID : ToLoad) {
664         LocIndex Idx = LocIndex::fromRawInteger(ID);
665         const VarLoc &VarL = Map[Idx];
666         insert(Idx, VarL);
667       }
668     }
669 
670     llvm::Optional<LocIndex> getEntryValueBackup(DebugVariable Var);
671 
672     /// Empty the set.
clear()673     void clear() {
674       VarLocs.clear();
675       Vars.clear();
676       EntryValuesBackupVars.clear();
677     }
678 
679     /// Return whether the set is empty or not.
empty() const680     bool empty() const {
681       assert(Vars.empty() == EntryValuesBackupVars.empty() &&
682              Vars.empty() == VarLocs.empty() &&
683              "open ranges are inconsistent");
684       return VarLocs.empty();
685     }
686 
687     /// Get an empty range of VarLoc IDs.
getEmptyVarLocRange() const688     auto getEmptyVarLocRange() const {
689       return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
690                                                        getVarLocs().end());
691     }
692 
693     /// Get all set IDs for VarLocs of kind RegisterKind in \p Reg.
getRegisterVarLocs(Register Reg) const694     auto getRegisterVarLocs(Register Reg) const {
695       return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
696     }
697 
698     /// Get all set IDs for VarLocs of kind SpillLocKind.
getSpillVarLocs() const699     auto getSpillVarLocs() const {
700       return LocIndex::indexRangeForLocation(getVarLocs(),
701                                              LocIndex::kSpillLocation);
702     }
703 
704     /// Get all set IDs for VarLocs of kind EntryValueBackupKind or
705     /// EntryValueCopyBackupKind.
getEntryValueBackupVarLocs() const706     auto getEntryValueBackupVarLocs() const {
707       return LocIndex::indexRangeForLocation(
708           getVarLocs(), LocIndex::kEntryValueBackupLocation);
709     }
710   };
711 
712   /// Collect all VarLoc IDs from \p CollectFrom for VarLocs of kind
713   /// RegisterKind which are located in any reg in \p Regs. Insert collected IDs
714   /// into \p Collected.
715   void collectIDsForRegs(VarLocSet &Collected, const DefinedRegsSet &Regs,
716                          const VarLocSet &CollectFrom) const;
717 
718   /// Get the registers which are used by VarLocs of kind RegisterKind tracked
719   /// by \p CollectFrom.
720   void getUsedRegs(const VarLocSet &CollectFrom,
721                    SmallVectorImpl<uint32_t> &UsedRegs) const;
722 
getVarLocsInMBB(const MachineBasicBlock * MBB,VarLocInMBB & Locs)723   VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
724     std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
725     if (!VLS)
726       VLS = std::make_unique<VarLocSet>(Alloc);
727     return *VLS.get();
728   }
729 
getVarLocsInMBB(const MachineBasicBlock * MBB,const VarLocInMBB & Locs) const730   const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
731                                    const VarLocInMBB &Locs) const {
732     auto It = Locs.find(MBB);
733     assert(It != Locs.end() && "MBB not in map");
734     return *It->second.get();
735   }
736 
737   /// Tests whether this instruction is a spill to a stack location.
738   bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
739 
740   /// Decide if @MI is a spill instruction and return true if it is. We use 2
741   /// criteria to make this decision:
742   /// - Is this instruction a store to a spill slot?
743   /// - Is there a register operand that is both used and killed?
744   /// TODO: Store optimization can fold spills into other stores (including
745   /// other spills). We do not handle this yet (more than one memory operand).
746   bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
747                        Register &Reg);
748 
749   /// Returns true if the given machine instruction is a debug value which we
750   /// can emit entry values for.
751   ///
752   /// Currently, we generate debug entry values only for parameters that are
753   /// unmodified throughout the function and located in a register.
754   bool isEntryValueCandidate(const MachineInstr &MI,
755                              const DefinedRegsSet &Regs) const;
756 
757   /// If a given instruction is identified as a spill, return the spill location
758   /// and set \p Reg to the spilled register.
759   Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
760                                                   MachineFunction *MF,
761                                                   Register &Reg);
762   /// Given a spill instruction, extract the register and offset used to
763   /// address the spill location in a target independent way.
764   VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
765   void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
766                                TransferMap &Transfers, VarLocMap &VarLocIDs,
767                                LocIndex OldVarID, TransferKind Kind,
768                                Register NewReg = Register());
769 
770   void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
771                           VarLocMap &VarLocIDs);
772   void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
773                                   VarLocMap &VarLocIDs, TransferMap &Transfers);
774   bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
775                         VarLocMap &VarLocIDs, const VarLoc &EntryVL);
776   void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
777                        VarLocMap &VarLocIDs, TransferMap &Transfers,
778                        VarLocSet &KillSet);
779   void recordEntryValue(const MachineInstr &MI,
780                         const DefinedRegsSet &DefinedRegs,
781                         OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
782   void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
783                             VarLocMap &VarLocIDs, TransferMap &Transfers);
784   void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
785                            VarLocMap &VarLocIDs, TransferMap &Transfers);
786   bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
787                           VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
788 
789   void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
790                VarLocMap &VarLocIDs, TransferMap &Transfers);
791 
792   void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
793                              OverlapMap &OLapMap);
794 
795   bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
796             const VarLocMap &VarLocIDs,
797             SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
798             SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
799 
800   /// Create DBG_VALUE insts for inlocs that have been propagated but
801   /// had their instruction creation deferred.
802   void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
803 
804   bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
805 
806 public:
807   /// Default construct and initialize the pass.
808   VarLocBasedLDV();
809 
810   ~VarLocBasedLDV();
811 
812   /// Print to ostream with a message.
813   void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
814                         const VarLocMap &VarLocIDs, const char *msg,
815                         raw_ostream &Out) const;
816 };
817 
818 } // end anonymous namespace
819 
820 //===----------------------------------------------------------------------===//
821 //            Implementation
822 //===----------------------------------------------------------------------===//
823 
VarLocBasedLDV()824 VarLocBasedLDV::VarLocBasedLDV() { }
825 
~VarLocBasedLDV()826 VarLocBasedLDV::~VarLocBasedLDV() { }
827 
828 /// Erase a variable from the set of open ranges, and additionally erase any
829 /// fragments that may overlap it. If the VarLoc is a backup location, erase
830 /// the variable from the EntryValuesBackupVars set, indicating we should stop
831 /// tracking its backup entry location. Otherwise, if the VarLoc is primary
832 /// location, erase the variable from the Vars set.
erase(const VarLoc & VL)833 void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
834   // Erasure helper.
835   auto DoErase = [VL, this](DebugVariable VarToErase) {
836     auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
837     auto It = EraseFrom->find(VarToErase);
838     if (It != EraseFrom->end()) {
839       LocIndex ID = It->second;
840       VarLocs.reset(ID.getAsRawInteger());
841       EraseFrom->erase(It);
842     }
843   };
844 
845   DebugVariable Var = VL.Var;
846 
847   // Erase the variable/fragment that ends here.
848   DoErase(Var);
849 
850   // Extract the fragment. Interpret an empty fragment as one that covers all
851   // possible bits.
852   FragmentInfo ThisFragment = Var.getFragmentOrDefault();
853 
854   // There may be fragments that overlap the designated fragment. Look them up
855   // in the pre-computed overlap map, and erase them too.
856   auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
857   if (MapIt != OverlappingFragments.end()) {
858     for (auto Fragment : MapIt->second) {
859       VarLocBasedLDV::OptFragmentInfo FragmentHolder;
860       if (!DebugVariable::isDefaultFragment(Fragment))
861         FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
862       DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
863     }
864   }
865 }
866 
erase(const VarLocSet & KillSet,const VarLocMap & VarLocIDs)867 void VarLocBasedLDV::OpenRangesSet::erase(const VarLocSet &KillSet,
868                                            const VarLocMap &VarLocIDs) {
869   VarLocs.intersectWithComplement(KillSet);
870   for (uint64_t ID : KillSet) {
871     const VarLoc *VL = &VarLocIDs[LocIndex::fromRawInteger(ID)];
872     auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
873     EraseFrom->erase(VL->Var);
874   }
875 }
876 
insert(LocIndex VarLocID,const VarLoc & VL)877 void VarLocBasedLDV::OpenRangesSet::insert(LocIndex VarLocID,
878                                             const VarLoc &VL) {
879   auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
880   VarLocs.set(VarLocID.getAsRawInteger());
881   InsertInto->insert({VL.Var, VarLocID});
882 }
883 
884 /// Return the Loc ID of an entry value backup location, if it exists for the
885 /// variable.
886 llvm::Optional<LocIndex>
getEntryValueBackup(DebugVariable Var)887 VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
888   auto It = EntryValuesBackupVars.find(Var);
889   if (It != EntryValuesBackupVars.end())
890     return It->second;
891 
892   return llvm::None;
893 }
894 
collectIDsForRegs(VarLocSet & Collected,const DefinedRegsSet & Regs,const VarLocSet & CollectFrom) const895 void VarLocBasedLDV::collectIDsForRegs(VarLocSet &Collected,
896                                         const DefinedRegsSet &Regs,
897                                         const VarLocSet &CollectFrom) const {
898   assert(!Regs.empty() && "Nothing to collect");
899   SmallVector<uint32_t, 32> SortedRegs;
900   for (Register Reg : Regs)
901     SortedRegs.push_back(Reg);
902   array_pod_sort(SortedRegs.begin(), SortedRegs.end());
903   auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
904   auto End = CollectFrom.end();
905   for (uint32_t Reg : SortedRegs) {
906     // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
907     // possible VarLoc IDs for VarLocs of kind RegisterKind which live in Reg.
908     uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
909     uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
910     It.advanceToLowerBound(FirstIndexForReg);
911 
912     // Iterate through that half-open interval and collect all the set IDs.
913     for (; It != End && *It < FirstInvalidIndex; ++It)
914       Collected.set(*It);
915 
916     if (It == End)
917       return;
918   }
919 }
920 
getUsedRegs(const VarLocSet & CollectFrom,SmallVectorImpl<uint32_t> & UsedRegs) const921 void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
922                                   SmallVectorImpl<uint32_t> &UsedRegs) const {
923   // All register-based VarLocs are assigned indices greater than or equal to
924   // FirstRegIndex.
925   uint64_t FirstRegIndex = LocIndex::rawIndexForReg(1);
926   uint64_t FirstInvalidIndex =
927       LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
928   for (auto It = CollectFrom.find(FirstRegIndex),
929             End = CollectFrom.find(FirstInvalidIndex);
930        It != End;) {
931     // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
932     // which register and add it to UsedRegs.
933     uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
934     assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
935            "Duplicate used reg");
936     UsedRegs.push_back(FoundReg);
937 
938     // Skip to the next /set/ register. Note that this finds a lower bound, so
939     // even if there aren't any VarLocs living in `FoundReg+1`, we're still
940     // guaranteed to move on to the next register (or to end()).
941     uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
942     It.advanceToLowerBound(NextRegIndex);
943   }
944 }
945 
946 //===----------------------------------------------------------------------===//
947 //            Debug Range Extension Implementation
948 //===----------------------------------------------------------------------===//
949 
950 #ifndef NDEBUG
printVarLocInMBB(const MachineFunction & MF,const VarLocInMBB & V,const VarLocMap & VarLocIDs,const char * msg,raw_ostream & Out) const951 void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
952                                        const VarLocInMBB &V,
953                                        const VarLocMap &VarLocIDs,
954                                        const char *msg,
955                                        raw_ostream &Out) const {
956   Out << '\n' << msg << '\n';
957   for (const MachineBasicBlock &BB : MF) {
958     if (!V.count(&BB))
959       continue;
960     const VarLocSet &L = getVarLocsInMBB(&BB, V);
961     if (L.empty())
962       continue;
963     Out << "MBB: " << BB.getNumber() << ":\n";
964     for (uint64_t VLL : L) {
965       const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(VLL)];
966       Out << " Var: " << VL.Var.getVariable()->getName();
967       Out << " MI: ";
968       VL.dump(TRI, Out);
969     }
970   }
971   Out << "\n";
972 }
973 #endif
974 
975 VarLocBasedLDV::VarLoc::SpillLoc
extractSpillBaseRegAndOffset(const MachineInstr & MI)976 VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
977   assert(MI.hasOneMemOperand() &&
978          "Spill instruction does not have exactly one memory operand?");
979   auto MMOI = MI.memoperands_begin();
980   const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
981   assert(PVal->kind() == PseudoSourceValue::FixedStack &&
982          "Inconsistent memory operand in spill instruction");
983   int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
984   const MachineBasicBlock *MBB = MI.getParent();
985   Register Reg;
986   StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
987   assert(!Offset.getScalable() &&
988          "Frame offsets with a scalable component are not supported");
989   return {Reg, static_cast<int>(Offset.getFixed())};
990 }
991 
992 /// Try to salvage the debug entry value if we encounter a new debug value
993 /// describing the same parameter, otherwise stop tracking the value. Return
994 /// true if we should stop tracking the entry value, otherwise return false.
removeEntryValue(const MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs,const VarLoc & EntryVL)995 bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
996                                        OpenRangesSet &OpenRanges,
997                                        VarLocMap &VarLocIDs,
998                                        const VarLoc &EntryVL) {
999   // Skip the DBG_VALUE which is the debug entry value itself.
1000   if (MI.isIdenticalTo(EntryVL.MI))
1001     return false;
1002 
1003   // If the parameter's location is not register location, we can not track
1004   // the entry value any more. In addition, if the debug expression from the
1005   // DBG_VALUE is not empty, we can assume the parameter's value has changed
1006   // indicating that we should stop tracking its entry value as well.
1007   if (!MI.getDebugOperand(0).isReg() ||
1008       MI.getDebugExpression()->getNumElements() != 0)
1009     return true;
1010 
1011   // If the DBG_VALUE comes from a copy instruction that copies the entry value,
1012   // it means the parameter's value has not changed and we should be able to use
1013   // its entry value.
1014   bool TrySalvageEntryValue = false;
1015   Register Reg = MI.getDebugOperand(0).getReg();
1016   auto I = std::next(MI.getReverseIterator());
1017   const MachineOperand *SrcRegOp, *DestRegOp;
1018   if (I != MI.getParent()->rend()) {
1019     // TODO: Try to keep tracking of an entry value if we encounter a propagated
1020     // DBG_VALUE describing the copy of the entry value. (Propagated entry value
1021     // does not indicate the parameter modification.)
1022     auto DestSrc = TII->isCopyInstr(*I);
1023     if (!DestSrc)
1024       return true;
1025 
1026     SrcRegOp = DestSrc->Source;
1027     DestRegOp = DestSrc->Destination;
1028     if (Reg != DestRegOp->getReg())
1029       return true;
1030     TrySalvageEntryValue = true;
1031   }
1032 
1033   if (TrySalvageEntryValue) {
1034     for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1035       const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
1036       if (VL.getEntryValueCopyBackupReg() == Reg &&
1037           VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
1038         return false;
1039     }
1040   }
1041 
1042   return true;
1043 }
1044 
1045 /// End all previous ranges related to @MI and start a new range from @MI
1046 /// if it is a DBG_VALUE instr.
transferDebugValue(const MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs)1047 void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
1048                                          OpenRangesSet &OpenRanges,
1049                                          VarLocMap &VarLocIDs) {
1050   if (!MI.isDebugValue())
1051     return;
1052   const DILocalVariable *Var = MI.getDebugVariable();
1053   const DIExpression *Expr = MI.getDebugExpression();
1054   const DILocation *DebugLoc = MI.getDebugLoc();
1055   const DILocation *InlinedAt = DebugLoc->getInlinedAt();
1056   assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
1057          "Expected inlined-at fields to agree");
1058 
1059   DebugVariable V(Var, Expr, InlinedAt);
1060 
1061   // Check if this DBG_VALUE indicates a parameter's value changing.
1062   // If that is the case, we should stop tracking its entry value.
1063   auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
1064   if (Var->isParameter() && EntryValBackupID) {
1065     const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID];
1066     if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) {
1067       LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
1068                  MI.print(dbgs(), /*IsStandalone*/ false,
1069                           /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
1070                           /*AddNewLine*/ true, TII));
1071       OpenRanges.erase(EntryVL);
1072     }
1073   }
1074 
1075   if (isDbgValueDescribedByReg(MI) || MI.getDebugOperand(0).isImm() ||
1076       MI.getDebugOperand(0).isFPImm() || MI.getDebugOperand(0).isCImm()) {
1077     // Use normal VarLoc constructor for registers and immediates.
1078     VarLoc VL(MI, LS);
1079     // End all previous ranges of VL.Var.
1080     OpenRanges.erase(VL);
1081 
1082     LocIndex ID = VarLocIDs.insert(VL);
1083     // Add the VarLoc to OpenRanges from this DBG_VALUE.
1084     OpenRanges.insert(ID, VL);
1085   } else if (MI.hasOneMemOperand()) {
1086     llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
1087   } else {
1088     // This must be an undefined location. If it has an open range, erase it.
1089     assert(MI.getDebugOperand(0).isReg() &&
1090            MI.getDebugOperand(0).getReg() == 0 &&
1091            "Unexpected non-undef DBG_VALUE encountered");
1092     VarLoc VL(MI, LS);
1093     OpenRanges.erase(VL);
1094   }
1095 }
1096 
1097 /// Turn the entry value backup locations into primary locations.
emitEntryValues(MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs,TransferMap & Transfers,VarLocSet & KillSet)1098 void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
1099                                       OpenRangesSet &OpenRanges,
1100                                       VarLocMap &VarLocIDs,
1101                                       TransferMap &Transfers,
1102                                       VarLocSet &KillSet) {
1103   // Do not insert entry value locations after a terminator.
1104   if (MI.isTerminator())
1105     return;
1106 
1107   for (uint64_t ID : KillSet) {
1108     LocIndex Idx = LocIndex::fromRawInteger(ID);
1109     const VarLoc &VL = VarLocIDs[Idx];
1110     if (!VL.Var.getVariable()->isParameter())
1111       continue;
1112 
1113     auto DebugVar = VL.Var;
1114     Optional<LocIndex> EntryValBackupID =
1115         OpenRanges.getEntryValueBackup(DebugVar);
1116 
1117     // If the parameter has the entry value backup, it means we should
1118     // be able to use its entry value.
1119     if (!EntryValBackupID)
1120       continue;
1121 
1122     const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID];
1123     VarLoc EntryLoc =
1124         VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo);
1125     LocIndex EntryValueID = VarLocIDs.insert(EntryLoc);
1126     Transfers.push_back({&MI, EntryValueID});
1127     OpenRanges.insert(EntryValueID, EntryLoc);
1128   }
1129 }
1130 
1131 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
1132 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
1133 /// new VarLoc. If \p NewReg is different than default zero value then the
1134 /// new location will be register location created by the copy like instruction,
1135 /// otherwise it is variable's location on the stack.
insertTransferDebugPair(MachineInstr & MI,OpenRangesSet & OpenRanges,TransferMap & Transfers,VarLocMap & VarLocIDs,LocIndex OldVarID,TransferKind Kind,Register NewReg)1136 void VarLocBasedLDV::insertTransferDebugPair(
1137     MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
1138     VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
1139     Register NewReg) {
1140   const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI;
1141 
1142   auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
1143     LocIndex LocId = VarLocIDs.insert(VL);
1144 
1145     // Close this variable's previous location range.
1146     OpenRanges.erase(VL);
1147 
1148     // Record the new location as an open range, and a postponed transfer
1149     // inserting a DBG_VALUE for this location.
1150     OpenRanges.insert(LocId, VL);
1151     assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
1152     TransferDebugPair MIP = {&MI, LocId};
1153     Transfers.push_back(MIP);
1154   };
1155 
1156   // End all previous ranges of VL.Var.
1157   OpenRanges.erase(VarLocIDs[OldVarID]);
1158   switch (Kind) {
1159   case TransferKind::TransferCopy: {
1160     assert(NewReg &&
1161            "No register supplied when handling a copy of a debug value");
1162     // Create a DBG_VALUE instruction to describe the Var in its new
1163     // register location.
1164     VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
1165     ProcessVarLoc(VL);
1166     LLVM_DEBUG({
1167       dbgs() << "Creating VarLoc for register copy:";
1168       VL.dump(TRI);
1169     });
1170     return;
1171   }
1172   case TransferKind::TransferSpill: {
1173     // Create a DBG_VALUE instruction to describe the Var in its spilled
1174     // location.
1175     VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
1176     VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase,
1177                                        SpillLocation.SpillOffset, LS);
1178     ProcessVarLoc(VL);
1179     LLVM_DEBUG({
1180       dbgs() << "Creating VarLoc for spill:";
1181       VL.dump(TRI);
1182     });
1183     return;
1184   }
1185   case TransferKind::TransferRestore: {
1186     assert(NewReg &&
1187            "No register supplied when handling a restore of a debug value");
1188     // DebugInstr refers to the pre-spill location, therefore we can reuse
1189     // its expression.
1190     VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
1191     ProcessVarLoc(VL);
1192     LLVM_DEBUG({
1193       dbgs() << "Creating VarLoc for restore:";
1194       VL.dump(TRI);
1195     });
1196     return;
1197   }
1198   }
1199   llvm_unreachable("Invalid transfer kind");
1200 }
1201 
1202 /// A definition of a register may mark the end of a range.
transferRegisterDef(MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs,TransferMap & Transfers)1203 void VarLocBasedLDV::transferRegisterDef(
1204     MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
1205     TransferMap &Transfers) {
1206 
1207   // Meta Instructions do not affect the debug liveness of any register they
1208   // define.
1209   if (MI.isMetaInstruction())
1210     return;
1211 
1212   MachineFunction *MF = MI.getMF();
1213   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1214   Register SP = TLI->getStackPointerRegisterToSaveRestore();
1215 
1216   // Find the regs killed by MI, and find regmasks of preserved regs.
1217   DefinedRegsSet DeadRegs;
1218   SmallVector<const uint32_t *, 4> RegMasks;
1219   for (const MachineOperand &MO : MI.operands()) {
1220     // Determine whether the operand is a register def.
1221     if (MO.isReg() && MO.isDef() && MO.getReg() &&
1222         Register::isPhysicalRegister(MO.getReg()) &&
1223         !(MI.isCall() && MO.getReg() == SP)) {
1224       // Remove ranges of all aliased registers.
1225       for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
1226         // FIXME: Can we break out of this loop early if no insertion occurs?
1227         DeadRegs.insert(*RAI);
1228     } else if (MO.isRegMask()) {
1229       RegMasks.push_back(MO.getRegMask());
1230     }
1231   }
1232 
1233   // Erase VarLocs which reside in one of the dead registers. For performance
1234   // reasons, it's critical to not iterate over the full set of open VarLocs.
1235   // Iterate over the set of dying/used regs instead.
1236   if (!RegMasks.empty()) {
1237     SmallVector<uint32_t, 32> UsedRegs;
1238     getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
1239     for (uint32_t Reg : UsedRegs) {
1240       // Remove ranges of all clobbered registers. Register masks don't usually
1241       // list SP as preserved. Assume that call instructions never clobber SP,
1242       // because some backends (e.g., AArch64) never list SP in the regmask.
1243       // While the debug info may be off for an instruction or two around
1244       // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
1245       // still a better user experience.
1246       if (Reg == SP)
1247         continue;
1248       bool AnyRegMaskKillsReg =
1249           any_of(RegMasks, [Reg](const uint32_t *RegMask) {
1250             return MachineOperand::clobbersPhysReg(RegMask, Reg);
1251           });
1252       if (AnyRegMaskKillsReg)
1253         DeadRegs.insert(Reg);
1254     }
1255   }
1256 
1257   if (DeadRegs.empty())
1258     return;
1259 
1260   VarLocSet KillSet(Alloc);
1261   collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs());
1262   OpenRanges.erase(KillSet, VarLocIDs);
1263 
1264   if (TPC) {
1265     auto &TM = TPC->getTM<TargetMachine>();
1266     if (TM.Options.ShouldEmitDebugEntryValues())
1267       emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet);
1268   }
1269 }
1270 
isSpillInstruction(const MachineInstr & MI,MachineFunction * MF)1271 bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
1272                                          MachineFunction *MF) {
1273   // TODO: Handle multiple stores folded into one.
1274   if (!MI.hasOneMemOperand())
1275     return false;
1276 
1277   if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
1278     return false; // This is not a spill instruction, since no valid size was
1279                   // returned from either function.
1280 
1281   return true;
1282 }
1283 
isLocationSpill(const MachineInstr & MI,MachineFunction * MF,Register & Reg)1284 bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
1285                                       MachineFunction *MF, Register &Reg) {
1286   if (!isSpillInstruction(MI, MF))
1287     return false;
1288 
1289   auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
1290     if (!MO.isReg() || !MO.isUse()) {
1291       Reg = 0;
1292       return false;
1293     }
1294     Reg = MO.getReg();
1295     return MO.isKill();
1296   };
1297 
1298   for (const MachineOperand &MO : MI.operands()) {
1299     // In a spill instruction generated by the InlineSpiller the spilled
1300     // register has its kill flag set.
1301     if (isKilledReg(MO, Reg))
1302       return true;
1303     if (Reg != 0) {
1304       // Check whether next instruction kills the spilled register.
1305       // FIXME: Current solution does not cover search for killed register in
1306       // bundles and instructions further down the chain.
1307       auto NextI = std::next(MI.getIterator());
1308       // Skip next instruction that points to basic block end iterator.
1309       if (MI.getParent()->end() == NextI)
1310         continue;
1311       Register RegNext;
1312       for (const MachineOperand &MONext : NextI->operands()) {
1313         // Return true if we came across the register from the
1314         // previous spill instruction that is killed in NextI.
1315         if (isKilledReg(MONext, RegNext) && RegNext == Reg)
1316           return true;
1317       }
1318     }
1319   }
1320   // Return false if we didn't find spilled register.
1321   return false;
1322 }
1323 
1324 Optional<VarLocBasedLDV::VarLoc::SpillLoc>
isRestoreInstruction(const MachineInstr & MI,MachineFunction * MF,Register & Reg)1325 VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
1326                                       MachineFunction *MF, Register &Reg) {
1327   if (!MI.hasOneMemOperand())
1328     return None;
1329 
1330   // FIXME: Handle folded restore instructions with more than one memory
1331   // operand.
1332   if (MI.getRestoreSize(TII)) {
1333     Reg = MI.getOperand(0).getReg();
1334     return extractSpillBaseRegAndOffset(MI);
1335   }
1336   return None;
1337 }
1338 
1339 /// A spilled register may indicate that we have to end the current range of
1340 /// a variable and create a new one for the spill location.
1341 /// A restored register may indicate the reverse situation.
1342 /// We don't want to insert any instructions in process(), so we just create
1343 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
1344 /// It will be inserted into the BB when we're done iterating over the
1345 /// instructions.
transferSpillOrRestoreInst(MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs,TransferMap & Transfers)1346 void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
1347                                                  OpenRangesSet &OpenRanges,
1348                                                  VarLocMap &VarLocIDs,
1349                                                  TransferMap &Transfers) {
1350   MachineFunction *MF = MI.getMF();
1351   TransferKind TKind;
1352   Register Reg;
1353   Optional<VarLoc::SpillLoc> Loc;
1354 
1355   LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
1356 
1357   // First, if there are any DBG_VALUEs pointing at a spill slot that is
1358   // written to, then close the variable location. The value in memory
1359   // will have changed.
1360   VarLocSet KillSet(Alloc);
1361   if (isSpillInstruction(MI, MF)) {
1362     Loc = extractSpillBaseRegAndOffset(MI);
1363     for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
1364       LocIndex Idx = LocIndex::fromRawInteger(ID);
1365       const VarLoc &VL = VarLocIDs[Idx];
1366       assert(VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?");
1367       if (VL.Loc.SpillLocation == *Loc) {
1368         // This location is overwritten by the current instruction -- terminate
1369         // the open range, and insert an explicit DBG_VALUE $noreg.
1370         //
1371         // Doing this at a later stage would require re-interpreting all
1372         // DBG_VALUes and DIExpressions to identify whether they point at
1373         // memory, and then analysing all memory writes to see if they
1374         // overwrite that memory, which is expensive.
1375         //
1376         // At this stage, we already know which DBG_VALUEs are for spills and
1377         // where they are located; it's best to fix handle overwrites now.
1378         KillSet.set(ID);
1379         VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0);
1380         LocIndex UndefLocID = VarLocIDs.insert(UndefVL);
1381         Transfers.push_back({&MI, UndefLocID});
1382       }
1383     }
1384     OpenRanges.erase(KillSet, VarLocIDs);
1385   }
1386 
1387   // Try to recognise spill and restore instructions that may create a new
1388   // variable location.
1389   if (isLocationSpill(MI, MF, Reg)) {
1390     TKind = TransferKind::TransferSpill;
1391     LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
1392     LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
1393                       << "\n");
1394   } else {
1395     if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
1396       return;
1397     TKind = TransferKind::TransferRestore;
1398     LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
1399     LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
1400                       << "\n");
1401   }
1402   // Check if the register or spill location is the location of a debug value.
1403   auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
1404   if (TKind == TransferKind::TransferSpill)
1405     TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
1406   else if (TKind == TransferKind::TransferRestore)
1407     TransferCandidates = OpenRanges.getSpillVarLocs();
1408   for (uint64_t ID : TransferCandidates) {
1409     LocIndex Idx = LocIndex::fromRawInteger(ID);
1410     const VarLoc &VL = VarLocIDs[Idx];
1411     if (TKind == TransferKind::TransferSpill) {
1412       assert(VL.isDescribedByReg() == Reg && "Broken VarLocSet?");
1413       LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
1414                         << VL.Var.getVariable()->getName() << ")\n");
1415     } else {
1416       assert(TKind == TransferKind::TransferRestore &&
1417              VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?");
1418       if (VL.Loc.SpillLocation != *Loc)
1419         // The spill location is not the location of a debug value.
1420         continue;
1421       LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
1422                         << VL.Var.getVariable()->getName() << ")\n");
1423     }
1424     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
1425                             Reg);
1426     // FIXME: A comment should explain why it's correct to return early here,
1427     // if that is in fact correct.
1428     return;
1429   }
1430 }
1431 
1432 /// If \p MI is a register copy instruction, that copies a previously tracked
1433 /// value from one register to another register that is callee saved, we
1434 /// create new DBG_VALUE instruction  described with copy destination register.
transferRegisterCopy(MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs,TransferMap & Transfers)1435 void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
1436                                            OpenRangesSet &OpenRanges,
1437                                            VarLocMap &VarLocIDs,
1438                                            TransferMap &Transfers) {
1439   auto DestSrc = TII->isCopyInstr(MI);
1440   if (!DestSrc)
1441     return;
1442 
1443   const MachineOperand *DestRegOp = DestSrc->Destination;
1444   const MachineOperand *SrcRegOp = DestSrc->Source;
1445 
1446   if (!DestRegOp->isDef())
1447     return;
1448 
1449   auto isCalleeSavedReg = [&](Register Reg) {
1450     for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
1451       if (CalleeSavedRegs.test(*RAI))
1452         return true;
1453     return false;
1454   };
1455 
1456   Register SrcReg = SrcRegOp->getReg();
1457   Register DestReg = DestRegOp->getReg();
1458 
1459   // We want to recognize instructions where destination register is callee
1460   // saved register. If register that could be clobbered by the call is
1461   // included, there would be a great chance that it is going to be clobbered
1462   // soon. It is more likely that previous register location, which is callee
1463   // saved, is going to stay unclobbered longer, even if it is killed.
1464   if (!isCalleeSavedReg(DestReg))
1465     return;
1466 
1467   // Remember an entry value movement. If we encounter a new debug value of
1468   // a parameter describing only a moving of the value around, rather then
1469   // modifying it, we are still able to use the entry value if needed.
1470   if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
1471     for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
1472       LocIndex Idx = LocIndex::fromRawInteger(ID);
1473       const VarLoc &VL = VarLocIDs[Idx];
1474       if (VL.getEntryValueBackupReg() == SrcReg) {
1475         LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
1476         VarLoc EntryValLocCopyBackup =
1477             VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg);
1478 
1479         // Stop tracking the original entry value.
1480         OpenRanges.erase(VL);
1481 
1482         // Start tracking the entry value copy.
1483         LocIndex EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup);
1484         OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup);
1485         break;
1486       }
1487     }
1488   }
1489 
1490   if (!SrcRegOp->isKill())
1491     return;
1492 
1493   for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
1494     LocIndex Idx = LocIndex::fromRawInteger(ID);
1495     assert(VarLocIDs[Idx].isDescribedByReg() == SrcReg && "Broken VarLocSet?");
1496     insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
1497                             TransferKind::TransferCopy, DestReg);
1498     // FIXME: A comment should explain why it's correct to return early here,
1499     // if that is in fact correct.
1500     return;
1501   }
1502 }
1503 
1504 /// Terminate all open ranges at the end of the current basic block.
transferTerminator(MachineBasicBlock * CurMBB,OpenRangesSet & OpenRanges,VarLocInMBB & OutLocs,const VarLocMap & VarLocIDs)1505 bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
1506                                          OpenRangesSet &OpenRanges,
1507                                          VarLocInMBB &OutLocs,
1508                                          const VarLocMap &VarLocIDs) {
1509   bool Changed = false;
1510 
1511   LLVM_DEBUG(for (uint64_t ID
1512                   : OpenRanges.getVarLocs()) {
1513     // Copy OpenRanges to OutLocs, if not already present.
1514     dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ":  ";
1515     VarLocIDs[LocIndex::fromRawInteger(ID)].dump(TRI);
1516   });
1517   VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
1518   Changed = VLS != OpenRanges.getVarLocs();
1519   // New OutLocs set may be different due to spill, restore or register
1520   // copy instruction processing.
1521   if (Changed)
1522     VLS = OpenRanges.getVarLocs();
1523   OpenRanges.clear();
1524   return Changed;
1525 }
1526 
1527 /// Accumulate a mapping between each DILocalVariable fragment and other
1528 /// fragments of that DILocalVariable which overlap. This reduces work during
1529 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1530 /// known-to-overlap fragments are present".
1531 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1532 ///           fragment usage.
1533 /// \param SeenFragments Map from DILocalVariable to all fragments of that
1534 ///           Variable which are known to exist.
1535 /// \param OverlappingFragments The overlap map being constructed, from one
1536 ///           Var/Fragment pair to a vector of fragments known to overlap.
accumulateFragmentMap(MachineInstr & MI,VarToFragments & SeenFragments,OverlapMap & OverlappingFragments)1537 void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
1538                                             VarToFragments &SeenFragments,
1539                                             OverlapMap &OverlappingFragments) {
1540   DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
1541                       MI.getDebugLoc()->getInlinedAt());
1542   FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
1543 
1544   // If this is the first sighting of this variable, then we are guaranteed
1545   // there are currently no overlapping fragments either. Initialize the set
1546   // of seen fragments, record no overlaps for the current one, and return.
1547   auto SeenIt = SeenFragments.find(MIVar.getVariable());
1548   if (SeenIt == SeenFragments.end()) {
1549     SmallSet<FragmentInfo, 4> OneFragment;
1550     OneFragment.insert(ThisFragment);
1551     SeenFragments.insert({MIVar.getVariable(), OneFragment});
1552 
1553     OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1554     return;
1555   }
1556 
1557   // If this particular Variable/Fragment pair already exists in the overlap
1558   // map, it has already been accounted for.
1559   auto IsInOLapMap =
1560       OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
1561   if (!IsInOLapMap.second)
1562     return;
1563 
1564   auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1565   auto &AllSeenFragments = SeenIt->second;
1566 
1567   // Otherwise, examine all other seen fragments for this variable, with "this"
1568   // fragment being a previously unseen fragment. Record any pair of
1569   // overlapping fragments.
1570   for (auto &ASeenFragment : AllSeenFragments) {
1571     // Does this previously seen fragment overlap?
1572     if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1573       // Yes: Mark the current fragment as being overlapped.
1574       ThisFragmentsOverlaps.push_back(ASeenFragment);
1575       // Mark the previously seen fragment as being overlapped by the current
1576       // one.
1577       auto ASeenFragmentsOverlaps =
1578           OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
1579       assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
1580              "Previously seen var fragment has no vector of overlaps");
1581       ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1582     }
1583   }
1584 
1585   AllSeenFragments.insert(ThisFragment);
1586 }
1587 
1588 /// This routine creates OpenRanges.
process(MachineInstr & MI,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs,TransferMap & Transfers)1589 void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
1590                               VarLocMap &VarLocIDs, TransferMap &Transfers) {
1591   transferDebugValue(MI, OpenRanges, VarLocIDs);
1592   transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers);
1593   transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
1594   transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
1595 }
1596 
1597 /// This routine joins the analysis results of all incoming edges in @MBB by
1598 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
1599 /// source variable in all the predecessors of @MBB reside in the same location.
join(MachineBasicBlock & MBB,VarLocInMBB & OutLocs,VarLocInMBB & InLocs,const VarLocMap & VarLocIDs,SmallPtrSet<const MachineBasicBlock *,16> & Visited,SmallPtrSetImpl<const MachineBasicBlock * > & ArtificialBlocks)1600 bool VarLocBasedLDV::join(
1601     MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1602     const VarLocMap &VarLocIDs,
1603     SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1604     SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
1605   LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1606 
1607   VarLocSet InLocsT(Alloc); // Temporary incoming locations.
1608 
1609   // For all predecessors of this MBB, find the set of VarLocs that
1610   // can be joined.
1611   int NumVisited = 0;
1612   for (auto p : MBB.predecessors()) {
1613     // Ignore backedges if we have not visited the predecessor yet. As the
1614     // predecessor hasn't yet had locations propagated into it, most locations
1615     // will not yet be valid, so treat them as all being uninitialized and
1616     // potentially valid. If a location guessed to be correct here is
1617     // invalidated later, we will remove it when we revisit this block.
1618     if (!Visited.count(p)) {
1619       LLVM_DEBUG(dbgs() << "  ignoring unvisited pred MBB: " << p->getNumber()
1620                         << "\n");
1621       continue;
1622     }
1623     auto OL = OutLocs.find(p);
1624     // Join is null in case of empty OutLocs from any of the pred.
1625     if (OL == OutLocs.end())
1626       return false;
1627 
1628     // Just copy over the Out locs to incoming locs for the first visited
1629     // predecessor, and for all other predecessors join the Out locs.
1630     VarLocSet &OutLocVLS = *OL->second.get();
1631     if (!NumVisited)
1632       InLocsT = OutLocVLS;
1633     else
1634       InLocsT &= OutLocVLS;
1635 
1636     LLVM_DEBUG({
1637       if (!InLocsT.empty()) {
1638         for (uint64_t ID : InLocsT)
1639           dbgs() << "  gathered candidate incoming var: "
1640                  << VarLocIDs[LocIndex::fromRawInteger(ID)]
1641                         .Var.getVariable()
1642                         ->getName()
1643                  << "\n";
1644       }
1645     });
1646 
1647     NumVisited++;
1648   }
1649 
1650   // Filter out DBG_VALUES that are out of scope.
1651   VarLocSet KillSet(Alloc);
1652   bool IsArtificial = ArtificialBlocks.count(&MBB);
1653   if (!IsArtificial) {
1654     for (uint64_t ID : InLocsT) {
1655       LocIndex Idx = LocIndex::fromRawInteger(ID);
1656       if (!VarLocIDs[Idx].dominates(LS, MBB)) {
1657         KillSet.set(ID);
1658         LLVM_DEBUG({
1659           auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
1660           dbgs() << "  killing " << Name << ", it doesn't dominate MBB\n";
1661         });
1662       }
1663     }
1664   }
1665   InLocsT.intersectWithComplement(KillSet);
1666 
1667   // As we are processing blocks in reverse post-order we
1668   // should have processed at least one predecessor, unless it
1669   // is the entry block which has no predecessor.
1670   assert((NumVisited || MBB.pred_empty()) &&
1671          "Should have processed at least one predecessor");
1672 
1673   VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
1674   bool Changed = false;
1675   if (ILS != InLocsT) {
1676     ILS = InLocsT;
1677     Changed = true;
1678   }
1679 
1680   return Changed;
1681 }
1682 
flushPendingLocs(VarLocInMBB & PendingInLocs,VarLocMap & VarLocIDs)1683 void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
1684                                        VarLocMap &VarLocIDs) {
1685   // PendingInLocs records all locations propagated into blocks, which have
1686   // not had DBG_VALUE insts created. Go through and create those insts now.
1687   for (auto &Iter : PendingInLocs) {
1688     // Map is keyed on a constant pointer, unwrap it so we can insert insts.
1689     auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
1690     VarLocSet &Pending = *Iter.second.get();
1691 
1692     for (uint64_t ID : Pending) {
1693       // The ID location is live-in to MBB -- work out what kind of machine
1694       // location it is and create a DBG_VALUE.
1695       const VarLoc &DiffIt = VarLocIDs[LocIndex::fromRawInteger(ID)];
1696       if (DiffIt.isEntryBackupLoc())
1697         continue;
1698       MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
1699       MBB.insert(MBB.instr_begin(), MI);
1700 
1701       (void)MI;
1702       LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
1703     }
1704   }
1705 }
1706 
isEntryValueCandidate(const MachineInstr & MI,const DefinedRegsSet & DefinedRegs) const1707 bool VarLocBasedLDV::isEntryValueCandidate(
1708     const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
1709   assert(MI.isDebugValue() && "This must be DBG_VALUE.");
1710 
1711   // TODO: Add support for local variables that are expressed in terms of
1712   // parameters entry values.
1713   // TODO: Add support for modified arguments that can be expressed
1714   // by using its entry value.
1715   auto *DIVar = MI.getDebugVariable();
1716   if (!DIVar->isParameter())
1717     return false;
1718 
1719   // Do not consider parameters that belong to an inlined function.
1720   if (MI.getDebugLoc()->getInlinedAt())
1721     return false;
1722 
1723   // Only consider parameters that are described using registers. Parameters
1724   // that are passed on the stack are not yet supported, so ignore debug
1725   // values that are described by the frame or stack pointer.
1726   if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
1727     return false;
1728 
1729   // If a parameter's value has been propagated from the caller, then the
1730   // parameter's DBG_VALUE may be described using a register defined by some
1731   // instruction in the entry block, in which case we shouldn't create an
1732   // entry value.
1733   if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
1734     return false;
1735 
1736   // TODO: Add support for parameters that have a pre-existing debug expressions
1737   // (e.g. fragments).
1738   if (MI.getDebugExpression()->getNumElements() > 0)
1739     return false;
1740 
1741   return true;
1742 }
1743 
1744 /// Collect all register defines (including aliases) for the given instruction.
collectRegDefs(const MachineInstr & MI,DefinedRegsSet & Regs,const TargetRegisterInfo * TRI)1745 static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
1746                            const TargetRegisterInfo *TRI) {
1747   for (const MachineOperand &MO : MI.operands())
1748     if (MO.isReg() && MO.isDef() && MO.getReg())
1749       for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
1750         Regs.insert(*AI);
1751 }
1752 
1753 /// This routine records the entry values of function parameters. The values
1754 /// could be used as backup values. If we loose the track of some unmodified
1755 /// parameters, the backup values will be used as a primary locations.
recordEntryValue(const MachineInstr & MI,const DefinedRegsSet & DefinedRegs,OpenRangesSet & OpenRanges,VarLocMap & VarLocIDs)1756 void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
1757                                        const DefinedRegsSet &DefinedRegs,
1758                                        OpenRangesSet &OpenRanges,
1759                                        VarLocMap &VarLocIDs) {
1760   if (TPC) {
1761     auto &TM = TPC->getTM<TargetMachine>();
1762     if (!TM.Options.ShouldEmitDebugEntryValues())
1763       return;
1764   }
1765 
1766   DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
1767                   MI.getDebugLoc()->getInlinedAt());
1768 
1769   if (!isEntryValueCandidate(MI, DefinedRegs) ||
1770       OpenRanges.getEntryValueBackup(V))
1771     return;
1772 
1773   LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
1774 
1775   // Create the entry value and use it as a backup location until it is
1776   // valid. It is valid until a parameter is not changed.
1777   DIExpression *NewExpr =
1778       DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
1779   VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr);
1780   LocIndex EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup);
1781   OpenRanges.insert(EntryValLocID, EntryValLocAsBackup);
1782 }
1783 
1784 /// Calculate the liveness information for the given machine function and
1785 /// extend ranges across basic blocks.
ExtendRanges(MachineFunction & MF,TargetPassConfig * TPC)1786 bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) {
1787   LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
1788 
1789   if (!MF.getFunction().getSubprogram())
1790     // VarLocBaseLDV will already have removed all DBG_VALUEs.
1791     return false;
1792 
1793   // Skip functions from NoDebug compilation units.
1794   if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
1795       DICompileUnit::NoDebug)
1796     return false;
1797 
1798   TRI = MF.getSubtarget().getRegisterInfo();
1799   TII = MF.getSubtarget().getInstrInfo();
1800   TFI = MF.getSubtarget().getFrameLowering();
1801   TFI->getCalleeSaves(MF, CalleeSavedRegs);
1802   this->TPC = TPC;
1803   LS.initialize(MF);
1804 
1805   bool Changed = false;
1806   bool OLChanged = false;
1807   bool MBBJoined = false;
1808 
1809   VarLocMap VarLocIDs;         // Map VarLoc<>unique ID for use in bitvectors.
1810   OverlapMap OverlapFragments; // Map of overlapping variable fragments.
1811   OpenRangesSet OpenRanges(Alloc, OverlapFragments);
1812                               // Ranges that are open until end of bb.
1813   VarLocInMBB OutLocs;        // Ranges that exist beyond bb.
1814   VarLocInMBB InLocs;         // Ranges that are incoming after joining.
1815   TransferMap Transfers;      // DBG_VALUEs associated with transfers (such as
1816                               // spills, copies and restores).
1817 
1818   VarToFragments SeenFragments;
1819 
1820   // Blocks which are artificial, i.e. blocks which exclusively contain
1821   // instructions without locations, or with line 0 locations.
1822   SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
1823 
1824   DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
1825   DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
1826   std::priority_queue<unsigned int, std::vector<unsigned int>,
1827                       std::greater<unsigned int>>
1828       Worklist;
1829   std::priority_queue<unsigned int, std::vector<unsigned int>,
1830                       std::greater<unsigned int>>
1831       Pending;
1832 
1833   // Set of register defines that are seen when traversing the entry block
1834   // looking for debug entry value candidates.
1835   DefinedRegsSet DefinedRegs;
1836 
1837   // Only in the case of entry MBB collect DBG_VALUEs representing
1838   // function parameters in order to generate debug entry values for them.
1839   MachineBasicBlock &First_MBB = *(MF.begin());
1840   for (auto &MI : First_MBB) {
1841     collectRegDefs(MI, DefinedRegs, TRI);
1842     if (MI.isDebugValue())
1843       recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
1844   }
1845 
1846   // Initialize per-block structures and scan for fragment overlaps.
1847   for (auto &MBB : MF)
1848     for (auto &MI : MBB)
1849       if (MI.isDebugValue())
1850         accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
1851 
1852   auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
1853     if (const DebugLoc &DL = MI.getDebugLoc())
1854       return DL.getLine() != 0;
1855     return false;
1856   };
1857   for (auto &MBB : MF)
1858     if (none_of(MBB.instrs(), hasNonArtificialLocation))
1859       ArtificialBlocks.insert(&MBB);
1860 
1861   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
1862                               "OutLocs after initialization", dbgs()));
1863 
1864   ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
1865   unsigned int RPONumber = 0;
1866   for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
1867     OrderToBB[RPONumber] = *RI;
1868     BBToOrder[*RI] = RPONumber;
1869     Worklist.push(RPONumber);
1870     ++RPONumber;
1871   }
1872 
1873   if (RPONumber > InputBBLimit) {
1874     unsigned NumInputDbgValues = 0;
1875     for (auto &MBB : MF)
1876       for (auto &MI : MBB)
1877         if (MI.isDebugValue())
1878           ++NumInputDbgValues;
1879     if (NumInputDbgValues > InputDbgValueLimit) {
1880       LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()
1881                         << " has " << RPONumber << " basic blocks and "
1882                         << NumInputDbgValues
1883                         << " input DBG_VALUEs, exceeding limits.\n");
1884       return false;
1885     }
1886   }
1887 
1888   // This is a standard "union of predecessor outs" dataflow problem.
1889   // To solve it, we perform join() and process() using the two worklist method
1890   // until the ranges converge.
1891   // Ranges have converged when both worklists are empty.
1892   SmallPtrSet<const MachineBasicBlock *, 16> Visited;
1893   while (!Worklist.empty() || !Pending.empty()) {
1894     // We track what is on the pending worklist to avoid inserting the same
1895     // thing twice.  We could avoid this with a custom priority queue, but this
1896     // is probably not worth it.
1897     SmallPtrSet<MachineBasicBlock *, 16> OnPending;
1898     LLVM_DEBUG(dbgs() << "Processing Worklist\n");
1899     while (!Worklist.empty()) {
1900       MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
1901       Worklist.pop();
1902       MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
1903                        ArtificialBlocks);
1904       MBBJoined |= Visited.insert(MBB).second;
1905       if (MBBJoined) {
1906         MBBJoined = false;
1907         Changed = true;
1908         // Now that we have started to extend ranges across BBs we need to
1909         // examine spill, copy and restore instructions to see whether they
1910         // operate with registers that correspond to user variables.
1911         // First load any pending inlocs.
1912         OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
1913         for (auto &MI : *MBB)
1914           process(MI, OpenRanges, VarLocIDs, Transfers);
1915         OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
1916 
1917         LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
1918                                     "OutLocs after propagating", dbgs()));
1919         LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
1920                                     "InLocs after propagating", dbgs()));
1921 
1922         if (OLChanged) {
1923           OLChanged = false;
1924           for (auto s : MBB->successors())
1925             if (OnPending.insert(s).second) {
1926               Pending.push(BBToOrder[s]);
1927             }
1928         }
1929       }
1930     }
1931     Worklist.swap(Pending);
1932     // At this point, pending must be empty, since it was just the empty
1933     // worklist
1934     assert(Pending.empty() && "Pending should be empty");
1935   }
1936 
1937   // Add any DBG_VALUE instructions created by location transfers.
1938   for (auto &TR : Transfers) {
1939     assert(!TR.TransferInst->isTerminator() &&
1940            "Cannot insert DBG_VALUE after terminator");
1941     MachineBasicBlock *MBB = TR.TransferInst->getParent();
1942     const VarLoc &VL = VarLocIDs[TR.LocationID];
1943     MachineInstr *MI = VL.BuildDbgValue(MF);
1944     MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
1945   }
1946   Transfers.clear();
1947 
1948   // Deferred inlocs will not have had any DBG_VALUE insts created; do
1949   // that now.
1950   flushPendingLocs(InLocs, VarLocIDs);
1951 
1952   LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
1953   LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
1954   return Changed;
1955 }
1956 
1957 LDVImpl *
makeVarLocBasedLiveDebugValues()1958 llvm::makeVarLocBasedLiveDebugValues()
1959 {
1960   return new VarLocBasedLDV();
1961 }
1962