• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* The guts of the Reed-Solomon decoder, meant to be #included
2  * into a function body with the following typedefs, macros and variables supplied
3  * according to the code parameters:
4 
5  * data_t - a typedef for the data symbol
6  * data_t data[] - array of NN data and parity symbols to be corrected in place
7  * retval - an integer lvalue into which the decoder's return code is written
8  * NROOTS - the number of roots in the RS code generator polynomial,
9  *          which is the same as the number of parity symbols in a block.
10             Integer variable or literal.
11  * NN - the total number of symbols in a RS block. Integer variable or literal.
12  * PAD - the number of pad symbols in a block. Integer variable or literal.
13  * ALPHA_TO - The address of an array of NN elements to convert Galois field
14  *            elements in index (log) form to polynomial form. Read only.
15  * INDEX_OF - The address of an array of NN elements to convert Galois field
16  *            elements in polynomial form to index (log) form. Read only.
17  * MODNN - a function to reduce its argument modulo NN. May be inline or a macro.
18  * FCR - An integer literal or variable specifying the first consecutive root of the
19  *       Reed-Solomon generator polynomial. Integer variable or literal.
20  * PRIM - The primitive root of the generator poly. Integer variable or literal.
21  * DEBUG - If set to 1 or more, do various internal consistency checking. Leave this
22  *         undefined for production code
23 
24  * The memset(), memmove(), and memcpy() functions are used. The appropriate header
25  * file declaring these functions (usually <string.h>) must be included by the calling
26  * program.
27  */
28 
29 
30 #if !defined(NROOTS)
31 #error "NROOTS not defined"
32 #endif
33 
34 #if !defined(NN)
35 #error "NN not defined"
36 #endif
37 
38 #if !defined(PAD)
39 #error "PAD not defined"
40 #endif
41 
42 #if !defined(ALPHA_TO)
43 #error "ALPHA_TO not defined"
44 #endif
45 
46 #if !defined(INDEX_OF)
47 #error "INDEX_OF not defined"
48 #endif
49 
50 #if !defined(MODNN)
51 #error "MODNN not defined"
52 #endif
53 
54 #if !defined(FCR)
55 #error "FCR not defined"
56 #endif
57 
58 #if !defined(PRIM)
59 #error "PRIM not defined"
60 #endif
61 
62 #if !defined(NULL)
63 #define NULL ((void *)0)
64 #endif
65 
66 #undef MIN
67 #define	MIN(a,b)	((a) < (b) ? (a) : (b))
68 #undef A0
69 #define A0 (NN)
70 
71 {
72   int deg_lambda, el, deg_omega;
73   int i, j, r,k;
74   data_t u,q,tmp,num1,num2,den,discr_r;
75   data_t lambda[NROOTS+1], s[NROOTS];	/* Err+Eras Locator poly
76 					 * and syndrome poly */
77   data_t b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
78   data_t root[NROOTS], reg[NROOTS+1], loc[NROOTS];
79   int syn_error, count;
80 
81   /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
82   for(i=0;i<NROOTS;i++)
83     s[i] = data[0];
84 
85   for(j=1;j<NN-PAD;j++){
86     for(i=0;i<NROOTS;i++){
87       if(s[i] == 0){
88 	s[i] = data[j];
89       } else {
90 	s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
91       }
92     }
93   }
94 
95   /* Convert syndromes to index form, checking for nonzero condition */
96   syn_error = 0;
97   for(i=0;i<NROOTS;i++){
98     syn_error |= s[i];
99     s[i] = INDEX_OF[s[i]];
100   }
101 
102   if (!syn_error) {
103     /* if syndrome is zero, data[] is a codeword and there are no
104      * errors to correct. So return data[] unmodified
105      */
106     count = 0;
107     goto finish;
108   }
109   memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
110   lambda[0] = 1;
111 
112   if (no_eras > 0) {
113     /* Init lambda to be the erasure locator polynomial */
114     lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))];
115     for (i = 1; i < no_eras; i++) {
116       u = MODNN(PRIM*(NN-1-eras_pos[i]));
117       for (j = i+1; j > 0; j--) {
118 	tmp = INDEX_OF[lambda[j - 1]];
119 	if(tmp != A0)
120 	  lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
121       }
122     }
123 
124 #if DEBUG >= 1
125     /* Test code that verifies the erasure locator polynomial just constructed
126        Needed only for decoder debugging. */
127 
128     /* find roots of the erasure location polynomial */
129     for(i=1;i<=no_eras;i++)
130       reg[i] = INDEX_OF[lambda[i]];
131 
132     count = 0;
133     for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
134       q = 1;
135       for (j = 1; j <= no_eras; j++)
136 	if (reg[j] != A0) {
137 	  reg[j] = MODNN(reg[j] + j);
138 	  q ^= ALPHA_TO[reg[j]];
139 	}
140       if (q != 0)
141 	continue;
142       /* store root and error location number indices */
143       root[count] = i;
144       loc[count] = k;
145       count++;
146     }
147     if (count != no_eras) {
148       printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
149       count = -1;
150       goto finish;
151     }
152 #if DEBUG >= 2
153     printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
154     for (i = 0; i < count; i++)
155       printf("%d ", loc[i]);
156     printf("\n");
157 #endif
158 #endif
159   }
160   for(i=0;i<NROOTS+1;i++)
161     b[i] = INDEX_OF[lambda[i]];
162 
163   /*
164    * Begin Berlekamp-Massey algorithm to determine error+erasure
165    * locator polynomial
166    */
167   r = no_eras;
168   el = no_eras;
169   while (++r <= NROOTS) {	/* r is the step number */
170     /* Compute discrepancy at the r-th step in poly-form */
171     discr_r = 0;
172     for (i = 0; i < r; i++){
173       if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
174 	discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])];
175       }
176     }
177     discr_r = INDEX_OF[discr_r];	/* Index form */
178     if (discr_r == A0) {
179       /* 2 lines below: B(x) <-- x*B(x) */
180       memmove(&b[1],b,NROOTS*sizeof(b[0]));
181       b[0] = A0;
182     } else {
183       /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
184       t[0] = lambda[0];
185       for (i = 0 ; i < NROOTS; i++) {
186 	if(b[i] != A0)
187 	  t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
188 	else
189 	  t[i+1] = lambda[i+1];
190       }
191       if (2 * el <= r + no_eras - 1) {
192 	el = r + no_eras - el;
193 	/*
194 	 * 2 lines below: B(x) <-- inv(discr_r) *
195 	 * lambda(x)
196 	 */
197 	for (i = 0; i <= NROOTS; i++)
198 	  b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
199       } else {
200 	/* 2 lines below: B(x) <-- x*B(x) */
201 	memmove(&b[1],b,NROOTS*sizeof(b[0]));
202 	b[0] = A0;
203       }
204       memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
205     }
206   }
207 
208   /* Convert lambda to index form and compute deg(lambda(x)) */
209   deg_lambda = 0;
210   for(i=0;i<NROOTS+1;i++){
211     lambda[i] = INDEX_OF[lambda[i]];
212     if(lambda[i] != A0)
213       deg_lambda = i;
214   }
215   /* Find roots of the error+erasure locator polynomial by Chien search */
216   memcpy(&reg[1],&lambda[1],NROOTS*sizeof(reg[0]));
217   count = 0;		/* Number of roots of lambda(x) */
218   for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
219     q = 1; /* lambda[0] is always 0 */
220     for (j = deg_lambda; j > 0; j--){
221       if (reg[j] != A0) {
222 	reg[j] = MODNN(reg[j] + j);
223 	q ^= ALPHA_TO[reg[j]];
224       }
225     }
226     if (q != 0)
227       continue; /* Not a root */
228     /* store root (index-form) and error location number */
229 #if DEBUG>=2
230     printf("count %d root %d loc %d\n",count,i,k);
231 #endif
232     root[count] = i;
233     loc[count] = k;
234     /* If we've already found max possible roots,
235      * abort the search to save time
236      */
237     if(++count == deg_lambda)
238       break;
239   }
240   if (deg_lambda != count) {
241     /*
242      * deg(lambda) unequal to number of roots => uncorrectable
243      * error detected
244      */
245     count = -1;
246     goto finish;
247   }
248   /*
249    * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
250    * x**NROOTS). in index form. Also find deg(omega).
251    */
252   deg_omega = deg_lambda-1;
253   for (i = 0; i <= deg_omega;i++){
254     tmp = 0;
255     for(j=i;j >= 0; j--){
256       if ((s[i - j] != A0) && (lambda[j] != A0))
257 	tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
258     }
259     omega[i] = INDEX_OF[tmp];
260   }
261 
262   /*
263    * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
264    * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
265    */
266   for (j = count-1; j >=0; j--) {
267     num1 = 0;
268     for (i = deg_omega; i >= 0; i--) {
269       if (omega[i] != A0)
270 	num1  ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
271     }
272     num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
273     den = 0;
274 
275     /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
276     for (i = MIN(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
277       if(lambda[i+1] != A0)
278 	den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])];
279     }
280 #if DEBUG >= 1
281     if (den == 0) {
282       printf("\n ERROR: denominator = 0\n");
283       count = -1;
284       goto finish;
285     }
286 #endif
287     /* Apply error to data */
288     if (num1 != 0 && loc[j] >= PAD) {
289       data[loc[j]-PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
290     }
291   }
292  finish:
293   if(eras_pos != NULL){
294     for(i=0;i<count;i++)
295       eras_pos[i] = loc[i];
296   }
297   retval = count;
298 }
299