1 /* ******************************************************************
2 * Huffman encoder, part of New Generation Entropy library
3 * Copyright (c) 2013-2020, Yann Collet, Facebook, Inc.
4 *
5 * You can contact the author at :
6 * - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
7 * - Public forum : https://groups.google.com/forum/#!forum/lz4c
8 *
9 * This source code is licensed under both the BSD-style license (found in the
10 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
11 * in the COPYING file in the root directory of this source tree).
12 * You may select, at your option, one of the above-listed licenses.
13 ****************************************************************** */
14
15 /* **************************************************************
16 * Compiler specifics
17 ****************************************************************/
18 #ifdef _MSC_VER /* Visual Studio */
19 # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
20 #endif
21
22
23 /* **************************************************************
24 * Includes
25 ****************************************************************/
26 #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
27 #include "../common/compiler.h"
28 #include "../common/bitstream.h"
29 #include "hist.h"
30 #define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
31 #include "../common/fse.h" /* header compression */
32 #define HUF_STATIC_LINKING_ONLY
33 #include "../common/huf.h"
34 #include "../common/error_private.h"
35
36
37 /* **************************************************************
38 * Error Management
39 ****************************************************************/
40 #define HUF_isError ERR_isError
41 #define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
42
43
44 /* **************************************************************
45 * Utils
46 ****************************************************************/
HUF_optimalTableLog(unsigned maxTableLog,size_t srcSize,unsigned maxSymbolValue)47 unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
48 {
49 return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
50 }
51
52
53 /* *******************************************************
54 * HUF : Huffman block compression
55 *********************************************************/
56 /* HUF_compressWeights() :
57 * Same as FSE_compress(), but dedicated to huff0's weights compression.
58 * The use case needs much less stack memory.
59 * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
60 */
61 #define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
HUF_compressWeights(void * dst,size_t dstSize,const void * weightTable,size_t wtSize)62 static size_t HUF_compressWeights (void* dst, size_t dstSize, const void* weightTable, size_t wtSize)
63 {
64 BYTE* const ostart = (BYTE*) dst;
65 BYTE* op = ostart;
66 BYTE* const oend = ostart + dstSize;
67
68 unsigned maxSymbolValue = HUF_TABLELOG_MAX;
69 U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
70
71 FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
72 BYTE scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
73
74 unsigned count[HUF_TABLELOG_MAX+1];
75 S16 norm[HUF_TABLELOG_MAX+1];
76
77 /* init conditions */
78 if (wtSize <= 1) return 0; /* Not compressible */
79
80 /* Scan input and build symbol stats */
81 { unsigned const maxCount = HIST_count_simple(count, &maxSymbolValue, weightTable, wtSize); /* never fails */
82 if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
83 if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
84 }
85
86 tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
87 CHECK_F( FSE_normalizeCount(norm, tableLog, count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
88
89 /* Write table description header */
90 { CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), norm, maxSymbolValue, tableLog) );
91 op += hSize;
92 }
93
94 /* Compress */
95 CHECK_F( FSE_buildCTable_wksp(CTable, norm, maxSymbolValue, tableLog, scratchBuffer, sizeof(scratchBuffer)) );
96 { CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, CTable) );
97 if (cSize == 0) return 0; /* not enough space for compressed data */
98 op += cSize;
99 }
100
101 return (size_t)(op-ostart);
102 }
103
104
105 /*! HUF_writeCTable() :
106 `CTable` : Huffman tree to save, using huf representation.
107 @return : size of saved CTable */
HUF_writeCTable(void * dst,size_t maxDstSize,const HUF_CElt * CTable,unsigned maxSymbolValue,unsigned huffLog)108 size_t HUF_writeCTable (void* dst, size_t maxDstSize,
109 const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
110 {
111 BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
112 BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
113 BYTE* op = (BYTE*)dst;
114 U32 n;
115
116 /* check conditions */
117 if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
118
119 /* convert to weight */
120 bitsToWeight[0] = 0;
121 for (n=1; n<huffLog+1; n++)
122 bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
123 for (n=0; n<maxSymbolValue; n++)
124 huffWeight[n] = bitsToWeight[CTable[n].nbBits];
125
126 /* attempt weights compression by FSE */
127 { CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, huffWeight, maxSymbolValue) );
128 if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
129 op[0] = (BYTE)hSize;
130 return hSize+1;
131 } }
132
133 /* write raw values as 4-bits (max : 15) */
134 if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
135 if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
136 op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
137 huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
138 for (n=0; n<maxSymbolValue; n+=2)
139 op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
140 return ((maxSymbolValue+1)/2) + 1;
141 }
142
143
HUF_readCTable(HUF_CElt * CTable,unsigned * maxSymbolValuePtr,const void * src,size_t srcSize,unsigned * hasZeroWeights)144 size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
145 {
146 BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
147 U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
148 U32 tableLog = 0;
149 U32 nbSymbols = 0;
150
151 /* get symbol weights */
152 CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
153 *hasZeroWeights = (rankVal[0] > 0);
154
155 /* check result */
156 if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
157 if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
158
159 /* Prepare base value per rank */
160 { U32 n, nextRankStart = 0;
161 for (n=1; n<=tableLog; n++) {
162 U32 curr = nextRankStart;
163 nextRankStart += (rankVal[n] << (n-1));
164 rankVal[n] = curr;
165 } }
166
167 /* fill nbBits */
168 { U32 n; for (n=0; n<nbSymbols; n++) {
169 const U32 w = huffWeight[n];
170 CTable[n].nbBits = (BYTE)(tableLog + 1 - w) & -(w != 0);
171 } }
172
173 /* fill val */
174 { U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
175 U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
176 { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[CTable[n].nbBits]++; }
177 /* determine stating value per rank */
178 valPerRank[tableLog+1] = 0; /* for w==0 */
179 { U16 min = 0;
180 U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
181 valPerRank[n] = min; /* get starting value within each rank */
182 min += nbPerRank[n];
183 min >>= 1;
184 } }
185 /* assign value within rank, symbol order */
186 { U32 n; for (n=0; n<nbSymbols; n++) CTable[n].val = valPerRank[CTable[n].nbBits]++; }
187 }
188
189 *maxSymbolValuePtr = nbSymbols - 1;
190 return readSize;
191 }
192
HUF_getNbBits(const void * symbolTable,U32 symbolValue)193 U32 HUF_getNbBits(const void* symbolTable, U32 symbolValue)
194 {
195 const HUF_CElt* table = (const HUF_CElt*)symbolTable;
196 assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
197 return table[symbolValue].nbBits;
198 }
199
200
201 typedef struct nodeElt_s {
202 U32 count;
203 U16 parent;
204 BYTE byte;
205 BYTE nbBits;
206 } nodeElt;
207
208 /**
209 * HUF_setMaxHeight():
210 * Enforces maxNbBits on the Huffman tree described in huffNode.
211 *
212 * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
213 * the tree to so that it is a valid canonical Huffman tree.
214 *
215 * @pre The sum of the ranks of each symbol == 2^largestBits,
216 * where largestBits == huffNode[lastNonNull].nbBits.
217 * @post The sum of the ranks of each symbol == 2^largestBits,
218 * where largestBits is the return value <= maxNbBits.
219 *
220 * @param huffNode The Huffman tree modified in place to enforce maxNbBits.
221 * @param lastNonNull The symbol with the lowest count in the Huffman tree.
222 * @param maxNbBits The maximum allowed number of bits, which the Huffman tree
223 * may not respect. After this function the Huffman tree will
224 * respect maxNbBits.
225 * @return The maximum number of bits of the Huffman tree after adjustment,
226 * necessarily no more than maxNbBits.
227 */
HUF_setMaxHeight(nodeElt * huffNode,U32 lastNonNull,U32 maxNbBits)228 static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
229 {
230 const U32 largestBits = huffNode[lastNonNull].nbBits;
231 /* early exit : no elt > maxNbBits, so the tree is already valid. */
232 if (largestBits <= maxNbBits) return largestBits;
233
234 /* there are several too large elements (at least >= 2) */
235 { int totalCost = 0;
236 const U32 baseCost = 1 << (largestBits - maxNbBits);
237 int n = (int)lastNonNull;
238
239 /* Adjust any ranks > maxNbBits to maxNbBits.
240 * Compute totalCost, which is how far the sum of the ranks is
241 * we are over 2^largestBits after adjust the offending ranks.
242 */
243 while (huffNode[n].nbBits > maxNbBits) {
244 totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
245 huffNode[n].nbBits = (BYTE)maxNbBits;
246 n--;
247 }
248 /* n stops at huffNode[n].nbBits <= maxNbBits */
249 assert(huffNode[n].nbBits <= maxNbBits);
250 /* n end at index of smallest symbol using < maxNbBits */
251 while (huffNode[n].nbBits == maxNbBits) --n;
252
253 /* renorm totalCost from 2^largestBits to 2^maxNbBits
254 * note : totalCost is necessarily a multiple of baseCost */
255 assert((totalCost & (baseCost - 1)) == 0);
256 totalCost >>= (largestBits - maxNbBits);
257 assert(totalCost > 0);
258
259 /* repay normalized cost */
260 { U32 const noSymbol = 0xF0F0F0F0;
261 U32 rankLast[HUF_TABLELOG_MAX+2];
262
263 /* Get pos of last (smallest = lowest cum. count) symbol per rank */
264 ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
265 { U32 currentNbBits = maxNbBits;
266 int pos;
267 for (pos=n ; pos >= 0; pos--) {
268 if (huffNode[pos].nbBits >= currentNbBits) continue;
269 currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */
270 rankLast[maxNbBits-currentNbBits] = (U32)pos;
271 } }
272
273 while (totalCost > 0) {
274 /* Try to reduce the next power of 2 above totalCost because we
275 * gain back half the rank.
276 */
277 U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
278 for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
279 U32 const highPos = rankLast[nBitsToDecrease];
280 U32 const lowPos = rankLast[nBitsToDecrease-1];
281 if (highPos == noSymbol) continue;
282 /* Decrease highPos if no symbols of lowPos or if it is
283 * not cheaper to remove 2 lowPos than highPos.
284 */
285 if (lowPos == noSymbol) break;
286 { U32 const highTotal = huffNode[highPos].count;
287 U32 const lowTotal = 2 * huffNode[lowPos].count;
288 if (highTotal <= lowTotal) break;
289 } }
290 /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
291 assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
292 /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
293 while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
294 nBitsToDecrease++;
295 assert(rankLast[nBitsToDecrease] != noSymbol);
296 /* Increase the number of bits to gain back half the rank cost. */
297 totalCost -= 1 << (nBitsToDecrease-1);
298 huffNode[rankLast[nBitsToDecrease]].nbBits++;
299
300 /* Fix up the new rank.
301 * If the new rank was empty, this symbol is now its smallest.
302 * Otherwise, this symbol will be the largest in the new rank so no adjustment.
303 */
304 if (rankLast[nBitsToDecrease-1] == noSymbol)
305 rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
306 /* Fix up the old rank.
307 * If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
308 * it must be the only symbol in its rank, so the old rank now has no symbols.
309 * Otherwise, since the Huffman nodes are sorted by count, the previous position is now
310 * the smallest node in the rank. If the previous position belongs to a different rank,
311 * then the rank is now empty.
312 */
313 if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
314 rankLast[nBitsToDecrease] = noSymbol;
315 else {
316 rankLast[nBitsToDecrease]--;
317 if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
318 rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
319 }
320 } /* while (totalCost > 0) */
321
322 /* If we've removed too much weight, then we have to add it back.
323 * To avoid overshooting again, we only adjust the smallest rank.
324 * We take the largest nodes from the lowest rank 0 and move them
325 * to rank 1. There's guaranteed to be enough rank 0 symbols because
326 * TODO.
327 */
328 while (totalCost < 0) { /* Sometimes, cost correction overshoot */
329 /* special case : no rank 1 symbol (using maxNbBits-1);
330 * let's create one from largest rank 0 (using maxNbBits).
331 */
332 if (rankLast[1] == noSymbol) {
333 while (huffNode[n].nbBits == maxNbBits) n--;
334 huffNode[n+1].nbBits--;
335 assert(n >= 0);
336 rankLast[1] = (U32)(n+1);
337 totalCost++;
338 continue;
339 }
340 huffNode[ rankLast[1] + 1 ].nbBits--;
341 rankLast[1]++;
342 totalCost ++;
343 }
344 } /* repay normalized cost */
345 } /* there are several too large elements (at least >= 2) */
346
347 return maxNbBits;
348 }
349
350 typedef struct {
351 U32 base;
352 U32 curr;
353 } rankPos;
354
355 typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
356
357 #define RANK_POSITION_TABLE_SIZE 32
358
359 typedef struct {
360 huffNodeTable huffNodeTbl;
361 rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
362 } HUF_buildCTable_wksp_tables;
363
364 /**
365 * HUF_sort():
366 * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
367 *
368 * @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
369 * Must have (maxSymbolValue + 1) entries.
370 * @param[in] count Histogram of the symbols.
371 * @param[in] maxSymbolValue Maximum symbol value.
372 * @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
373 */
HUF_sort(nodeElt * huffNode,const unsigned * count,U32 maxSymbolValue,rankPos * rankPosition)374 static void HUF_sort(nodeElt* huffNode, const unsigned* count, U32 maxSymbolValue, rankPos* rankPosition)
375 {
376 int n;
377 int const maxSymbolValue1 = (int)maxSymbolValue + 1;
378
379 /* Compute base and set curr to base.
380 * For symbol s let lowerRank = BIT_highbit32(count[n]+1) and rank = lowerRank + 1.
381 * Then 2^lowerRank <= count[n]+1 <= 2^rank.
382 * We attribute each symbol to lowerRank's base value, because we want to know where
383 * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
384 */
385 ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
386 for (n = 0; n < maxSymbolValue1; ++n) {
387 U32 lowerRank = BIT_highbit32(count[n] + 1);
388 rankPosition[lowerRank].base++;
389 }
390 assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
391 for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
392 rankPosition[n-1].base += rankPosition[n].base;
393 rankPosition[n-1].curr = rankPosition[n-1].base;
394 }
395 /* Sort */
396 for (n = 0; n < maxSymbolValue1; ++n) {
397 U32 const c = count[n];
398 U32 const r = BIT_highbit32(c+1) + 1;
399 U32 pos = rankPosition[r].curr++;
400 /* Insert into the correct position in the rank.
401 * We have at most 256 symbols, so this insertion should be fine.
402 */
403 while ((pos > rankPosition[r].base) && (c > huffNode[pos-1].count)) {
404 huffNode[pos] = huffNode[pos-1];
405 pos--;
406 }
407 huffNode[pos].count = c;
408 huffNode[pos].byte = (BYTE)n;
409 }
410 }
411
412
413 /** HUF_buildCTable_wksp() :
414 * Same as HUF_buildCTable(), but using externally allocated scratch buffer.
415 * `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
416 */
417 #define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
418
419 /* HUF_buildTree():
420 * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
421 *
422 * @param huffNode The array sorted by HUF_sort(). Builds the Huffman tree in this array.
423 * @param maxSymbolValue The maximum symbol value.
424 * @return The smallest node in the Huffman tree (by count).
425 */
HUF_buildTree(nodeElt * huffNode,U32 maxSymbolValue)426 static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
427 {
428 nodeElt* const huffNode0 = huffNode - 1;
429 int nonNullRank;
430 int lowS, lowN;
431 int nodeNb = STARTNODE;
432 int n, nodeRoot;
433 /* init for parents */
434 nonNullRank = (int)maxSymbolValue;
435 while(huffNode[nonNullRank].count == 0) nonNullRank--;
436 lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
437 huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
438 huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
439 nodeNb++; lowS-=2;
440 for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
441 huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
442
443 /* create parents */
444 while (nodeNb <= nodeRoot) {
445 int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
446 int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
447 huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
448 huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
449 nodeNb++;
450 }
451
452 /* distribute weights (unlimited tree height) */
453 huffNode[nodeRoot].nbBits = 0;
454 for (n=nodeRoot-1; n>=STARTNODE; n--)
455 huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
456 for (n=0; n<=nonNullRank; n++)
457 huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
458
459 return nonNullRank;
460 }
461
462 /**
463 * HUF_buildCTableFromTree():
464 * Build the CTable given the Huffman tree in huffNode.
465 *
466 * @param[out] CTable The output Huffman CTable.
467 * @param huffNode The Huffman tree.
468 * @param nonNullRank The last and smallest node in the Huffman tree.
469 * @param maxSymbolValue The maximum symbol value.
470 * @param maxNbBits The exact maximum number of bits used in the Huffman tree.
471 */
HUF_buildCTableFromTree(HUF_CElt * CTable,nodeElt const * huffNode,int nonNullRank,U32 maxSymbolValue,U32 maxNbBits)472 static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
473 {
474 /* fill result into ctable (val, nbBits) */
475 int n;
476 U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
477 U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
478 int const alphabetSize = (int)(maxSymbolValue + 1);
479 for (n=0; n<=nonNullRank; n++)
480 nbPerRank[huffNode[n].nbBits]++;
481 /* determine starting value per rank */
482 { U16 min = 0;
483 for (n=(int)maxNbBits; n>0; n--) {
484 valPerRank[n] = min; /* get starting value within each rank */
485 min += nbPerRank[n];
486 min >>= 1;
487 } }
488 for (n=0; n<alphabetSize; n++)
489 CTable[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */
490 for (n=0; n<alphabetSize; n++)
491 CTable[n].val = valPerRank[CTable[n].nbBits]++; /* assign value within rank, symbol order */
492 }
493
HUF_buildCTable_wksp(HUF_CElt * tree,const unsigned * count,U32 maxSymbolValue,U32 maxNbBits,void * workSpace,size_t wkspSize)494 size_t HUF_buildCTable_wksp (HUF_CElt* tree, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
495 {
496 HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)workSpace;
497 nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
498 nodeElt* const huffNode = huffNode0+1;
499 int nonNullRank;
500
501 /* safety checks */
502 if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
503 if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
504 return ERROR(workSpace_tooSmall);
505 if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
506 if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
507 return ERROR(maxSymbolValue_tooLarge);
508 ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
509
510 /* sort, decreasing order */
511 HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
512
513 /* build tree */
514 nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
515
516 /* enforce maxTableLog */
517 maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
518 if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
519
520 HUF_buildCTableFromTree(tree, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
521
522 return maxNbBits;
523 }
524
HUF_estimateCompressedSize(const HUF_CElt * CTable,const unsigned * count,unsigned maxSymbolValue)525 size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
526 {
527 size_t nbBits = 0;
528 int s;
529 for (s = 0; s <= (int)maxSymbolValue; ++s) {
530 nbBits += CTable[s].nbBits * count[s];
531 }
532 return nbBits >> 3;
533 }
534
HUF_validateCTable(const HUF_CElt * CTable,const unsigned * count,unsigned maxSymbolValue)535 int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
536 int bad = 0;
537 int s;
538 for (s = 0; s <= (int)maxSymbolValue; ++s) {
539 bad |= (count[s] != 0) & (CTable[s].nbBits == 0);
540 }
541 return !bad;
542 }
543
HUF_compressBound(size_t size)544 size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
545
546 FORCE_INLINE_TEMPLATE void
HUF_encodeSymbol(BIT_CStream_t * bitCPtr,U32 symbol,const HUF_CElt * CTable)547 HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
548 {
549 BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
550 }
551
552 #define HUF_FLUSHBITS(s) BIT_flushBits(s)
553
554 #define HUF_FLUSHBITS_1(stream) \
555 if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*2+7) HUF_FLUSHBITS(stream)
556
557 #define HUF_FLUSHBITS_2(stream) \
558 if (sizeof((stream)->bitContainer)*8 < HUF_TABLELOG_MAX*4+7) HUF_FLUSHBITS(stream)
559
560 FORCE_INLINE_TEMPLATE size_t
HUF_compress1X_usingCTable_internal_body(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable)561 HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
562 const void* src, size_t srcSize,
563 const HUF_CElt* CTable)
564 {
565 const BYTE* ip = (const BYTE*) src;
566 BYTE* const ostart = (BYTE*)dst;
567 BYTE* const oend = ostart + dstSize;
568 BYTE* op = ostart;
569 size_t n;
570 BIT_CStream_t bitC;
571
572 /* init */
573 if (dstSize < 8) return 0; /* not enough space to compress */
574 { size_t const initErr = BIT_initCStream(&bitC, op, (size_t)(oend-op));
575 if (HUF_isError(initErr)) return 0; }
576
577 n = srcSize & ~3; /* join to mod 4 */
578 switch (srcSize & 3)
579 {
580 case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
581 HUF_FLUSHBITS_2(&bitC);
582 /* fall-through */
583 case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
584 HUF_FLUSHBITS_1(&bitC);
585 /* fall-through */
586 case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
587 HUF_FLUSHBITS(&bitC);
588 /* fall-through */
589 case 0 : /* fall-through */
590 default: break;
591 }
592
593 for (; n>0; n-=4) { /* note : n&3==0 at this stage */
594 HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
595 HUF_FLUSHBITS_1(&bitC);
596 HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
597 HUF_FLUSHBITS_2(&bitC);
598 HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
599 HUF_FLUSHBITS_1(&bitC);
600 HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
601 HUF_FLUSHBITS(&bitC);
602 }
603
604 return BIT_closeCStream(&bitC);
605 }
606
607 #if DYNAMIC_BMI2
608
609 static TARGET_ATTRIBUTE("bmi2") size_t
HUF_compress1X_usingCTable_internal_bmi2(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable)610 HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
611 const void* src, size_t srcSize,
612 const HUF_CElt* CTable)
613 {
614 return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
615 }
616
617 static size_t
HUF_compress1X_usingCTable_internal_default(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable)618 HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
619 const void* src, size_t srcSize,
620 const HUF_CElt* CTable)
621 {
622 return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
623 }
624
625 static size_t
HUF_compress1X_usingCTable_internal(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable,const int bmi2)626 HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
627 const void* src, size_t srcSize,
628 const HUF_CElt* CTable, const int bmi2)
629 {
630 if (bmi2) {
631 return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
632 }
633 return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
634 }
635
636 #else
637
638 static size_t
HUF_compress1X_usingCTable_internal(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable,const int bmi2)639 HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
640 const void* src, size_t srcSize,
641 const HUF_CElt* CTable, const int bmi2)
642 {
643 (void)bmi2;
644 return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
645 }
646
647 #endif
648
HUF_compress1X_usingCTable(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable)649 size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
650 {
651 return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
652 }
653
654
655 static size_t
HUF_compress4X_usingCTable_internal(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable,int bmi2)656 HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
657 const void* src, size_t srcSize,
658 const HUF_CElt* CTable, int bmi2)
659 {
660 size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
661 const BYTE* ip = (const BYTE*) src;
662 const BYTE* const iend = ip + srcSize;
663 BYTE* const ostart = (BYTE*) dst;
664 BYTE* const oend = ostart + dstSize;
665 BYTE* op = ostart;
666
667 if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
668 if (srcSize < 12) return 0; /* no saving possible : too small input */
669 op += 6; /* jumpTable */
670
671 assert(op <= oend);
672 { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
673 if (cSize==0) return 0;
674 assert(cSize <= 65535);
675 MEM_writeLE16(ostart, (U16)cSize);
676 op += cSize;
677 }
678
679 ip += segmentSize;
680 assert(op <= oend);
681 { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
682 if (cSize==0) return 0;
683 assert(cSize <= 65535);
684 MEM_writeLE16(ostart+2, (U16)cSize);
685 op += cSize;
686 }
687
688 ip += segmentSize;
689 assert(op <= oend);
690 { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
691 if (cSize==0) return 0;
692 assert(cSize <= 65535);
693 MEM_writeLE16(ostart+4, (U16)cSize);
694 op += cSize;
695 }
696
697 ip += segmentSize;
698 assert(op <= oend);
699 assert(ip <= iend);
700 { CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
701 if (cSize==0) return 0;
702 op += cSize;
703 }
704
705 return (size_t)(op-ostart);
706 }
707
HUF_compress4X_usingCTable(void * dst,size_t dstSize,const void * src,size_t srcSize,const HUF_CElt * CTable)708 size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
709 {
710 return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
711 }
712
713 typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
714
HUF_compressCTable_internal(BYTE * const ostart,BYTE * op,BYTE * const oend,const void * src,size_t srcSize,HUF_nbStreams_e nbStreams,const HUF_CElt * CTable,const int bmi2)715 static size_t HUF_compressCTable_internal(
716 BYTE* const ostart, BYTE* op, BYTE* const oend,
717 const void* src, size_t srcSize,
718 HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
719 {
720 size_t const cSize = (nbStreams==HUF_singleStream) ?
721 HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
722 HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
723 if (HUF_isError(cSize)) { return cSize; }
724 if (cSize==0) { return 0; } /* uncompressible */
725 op += cSize;
726 /* check compressibility */
727 assert(op >= ostart);
728 if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
729 return (size_t)(op-ostart);
730 }
731
732 typedef struct {
733 unsigned count[HUF_SYMBOLVALUE_MAX + 1];
734 HUF_CElt CTable[HUF_SYMBOLVALUE_MAX + 1];
735 HUF_buildCTable_wksp_tables buildCTable_wksp;
736 } HUF_compress_tables_t;
737
738 /* HUF_compress_internal() :
739 * `workSpace` must a table of at least HUF_WORKSPACE_SIZE_U32 unsigned */
740 static size_t
HUF_compress_internal(void * dst,size_t dstSize,const void * src,size_t srcSize,unsigned maxSymbolValue,unsigned huffLog,HUF_nbStreams_e nbStreams,void * workSpace,size_t wkspSize,HUF_CElt * oldHufTable,HUF_repeat * repeat,int preferRepeat,const int bmi2)741 HUF_compress_internal (void* dst, size_t dstSize,
742 const void* src, size_t srcSize,
743 unsigned maxSymbolValue, unsigned huffLog,
744 HUF_nbStreams_e nbStreams,
745 void* workSpace, size_t wkspSize,
746 HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
747 const int bmi2)
748 {
749 HUF_compress_tables_t* const table = (HUF_compress_tables_t*)workSpace;
750 BYTE* const ostart = (BYTE*)dst;
751 BYTE* const oend = ostart + dstSize;
752 BYTE* op = ostart;
753
754 HUF_STATIC_ASSERT(sizeof(*table) <= HUF_WORKSPACE_SIZE);
755
756 /* checks & inits */
757 if (((size_t)workSpace & 3) != 0) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
758 if (wkspSize < HUF_WORKSPACE_SIZE) return ERROR(workSpace_tooSmall);
759 if (!srcSize) return 0; /* Uncompressed */
760 if (!dstSize) return 0; /* cannot fit anything within dst budget */
761 if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
762 if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
763 if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
764 if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
765 if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
766
767 /* Heuristic : If old table is valid, use it for small inputs */
768 if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
769 return HUF_compressCTable_internal(ostart, op, oend,
770 src, srcSize,
771 nbStreams, oldHufTable, bmi2);
772 }
773
774 /* Scan input and build symbol stats */
775 { CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, workSpace, wkspSize) );
776 if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
777 if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
778 }
779
780 /* Check validity of previous table */
781 if ( repeat
782 && *repeat == HUF_repeat_check
783 && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
784 *repeat = HUF_repeat_none;
785 }
786 /* Heuristic : use existing table for small inputs */
787 if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
788 return HUF_compressCTable_internal(ostart, op, oend,
789 src, srcSize,
790 nbStreams, oldHufTable, bmi2);
791 }
792
793 /* Build Huffman Tree */
794 huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
795 { size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
796 maxSymbolValue, huffLog,
797 &table->buildCTable_wksp, sizeof(table->buildCTable_wksp));
798 CHECK_F(maxBits);
799 huffLog = (U32)maxBits;
800 /* Zero unused symbols in CTable, so we can check it for validity */
801 ZSTD_memset(table->CTable + (maxSymbolValue + 1), 0,
802 sizeof(table->CTable) - ((maxSymbolValue + 1) * sizeof(HUF_CElt)));
803 }
804
805 /* Write table description header */
806 { CHECK_V_F(hSize, HUF_writeCTable (op, dstSize, table->CTable, maxSymbolValue, huffLog) );
807 /* Check if using previous huffman table is beneficial */
808 if (repeat && *repeat != HUF_repeat_none) {
809 size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
810 size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
811 if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
812 return HUF_compressCTable_internal(ostart, op, oend,
813 src, srcSize,
814 nbStreams, oldHufTable, bmi2);
815 } }
816
817 /* Use the new huffman table */
818 if (hSize + 12ul >= srcSize) { return 0; }
819 op += hSize;
820 if (repeat) { *repeat = HUF_repeat_none; }
821 if (oldHufTable)
822 ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */
823 }
824 return HUF_compressCTable_internal(ostart, op, oend,
825 src, srcSize,
826 nbStreams, table->CTable, bmi2);
827 }
828
829
HUF_compress1X_wksp(void * dst,size_t dstSize,const void * src,size_t srcSize,unsigned maxSymbolValue,unsigned huffLog,void * workSpace,size_t wkspSize)830 size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
831 const void* src, size_t srcSize,
832 unsigned maxSymbolValue, unsigned huffLog,
833 void* workSpace, size_t wkspSize)
834 {
835 return HUF_compress_internal(dst, dstSize, src, srcSize,
836 maxSymbolValue, huffLog, HUF_singleStream,
837 workSpace, wkspSize,
838 NULL, NULL, 0, 0 /*bmi2*/);
839 }
840
HUF_compress1X_repeat(void * dst,size_t dstSize,const void * src,size_t srcSize,unsigned maxSymbolValue,unsigned huffLog,void * workSpace,size_t wkspSize,HUF_CElt * hufTable,HUF_repeat * repeat,int preferRepeat,int bmi2)841 size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
842 const void* src, size_t srcSize,
843 unsigned maxSymbolValue, unsigned huffLog,
844 void* workSpace, size_t wkspSize,
845 HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
846 {
847 return HUF_compress_internal(dst, dstSize, src, srcSize,
848 maxSymbolValue, huffLog, HUF_singleStream,
849 workSpace, wkspSize, hufTable,
850 repeat, preferRepeat, bmi2);
851 }
852
853 /* HUF_compress4X_repeat():
854 * compress input using 4 streams.
855 * provide workspace to generate compression tables */
HUF_compress4X_wksp(void * dst,size_t dstSize,const void * src,size_t srcSize,unsigned maxSymbolValue,unsigned huffLog,void * workSpace,size_t wkspSize)856 size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
857 const void* src, size_t srcSize,
858 unsigned maxSymbolValue, unsigned huffLog,
859 void* workSpace, size_t wkspSize)
860 {
861 return HUF_compress_internal(dst, dstSize, src, srcSize,
862 maxSymbolValue, huffLog, HUF_fourStreams,
863 workSpace, wkspSize,
864 NULL, NULL, 0, 0 /*bmi2*/);
865 }
866
867 /* HUF_compress4X_repeat():
868 * compress input using 4 streams.
869 * re-use an existing huffman compression table */
HUF_compress4X_repeat(void * dst,size_t dstSize,const void * src,size_t srcSize,unsigned maxSymbolValue,unsigned huffLog,void * workSpace,size_t wkspSize,HUF_CElt * hufTable,HUF_repeat * repeat,int preferRepeat,int bmi2)870 size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
871 const void* src, size_t srcSize,
872 unsigned maxSymbolValue, unsigned huffLog,
873 void* workSpace, size_t wkspSize,
874 HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2)
875 {
876 return HUF_compress_internal(dst, dstSize, src, srcSize,
877 maxSymbolValue, huffLog, HUF_fourStreams,
878 workSpace, wkspSize,
879 hufTable, repeat, preferRepeat, bmi2);
880 }
881
882 #ifndef ZSTD_NO_UNUSED_FUNCTIONS
883 /** HUF_buildCTable() :
884 * @return : maxNbBits
885 * Note : count is used before tree is written, so they can safely overlap
886 */
HUF_buildCTable(HUF_CElt * tree,const unsigned * count,unsigned maxSymbolValue,unsigned maxNbBits)887 size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
888 {
889 HUF_buildCTable_wksp_tables workspace;
890 return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace));
891 }
892
HUF_compress1X(void * dst,size_t dstSize,const void * src,size_t srcSize,unsigned maxSymbolValue,unsigned huffLog)893 size_t HUF_compress1X (void* dst, size_t dstSize,
894 const void* src, size_t srcSize,
895 unsigned maxSymbolValue, unsigned huffLog)
896 {
897 unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
898 return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
899 }
900
HUF_compress2(void * dst,size_t dstSize,const void * src,size_t srcSize,unsigned maxSymbolValue,unsigned huffLog)901 size_t HUF_compress2 (void* dst, size_t dstSize,
902 const void* src, size_t srcSize,
903 unsigned maxSymbolValue, unsigned huffLog)
904 {
905 unsigned workSpace[HUF_WORKSPACE_SIZE_U32];
906 return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
907 }
908
HUF_compress(void * dst,size_t maxDstSize,const void * src,size_t srcSize)909 size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
910 {
911 return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
912 }
913 #endif
914