• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006-2007 Universiteit Leiden
3  * Copyright 2008-2009 Katholieke Universiteit Leuven
4  *
5  * Use of this software is governed by the MIT license
6  *
7  * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
8  * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
9  * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
10  * B-3001 Leuven, Belgium
11  */
12 
13 #include <stdlib.h>
14 #include <isl_ctx_private.h>
15 #include <isl_map_private.h>
16 #include <isl_vec_private.h>
17 #include <isl_options_private.h>
18 #include "isl_basis_reduction.h"
19 
save_alpha(GBR_LP * lp,int first,int n,GBR_type * alpha)20 static void save_alpha(GBR_LP *lp, int first, int n, GBR_type *alpha)
21 {
22 	int i;
23 
24 	for (i = 0; i < n; ++i)
25 		GBR_lp_get_alpha(lp, first + i, &alpha[i]);
26 }
27 
28 /* Compute a reduced basis for the set represented by the tableau "tab".
29  * tab->basis, which must be initialized by the calling function to an affine
30  * unimodular basis, is updated to reflect the reduced basis.
31  * The first tab->n_zero rows of the basis (ignoring the constant row)
32  * are assumed to correspond to equalities and are left untouched.
33  * tab->n_zero is updated to reflect any additional equalities that
34  * have been detected in the first rows of the new basis.
35  * The final tab->n_unbounded rows of the basis are assumed to correspond
36  * to unbounded directions and are also left untouched.
37  * In particular this means that the remaining rows are assumed to
38  * correspond to bounded directions.
39  *
40  * This function implements the algorithm described in
41  * "An Implementation of the Generalized Basis Reduction Algorithm
42  *  for Integer Programming" of Cook el al. to compute a reduced basis.
43  * We use \epsilon = 1/4.
44  *
45  * If ctx->opt->gbr_only_first is set, the user is only interested
46  * in the first direction.  In this case we stop the basis reduction when
47  * the width in the first direction becomes smaller than 2.
48  */
isl_tab_compute_reduced_basis(struct isl_tab * tab)49 struct isl_tab *isl_tab_compute_reduced_basis(struct isl_tab *tab)
50 {
51 	unsigned dim;
52 	struct isl_ctx *ctx;
53 	struct isl_mat *B;
54 	int i;
55 	GBR_LP *lp = NULL;
56 	GBR_type F_old, alpha, F_new;
57 	int row;
58 	isl_int tmp;
59 	struct isl_vec *b_tmp;
60 	GBR_type *F = NULL;
61 	GBR_type *alpha_buffer[2] = { NULL, NULL };
62 	GBR_type *alpha_saved;
63 	GBR_type F_saved;
64 	int use_saved = 0;
65 	isl_int mu[2];
66 	GBR_type mu_F[2];
67 	GBR_type two;
68 	GBR_type one;
69 	int empty = 0;
70 	int fixed = 0;
71 	int fixed_saved = 0;
72 	int mu_fixed[2];
73 	int n_bounded;
74 	int gbr_only_first;
75 
76 	if (!tab)
77 		return NULL;
78 
79 	if (tab->empty)
80 		return tab;
81 
82 	ctx = tab->mat->ctx;
83 	gbr_only_first = ctx->opt->gbr_only_first;
84 	dim = tab->n_var;
85 	B = tab->basis;
86 	if (!B)
87 		return tab;
88 
89 	n_bounded = dim - tab->n_unbounded;
90 	if (n_bounded <= tab->n_zero + 1)
91 		return tab;
92 
93 	isl_int_init(tmp);
94 	isl_int_init(mu[0]);
95 	isl_int_init(mu[1]);
96 
97 	GBR_init(alpha);
98 	GBR_init(F_old);
99 	GBR_init(F_new);
100 	GBR_init(F_saved);
101 	GBR_init(mu_F[0]);
102 	GBR_init(mu_F[1]);
103 	GBR_init(two);
104 	GBR_init(one);
105 
106 	b_tmp = isl_vec_alloc(ctx, dim);
107 	if (!b_tmp)
108 		goto error;
109 
110 	F = isl_alloc_array(ctx, GBR_type, n_bounded);
111 	alpha_buffer[0] = isl_alloc_array(ctx, GBR_type, n_bounded);
112 	alpha_buffer[1] = isl_alloc_array(ctx, GBR_type, n_bounded);
113 	alpha_saved = alpha_buffer[0];
114 
115 	if (!F || !alpha_buffer[0] || !alpha_buffer[1])
116 		goto error;
117 
118 	for (i = 0; i < n_bounded; ++i) {
119 		GBR_init(F[i]);
120 		GBR_init(alpha_buffer[0][i]);
121 		GBR_init(alpha_buffer[1][i]);
122 	}
123 
124 	GBR_set_ui(two, 2);
125 	GBR_set_ui(one, 1);
126 
127 	lp = GBR_lp_init(tab);
128 	if (!lp)
129 		goto error;
130 
131 	i = tab->n_zero;
132 
133 	GBR_lp_set_obj(lp, B->row[1+i]+1, dim);
134 	ctx->stats->gbr_solved_lps++;
135 	if (GBR_lp_solve(lp) < 0)
136 		goto error;
137 	GBR_lp_get_obj_val(lp, &F[i]);
138 
139 	if (GBR_lt(F[i], one)) {
140 		if (!GBR_is_zero(F[i])) {
141 			empty = GBR_lp_cut(lp, B->row[1+i]+1);
142 			if (empty)
143 				goto done;
144 			GBR_set_ui(F[i], 0);
145 		}
146 		tab->n_zero++;
147 	}
148 
149 	do {
150 		if (i+1 == tab->n_zero) {
151 			GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
152 			ctx->stats->gbr_solved_lps++;
153 			if (GBR_lp_solve(lp) < 0)
154 				goto error;
155 			GBR_lp_get_obj_val(lp, &F_new);
156 			fixed = GBR_lp_is_fixed(lp);
157 			GBR_set_ui(alpha, 0);
158 		} else
159 		if (use_saved) {
160 			row = GBR_lp_next_row(lp);
161 			GBR_set(F_new, F_saved);
162 			fixed = fixed_saved;
163 			GBR_set(alpha, alpha_saved[i]);
164 		} else {
165 			row = GBR_lp_add_row(lp, B->row[1+i]+1, dim);
166 			GBR_lp_set_obj(lp, B->row[1+i+1]+1, dim);
167 			ctx->stats->gbr_solved_lps++;
168 			if (GBR_lp_solve(lp) < 0)
169 				goto error;
170 			GBR_lp_get_obj_val(lp, &F_new);
171 			fixed = GBR_lp_is_fixed(lp);
172 
173 			GBR_lp_get_alpha(lp, row, &alpha);
174 
175 			if (i > 0)
176 				save_alpha(lp, row-i, i, alpha_saved);
177 
178 			if (GBR_lp_del_row(lp) < 0)
179 				goto error;
180 		}
181 		GBR_set(F[i+1], F_new);
182 
183 		GBR_floor(mu[0], alpha);
184 		GBR_ceil(mu[1], alpha);
185 
186 		if (isl_int_eq(mu[0], mu[1]))
187 			isl_int_set(tmp, mu[0]);
188 		else {
189 			int j;
190 
191 			for (j = 0; j <= 1; ++j) {
192 				isl_int_set(tmp, mu[j]);
193 				isl_seq_combine(b_tmp->el,
194 						ctx->one, B->row[1+i+1]+1,
195 						tmp, B->row[1+i]+1, dim);
196 				GBR_lp_set_obj(lp, b_tmp->el, dim);
197 				ctx->stats->gbr_solved_lps++;
198 				if (GBR_lp_solve(lp) < 0)
199 					goto error;
200 				GBR_lp_get_obj_val(lp, &mu_F[j]);
201 				mu_fixed[j] = GBR_lp_is_fixed(lp);
202 				if (i > 0)
203 					save_alpha(lp, row-i, i, alpha_buffer[j]);
204 			}
205 
206 			if (GBR_lt(mu_F[0], mu_F[1]))
207 				j = 0;
208 			else
209 				j = 1;
210 
211 			isl_int_set(tmp, mu[j]);
212 			GBR_set(F_new, mu_F[j]);
213 			fixed = mu_fixed[j];
214 			alpha_saved = alpha_buffer[j];
215 		}
216 		isl_seq_combine(B->row[1+i+1]+1, ctx->one, B->row[1+i+1]+1,
217 				tmp, B->row[1+i]+1, dim);
218 
219 		if (i+1 == tab->n_zero && fixed) {
220 			if (!GBR_is_zero(F[i+1])) {
221 				empty = GBR_lp_cut(lp, B->row[1+i+1]+1);
222 				if (empty)
223 					goto done;
224 				GBR_set_ui(F[i+1], 0);
225 			}
226 			tab->n_zero++;
227 		}
228 
229 		GBR_set(F_old, F[i]);
230 
231 		use_saved = 0;
232 		/* mu_F[0] = 4 * F_new; mu_F[1] = 3 * F_old */
233 		GBR_set_ui(mu_F[0], 4);
234 		GBR_mul(mu_F[0], mu_F[0], F_new);
235 		GBR_set_ui(mu_F[1], 3);
236 		GBR_mul(mu_F[1], mu_F[1], F_old);
237 		if (GBR_lt(mu_F[0], mu_F[1])) {
238 			B = isl_mat_swap_rows(B, 1 + i, 1 + i + 1);
239 			if (i > tab->n_zero) {
240 				use_saved = 1;
241 				GBR_set(F_saved, F_new);
242 				fixed_saved = fixed;
243 				if (GBR_lp_del_row(lp) < 0)
244 					goto error;
245 				--i;
246 			} else {
247 				GBR_set(F[tab->n_zero], F_new);
248 				if (gbr_only_first && GBR_lt(F[tab->n_zero], two))
249 					break;
250 
251 				if (fixed) {
252 					if (!GBR_is_zero(F[tab->n_zero])) {
253 						empty = GBR_lp_cut(lp, B->row[1+tab->n_zero]+1);
254 						if (empty)
255 							goto done;
256 						GBR_set_ui(F[tab->n_zero], 0);
257 					}
258 					tab->n_zero++;
259 				}
260 			}
261 		} else {
262 			GBR_lp_add_row(lp, B->row[1+i]+1, dim);
263 			++i;
264 		}
265 	} while (i < n_bounded - 1);
266 
267 	if (0) {
268 done:
269 		if (empty < 0) {
270 error:
271 			isl_mat_free(B);
272 			B = NULL;
273 		}
274 	}
275 
276 	GBR_lp_delete(lp);
277 
278 	if (alpha_buffer[1])
279 		for (i = 0; i < n_bounded; ++i) {
280 			GBR_clear(F[i]);
281 			GBR_clear(alpha_buffer[0][i]);
282 			GBR_clear(alpha_buffer[1][i]);
283 		}
284 	free(F);
285 	free(alpha_buffer[0]);
286 	free(alpha_buffer[1]);
287 
288 	isl_vec_free(b_tmp);
289 
290 	GBR_clear(alpha);
291 	GBR_clear(F_old);
292 	GBR_clear(F_new);
293 	GBR_clear(F_saved);
294 	GBR_clear(mu_F[0]);
295 	GBR_clear(mu_F[1]);
296 	GBR_clear(two);
297 	GBR_clear(one);
298 
299 	isl_int_clear(tmp);
300 	isl_int_clear(mu[0]);
301 	isl_int_clear(mu[1]);
302 
303 	tab->basis = B;
304 
305 	return tab;
306 }
307 
308 /* Compute an affine form of a reduced basis of the given basic
309  * non-parametric set, which is assumed to be bounded and not
310  * include any integer divisions.
311  * The first column and the first row correspond to the constant term.
312  *
313  * If the input contains any equalities, we first create an initial
314  * basis with the equalities first.  Otherwise, we start off with
315  * the identity matrix.
316  */
isl_basic_set_reduced_basis(__isl_keep isl_basic_set * bset)317 __isl_give isl_mat *isl_basic_set_reduced_basis(__isl_keep isl_basic_set *bset)
318 {
319 	struct isl_mat *basis;
320 	struct isl_tab *tab;
321 
322 	if (isl_basic_set_check_no_locals(bset) < 0 ||
323 	    isl_basic_set_check_no_params(bset) < 0)
324 		return NULL;
325 
326 	tab = isl_tab_from_basic_set(bset, 0);
327 	if (!tab)
328 		return NULL;
329 
330 	if (bset->n_eq == 0)
331 		tab->basis = isl_mat_identity(bset->ctx, 1 + tab->n_var);
332 	else {
333 		isl_mat *eq;
334 		isl_size nvar = isl_basic_set_dim(bset, isl_dim_all);
335 		if (nvar < 0)
336 			goto error;
337 		eq = isl_mat_sub_alloc6(bset->ctx, bset->eq, 0, bset->n_eq,
338 					1, nvar);
339 		eq = isl_mat_left_hermite(eq, 0, NULL, &tab->basis);
340 		tab->basis = isl_mat_lin_to_aff(tab->basis);
341 		tab->n_zero = bset->n_eq;
342 		isl_mat_free(eq);
343 	}
344 	tab = isl_tab_compute_reduced_basis(tab);
345 	if (!tab)
346 		return NULL;
347 
348 	basis = isl_mat_copy(tab->basis);
349 
350 	isl_tab_free(tab);
351 
352 	return basis;
353 error:
354 	isl_tab_free(tab);
355 	return NULL;
356 }
357