• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 /* *****************************************************************************
12  * Constructs a dictionary using a heuristic based on the following paper:
13  *
14  * Liao, Petri, Moffat, Wirth
15  * Effective Construction of Relative Lempel-Ziv Dictionaries
16  * Published in WWW 2016.
17  *
18  * Adapted from code originally written by @ot (Giuseppe Ottaviano).
19  ******************************************************************************/
20 
21 /*-*************************************
22 *  Dependencies
23 ***************************************/
24 #include <stdio.h>  /* fprintf */
25 #include <stdlib.h> /* malloc, free, qsort */
26 #include <string.h> /* memset */
27 #include <time.h>   /* clock */
28 
29 #include "../common/mem.h" /* read */
30 #include "../common/pool.h"
31 #include "../common/threading.h"
32 #include "cover.h"
33 #include "../common/zstd_internal.h" /* includes zstd.h */
34 #ifndef ZDICT_STATIC_LINKING_ONLY
35 #define ZDICT_STATIC_LINKING_ONLY
36 #endif
37 #include "zdict.h"
38 
39 /*-*************************************
40 *  Constants
41 ***************************************/
42 #define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
43 #define COVER_DEFAULT_SPLITPOINT 1.0
44 
45 /*-*************************************
46 *  Console display
47 ***************************************/
48 #ifndef LOCALDISPLAYLEVEL
49 static int g_displayLevel = 2;
50 #endif
51 #undef  DISPLAY
52 #define DISPLAY(...)                                                           \
53   {                                                                            \
54     fprintf(stderr, __VA_ARGS__);                                              \
55     fflush(stderr);                                                            \
56   }
57 #undef  LOCALDISPLAYLEVEL
58 #define LOCALDISPLAYLEVEL(displayLevel, l, ...)                                \
59   if (displayLevel >= l) {                                                     \
60     DISPLAY(__VA_ARGS__);                                                      \
61   } /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
62 #undef  DISPLAYLEVEL
63 #define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
64 
65 #ifndef LOCALDISPLAYUPDATE
66 static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
67 static clock_t g_time = 0;
68 #endif
69 #undef  LOCALDISPLAYUPDATE
70 #define LOCALDISPLAYUPDATE(displayLevel, l, ...)                               \
71   if (displayLevel >= l) {                                                     \
72     if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) {             \
73       g_time = clock();                                                        \
74       DISPLAY(__VA_ARGS__);                                                    \
75     }                                                                          \
76   }
77 #undef  DISPLAYUPDATE
78 #define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
79 
80 /*-*************************************
81 * Hash table
82 ***************************************
83 * A small specialized hash map for storing activeDmers.
84 * The map does not resize, so if it becomes full it will loop forever.
85 * Thus, the map must be large enough to store every value.
86 * The map implements linear probing and keeps its load less than 0.5.
87 */
88 
89 #define MAP_EMPTY_VALUE ((U32)-1)
90 typedef struct COVER_map_pair_t_s {
91   U32 key;
92   U32 value;
93 } COVER_map_pair_t;
94 
95 typedef struct COVER_map_s {
96   COVER_map_pair_t *data;
97   U32 sizeLog;
98   U32 size;
99   U32 sizeMask;
100 } COVER_map_t;
101 
102 /**
103  * Clear the map.
104  */
COVER_map_clear(COVER_map_t * map)105 static void COVER_map_clear(COVER_map_t *map) {
106   memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
107 }
108 
109 /**
110  * Initializes a map of the given size.
111  * Returns 1 on success and 0 on failure.
112  * The map must be destroyed with COVER_map_destroy().
113  * The map is only guaranteed to be large enough to hold size elements.
114  */
COVER_map_init(COVER_map_t * map,U32 size)115 static int COVER_map_init(COVER_map_t *map, U32 size) {
116   map->sizeLog = ZSTD_highbit32(size) + 2;
117   map->size = (U32)1 << map->sizeLog;
118   map->sizeMask = map->size - 1;
119   map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
120   if (!map->data) {
121     map->sizeLog = 0;
122     map->size = 0;
123     return 0;
124   }
125   COVER_map_clear(map);
126   return 1;
127 }
128 
129 /**
130  * Internal hash function
131  */
132 static const U32 COVER_prime4bytes = 2654435761U;
COVER_map_hash(COVER_map_t * map,U32 key)133 static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
134   return (key * COVER_prime4bytes) >> (32 - map->sizeLog);
135 }
136 
137 /**
138  * Helper function that returns the index that a key should be placed into.
139  */
COVER_map_index(COVER_map_t * map,U32 key)140 static U32 COVER_map_index(COVER_map_t *map, U32 key) {
141   const U32 hash = COVER_map_hash(map, key);
142   U32 i;
143   for (i = hash;; i = (i + 1) & map->sizeMask) {
144     COVER_map_pair_t *pos = &map->data[i];
145     if (pos->value == MAP_EMPTY_VALUE) {
146       return i;
147     }
148     if (pos->key == key) {
149       return i;
150     }
151   }
152 }
153 
154 /**
155  * Returns the pointer to the value for key.
156  * If key is not in the map, it is inserted and the value is set to 0.
157  * The map must not be full.
158  */
COVER_map_at(COVER_map_t * map,U32 key)159 static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
160   COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
161   if (pos->value == MAP_EMPTY_VALUE) {
162     pos->key = key;
163     pos->value = 0;
164   }
165   return &pos->value;
166 }
167 
168 /**
169  * Deletes key from the map if present.
170  */
COVER_map_remove(COVER_map_t * map,U32 key)171 static void COVER_map_remove(COVER_map_t *map, U32 key) {
172   U32 i = COVER_map_index(map, key);
173   COVER_map_pair_t *del = &map->data[i];
174   U32 shift = 1;
175   if (del->value == MAP_EMPTY_VALUE) {
176     return;
177   }
178   for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
179     COVER_map_pair_t *const pos = &map->data[i];
180     /* If the position is empty we are done */
181     if (pos->value == MAP_EMPTY_VALUE) {
182       del->value = MAP_EMPTY_VALUE;
183       return;
184     }
185     /* If pos can be moved to del do so */
186     if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
187       del->key = pos->key;
188       del->value = pos->value;
189       del = pos;
190       shift = 1;
191     } else {
192       ++shift;
193     }
194   }
195 }
196 
197 /**
198  * Destroys a map that is inited with COVER_map_init().
199  */
COVER_map_destroy(COVER_map_t * map)200 static void COVER_map_destroy(COVER_map_t *map) {
201   if (map->data) {
202     free(map->data);
203   }
204   map->data = NULL;
205   map->size = 0;
206 }
207 
208 /*-*************************************
209 * Context
210 ***************************************/
211 
212 typedef struct {
213   const BYTE *samples;
214   size_t *offsets;
215   const size_t *samplesSizes;
216   size_t nbSamples;
217   size_t nbTrainSamples;
218   size_t nbTestSamples;
219   U32 *suffix;
220   size_t suffixSize;
221   U32 *freqs;
222   U32 *dmerAt;
223   unsigned d;
224 } COVER_ctx_t;
225 
226 /* We need a global context for qsort... */
227 static COVER_ctx_t *g_coverCtx = NULL;
228 
229 /*-*************************************
230 *  Helper functions
231 ***************************************/
232 
233 /**
234  * Returns the sum of the sample sizes.
235  */
COVER_sum(const size_t * samplesSizes,unsigned nbSamples)236 size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
237   size_t sum = 0;
238   unsigned i;
239   for (i = 0; i < nbSamples; ++i) {
240     sum += samplesSizes[i];
241   }
242   return sum;
243 }
244 
245 /**
246  * Returns -1 if the dmer at lp is less than the dmer at rp.
247  * Return 0 if the dmers at lp and rp are equal.
248  * Returns 1 if the dmer at lp is greater than the dmer at rp.
249  */
COVER_cmp(COVER_ctx_t * ctx,const void * lp,const void * rp)250 static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
251   U32 const lhs = *(U32 const *)lp;
252   U32 const rhs = *(U32 const *)rp;
253   return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
254 }
255 /**
256  * Faster version for d <= 8.
257  */
COVER_cmp8(COVER_ctx_t * ctx,const void * lp,const void * rp)258 static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
259   U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
260   U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
261   U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
262   if (lhs < rhs) {
263     return -1;
264   }
265   return (lhs > rhs);
266 }
267 
268 /**
269  * Same as COVER_cmp() except ties are broken by pointer value
270  * NOTE: g_coverCtx must be set to call this function.  A global is required because
271  * qsort doesn't take an opaque pointer.
272  */
COVER_strict_cmp(const void * lp,const void * rp)273 static int WIN_CDECL COVER_strict_cmp(const void *lp, const void *rp) {
274   int result = COVER_cmp(g_coverCtx, lp, rp);
275   if (result == 0) {
276     result = lp < rp ? -1 : 1;
277   }
278   return result;
279 }
280 /**
281  * Faster version for d <= 8.
282  */
COVER_strict_cmp8(const void * lp,const void * rp)283 static int WIN_CDECL COVER_strict_cmp8(const void *lp, const void *rp) {
284   int result = COVER_cmp8(g_coverCtx, lp, rp);
285   if (result == 0) {
286     result = lp < rp ? -1 : 1;
287   }
288   return result;
289 }
290 
291 /**
292  * Returns the first pointer in [first, last) whose element does not compare
293  * less than value.  If no such element exists it returns last.
294  */
COVER_lower_bound(const size_t * first,const size_t * last,size_t value)295 static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
296                                        size_t value) {
297   size_t count = last - first;
298   while (count != 0) {
299     size_t step = count / 2;
300     const size_t *ptr = first;
301     ptr += step;
302     if (*ptr < value) {
303       first = ++ptr;
304       count -= step + 1;
305     } else {
306       count = step;
307     }
308   }
309   return first;
310 }
311 
312 /**
313  * Generic groupBy function.
314  * Groups an array sorted by cmp into groups with equivalent values.
315  * Calls grp for each group.
316  */
317 static void
COVER_groupBy(const void * data,size_t count,size_t size,COVER_ctx_t * ctx,int (* cmp)(COVER_ctx_t *,const void *,const void *),void (* grp)(COVER_ctx_t *,const void *,const void *))318 COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
319               int (*cmp)(COVER_ctx_t *, const void *, const void *),
320               void (*grp)(COVER_ctx_t *, const void *, const void *)) {
321   const BYTE *ptr = (const BYTE *)data;
322   size_t num = 0;
323   while (num < count) {
324     const BYTE *grpEnd = ptr + size;
325     ++num;
326     while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
327       grpEnd += size;
328       ++num;
329     }
330     grp(ctx, ptr, grpEnd);
331     ptr = grpEnd;
332   }
333 }
334 
335 /*-*************************************
336 *  Cover functions
337 ***************************************/
338 
339 /**
340  * Called on each group of positions with the same dmer.
341  * Counts the frequency of each dmer and saves it in the suffix array.
342  * Fills `ctx->dmerAt`.
343  */
COVER_group(COVER_ctx_t * ctx,const void * group,const void * groupEnd)344 static void COVER_group(COVER_ctx_t *ctx, const void *group,
345                         const void *groupEnd) {
346   /* The group consists of all the positions with the same first d bytes. */
347   const U32 *grpPtr = (const U32 *)group;
348   const U32 *grpEnd = (const U32 *)groupEnd;
349   /* The dmerId is how we will reference this dmer.
350    * This allows us to map the whole dmer space to a much smaller space, the
351    * size of the suffix array.
352    */
353   const U32 dmerId = (U32)(grpPtr - ctx->suffix);
354   /* Count the number of samples this dmer shows up in */
355   U32 freq = 0;
356   /* Details */
357   const size_t *curOffsetPtr = ctx->offsets;
358   const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
359   /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
360    * different sample than the last.
361    */
362   size_t curSampleEnd = ctx->offsets[0];
363   for (; grpPtr != grpEnd; ++grpPtr) {
364     /* Save the dmerId for this position so we can get back to it. */
365     ctx->dmerAt[*grpPtr] = dmerId;
366     /* Dictionaries only help for the first reference to the dmer.
367      * After that zstd can reference the match from the previous reference.
368      * So only count each dmer once for each sample it is in.
369      */
370     if (*grpPtr < curSampleEnd) {
371       continue;
372     }
373     freq += 1;
374     /* Binary search to find the end of the sample *grpPtr is in.
375      * In the common case that grpPtr + 1 == grpEnd we can skip the binary
376      * search because the loop is over.
377      */
378     if (grpPtr + 1 != grpEnd) {
379       const size_t *sampleEndPtr =
380           COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
381       curSampleEnd = *sampleEndPtr;
382       curOffsetPtr = sampleEndPtr + 1;
383     }
384   }
385   /* At this point we are never going to look at this segment of the suffix
386    * array again.  We take advantage of this fact to save memory.
387    * We store the frequency of the dmer in the first position of the group,
388    * which is dmerId.
389    */
390   ctx->suffix[dmerId] = freq;
391 }
392 
393 
394 /**
395  * Selects the best segment in an epoch.
396  * Segments of are scored according to the function:
397  *
398  * Let F(d) be the frequency of dmer d.
399  * Let S_i be the dmer at position i of segment S which has length k.
400  *
401  *     Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
402  *
403  * Once the dmer d is in the dictionary we set F(d) = 0.
404  */
COVER_selectSegment(const COVER_ctx_t * ctx,U32 * freqs,COVER_map_t * activeDmers,U32 begin,U32 end,ZDICT_cover_params_t parameters)405 static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
406                                            COVER_map_t *activeDmers, U32 begin,
407                                            U32 end,
408                                            ZDICT_cover_params_t parameters) {
409   /* Constants */
410   const U32 k = parameters.k;
411   const U32 d = parameters.d;
412   const U32 dmersInK = k - d + 1;
413   /* Try each segment (activeSegment) and save the best (bestSegment) */
414   COVER_segment_t bestSegment = {0, 0, 0};
415   COVER_segment_t activeSegment;
416   /* Reset the activeDmers in the segment */
417   COVER_map_clear(activeDmers);
418   /* The activeSegment starts at the beginning of the epoch. */
419   activeSegment.begin = begin;
420   activeSegment.end = begin;
421   activeSegment.score = 0;
422   /* Slide the activeSegment through the whole epoch.
423    * Save the best segment in bestSegment.
424    */
425   while (activeSegment.end < end) {
426     /* The dmerId for the dmer at the next position */
427     U32 newDmer = ctx->dmerAt[activeSegment.end];
428     /* The entry in activeDmers for this dmerId */
429     U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
430     /* If the dmer isn't already present in the segment add its score. */
431     if (*newDmerOcc == 0) {
432       /* The paper suggest using the L-0.5 norm, but experiments show that it
433        * doesn't help.
434        */
435       activeSegment.score += freqs[newDmer];
436     }
437     /* Add the dmer to the segment */
438     activeSegment.end += 1;
439     *newDmerOcc += 1;
440 
441     /* If the window is now too large, drop the first position */
442     if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
443       U32 delDmer = ctx->dmerAt[activeSegment.begin];
444       U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
445       activeSegment.begin += 1;
446       *delDmerOcc -= 1;
447       /* If this is the last occurrence of the dmer, subtract its score */
448       if (*delDmerOcc == 0) {
449         COVER_map_remove(activeDmers, delDmer);
450         activeSegment.score -= freqs[delDmer];
451       }
452     }
453 
454     /* If this segment is the best so far save it */
455     if (activeSegment.score > bestSegment.score) {
456       bestSegment = activeSegment;
457     }
458   }
459   {
460     /* Trim off the zero frequency head and tail from the segment. */
461     U32 newBegin = bestSegment.end;
462     U32 newEnd = bestSegment.begin;
463     U32 pos;
464     for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
465       U32 freq = freqs[ctx->dmerAt[pos]];
466       if (freq != 0) {
467         newBegin = MIN(newBegin, pos);
468         newEnd = pos + 1;
469       }
470     }
471     bestSegment.begin = newBegin;
472     bestSegment.end = newEnd;
473   }
474   {
475     /* Zero out the frequency of each dmer covered by the chosen segment. */
476     U32 pos;
477     for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
478       freqs[ctx->dmerAt[pos]] = 0;
479     }
480   }
481   return bestSegment;
482 }
483 
484 /**
485  * Check the validity of the parameters.
486  * Returns non-zero if the parameters are valid and 0 otherwise.
487  */
COVER_checkParameters(ZDICT_cover_params_t parameters,size_t maxDictSize)488 static int COVER_checkParameters(ZDICT_cover_params_t parameters,
489                                  size_t maxDictSize) {
490   /* k and d are required parameters */
491   if (parameters.d == 0 || parameters.k == 0) {
492     return 0;
493   }
494   /* k <= maxDictSize */
495   if (parameters.k > maxDictSize) {
496     return 0;
497   }
498   /* d <= k */
499   if (parameters.d > parameters.k) {
500     return 0;
501   }
502   /* 0 < splitPoint <= 1 */
503   if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
504     return 0;
505   }
506   return 1;
507 }
508 
509 /**
510  * Clean up a context initialized with `COVER_ctx_init()`.
511  */
COVER_ctx_destroy(COVER_ctx_t * ctx)512 static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
513   if (!ctx) {
514     return;
515   }
516   if (ctx->suffix) {
517     free(ctx->suffix);
518     ctx->suffix = NULL;
519   }
520   if (ctx->freqs) {
521     free(ctx->freqs);
522     ctx->freqs = NULL;
523   }
524   if (ctx->dmerAt) {
525     free(ctx->dmerAt);
526     ctx->dmerAt = NULL;
527   }
528   if (ctx->offsets) {
529     free(ctx->offsets);
530     ctx->offsets = NULL;
531   }
532 }
533 
534 /**
535  * Prepare a context for dictionary building.
536  * The context is only dependent on the parameter `d` and can used multiple
537  * times.
538  * Returns 0 on success or error code on error.
539  * The context must be destroyed with `COVER_ctx_destroy()`.
540  */
COVER_ctx_init(COVER_ctx_t * ctx,const void * samplesBuffer,const size_t * samplesSizes,unsigned nbSamples,unsigned d,double splitPoint)541 static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
542                           const size_t *samplesSizes, unsigned nbSamples,
543                           unsigned d, double splitPoint) {
544   const BYTE *const samples = (const BYTE *)samplesBuffer;
545   const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
546   /* Split samples into testing and training sets */
547   const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
548   const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
549   const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
550   const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
551   /* Checks */
552   if (totalSamplesSize < MAX(d, sizeof(U64)) ||
553       totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
554     DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
555                  (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
556     return ERROR(srcSize_wrong);
557   }
558   /* Check if there are at least 5 training samples */
559   if (nbTrainSamples < 5) {
560     DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
561     return ERROR(srcSize_wrong);
562   }
563   /* Check if there's testing sample */
564   if (nbTestSamples < 1) {
565     DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
566     return ERROR(srcSize_wrong);
567   }
568   /* Zero the context */
569   memset(ctx, 0, sizeof(*ctx));
570   DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
571                (unsigned)trainingSamplesSize);
572   DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
573                (unsigned)testSamplesSize);
574   ctx->samples = samples;
575   ctx->samplesSizes = samplesSizes;
576   ctx->nbSamples = nbSamples;
577   ctx->nbTrainSamples = nbTrainSamples;
578   ctx->nbTestSamples = nbTestSamples;
579   /* Partial suffix array */
580   ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
581   ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
582   /* Maps index to the dmerID */
583   ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
584   /* The offsets of each file */
585   ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
586   if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
587     DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
588     COVER_ctx_destroy(ctx);
589     return ERROR(memory_allocation);
590   }
591   ctx->freqs = NULL;
592   ctx->d = d;
593 
594   /* Fill offsets from the samplesSizes */
595   {
596     U32 i;
597     ctx->offsets[0] = 0;
598     for (i = 1; i <= nbSamples; ++i) {
599       ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
600     }
601   }
602   DISPLAYLEVEL(2, "Constructing partial suffix array\n");
603   {
604     /* suffix is a partial suffix array.
605      * It only sorts suffixes by their first parameters.d bytes.
606      * The sort is stable, so each dmer group is sorted by position in input.
607      */
608     U32 i;
609     for (i = 0; i < ctx->suffixSize; ++i) {
610       ctx->suffix[i] = i;
611     }
612     /* qsort doesn't take an opaque pointer, so pass as a global.
613      * On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
614      */
615     g_coverCtx = ctx;
616 #if defined(__OpenBSD__)
617     mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
618           (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
619 #else
620     qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
621           (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
622 #endif
623   }
624   DISPLAYLEVEL(2, "Computing frequencies\n");
625   /* For each dmer group (group of positions with the same first d bytes):
626    * 1. For each position we set dmerAt[position] = dmerID.  The dmerID is
627    *    (groupBeginPtr - suffix).  This allows us to go from position to
628    *    dmerID so we can look up values in freq.
629    * 2. We calculate how many samples the dmer occurs in and save it in
630    *    freqs[dmerId].
631    */
632   COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
633                 (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
634   ctx->freqs = ctx->suffix;
635   ctx->suffix = NULL;
636   return 0;
637 }
638 
COVER_warnOnSmallCorpus(size_t maxDictSize,size_t nbDmers,int displayLevel)639 void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
640 {
641   const double ratio = (double)nbDmers / maxDictSize;
642   if (ratio >= 10) {
643       return;
644   }
645   LOCALDISPLAYLEVEL(displayLevel, 1,
646                     "WARNING: The maximum dictionary size %u is too large "
647                     "compared to the source size %u! "
648                     "size(source)/size(dictionary) = %f, but it should be >= "
649                     "10! This may lead to a subpar dictionary! We recommend "
650                     "training on sources at least 10x, and preferably 100x "
651                     "the size of the dictionary! \n", (U32)maxDictSize,
652                     (U32)nbDmers, ratio);
653 }
654 
COVER_computeEpochs(U32 maxDictSize,U32 nbDmers,U32 k,U32 passes)655 COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
656                                        U32 nbDmers, U32 k, U32 passes)
657 {
658   const U32 minEpochSize = k * 10;
659   COVER_epoch_info_t epochs;
660   epochs.num = MAX(1, maxDictSize / k / passes);
661   epochs.size = nbDmers / epochs.num;
662   if (epochs.size >= minEpochSize) {
663       assert(epochs.size * epochs.num <= nbDmers);
664       return epochs;
665   }
666   epochs.size = MIN(minEpochSize, nbDmers);
667   epochs.num = nbDmers / epochs.size;
668   assert(epochs.size * epochs.num <= nbDmers);
669   return epochs;
670 }
671 
672 /**
673  * Given the prepared context build the dictionary.
674  */
COVER_buildDictionary(const COVER_ctx_t * ctx,U32 * freqs,COVER_map_t * activeDmers,void * dictBuffer,size_t dictBufferCapacity,ZDICT_cover_params_t parameters)675 static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
676                                     COVER_map_t *activeDmers, void *dictBuffer,
677                                     size_t dictBufferCapacity,
678                                     ZDICT_cover_params_t parameters) {
679   BYTE *const dict = (BYTE *)dictBuffer;
680   size_t tail = dictBufferCapacity;
681   /* Divide the data into epochs. We will select one segment from each epoch. */
682   const COVER_epoch_info_t epochs = COVER_computeEpochs(
683       (U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
684   const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
685   size_t zeroScoreRun = 0;
686   size_t epoch;
687   DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
688                 (U32)epochs.num, (U32)epochs.size);
689   /* Loop through the epochs until there are no more segments or the dictionary
690    * is full.
691    */
692   for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
693     const U32 epochBegin = (U32)(epoch * epochs.size);
694     const U32 epochEnd = epochBegin + epochs.size;
695     size_t segmentSize;
696     /* Select a segment */
697     COVER_segment_t segment = COVER_selectSegment(
698         ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
699     /* If the segment covers no dmers, then we are out of content.
700      * There may be new content in other epochs, for continue for some time.
701      */
702     if (segment.score == 0) {
703       if (++zeroScoreRun >= maxZeroScoreRun) {
704           break;
705       }
706       continue;
707     }
708     zeroScoreRun = 0;
709     /* Trim the segment if necessary and if it is too small then we are done */
710     segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
711     if (segmentSize < parameters.d) {
712       break;
713     }
714     /* We fill the dictionary from the back to allow the best segments to be
715      * referenced with the smallest offsets.
716      */
717     tail -= segmentSize;
718     memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
719     DISPLAYUPDATE(
720         2, "\r%u%%       ",
721         (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
722   }
723   DISPLAYLEVEL(2, "\r%79s\r", "");
724   return tail;
725 }
726 
ZDICT_trainFromBuffer_cover(void * dictBuffer,size_t dictBufferCapacity,const void * samplesBuffer,const size_t * samplesSizes,unsigned nbSamples,ZDICT_cover_params_t parameters)727 ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
728     void *dictBuffer, size_t dictBufferCapacity,
729     const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
730     ZDICT_cover_params_t parameters)
731 {
732   BYTE* const dict = (BYTE*)dictBuffer;
733   COVER_ctx_t ctx;
734   COVER_map_t activeDmers;
735   parameters.splitPoint = 1.0;
736   /* Initialize global data */
737   g_displayLevel = parameters.zParams.notificationLevel;
738   /* Checks */
739   if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
740     DISPLAYLEVEL(1, "Cover parameters incorrect\n");
741     return ERROR(parameter_outOfBound);
742   }
743   if (nbSamples == 0) {
744     DISPLAYLEVEL(1, "Cover must have at least one input file\n");
745     return ERROR(srcSize_wrong);
746   }
747   if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
748     DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
749                  ZDICT_DICTSIZE_MIN);
750     return ERROR(dstSize_tooSmall);
751   }
752   /* Initialize context and activeDmers */
753   {
754     size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
755                       parameters.d, parameters.splitPoint);
756     if (ZSTD_isError(initVal)) {
757       return initVal;
758     }
759   }
760   COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
761   if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
762     DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
763     COVER_ctx_destroy(&ctx);
764     return ERROR(memory_allocation);
765   }
766 
767   DISPLAYLEVEL(2, "Building dictionary\n");
768   {
769     const size_t tail =
770         COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
771                               dictBufferCapacity, parameters);
772     const size_t dictionarySize = ZDICT_finalizeDictionary(
773         dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
774         samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
775     if (!ZSTD_isError(dictionarySize)) {
776       DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
777                    (unsigned)dictionarySize);
778     }
779     COVER_ctx_destroy(&ctx);
780     COVER_map_destroy(&activeDmers);
781     return dictionarySize;
782   }
783 }
784 
785 
786 
COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,const size_t * samplesSizes,const BYTE * samples,size_t * offsets,size_t nbTrainSamples,size_t nbSamples,BYTE * const dict,size_t dictBufferCapacity)787 size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
788                                     const size_t *samplesSizes, const BYTE *samples,
789                                     size_t *offsets,
790                                     size_t nbTrainSamples, size_t nbSamples,
791                                     BYTE *const dict, size_t dictBufferCapacity) {
792   size_t totalCompressedSize = ERROR(GENERIC);
793   /* Pointers */
794   ZSTD_CCtx *cctx;
795   ZSTD_CDict *cdict;
796   void *dst;
797   /* Local variables */
798   size_t dstCapacity;
799   size_t i;
800   /* Allocate dst with enough space to compress the maximum sized sample */
801   {
802     size_t maxSampleSize = 0;
803     i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
804     for (; i < nbSamples; ++i) {
805       maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
806     }
807     dstCapacity = ZSTD_compressBound(maxSampleSize);
808     dst = malloc(dstCapacity);
809   }
810   /* Create the cctx and cdict */
811   cctx = ZSTD_createCCtx();
812   cdict = ZSTD_createCDict(dict, dictBufferCapacity,
813                            parameters.zParams.compressionLevel);
814   if (!dst || !cctx || !cdict) {
815     goto _compressCleanup;
816   }
817   /* Compress each sample and sum their sizes (or error) */
818   totalCompressedSize = dictBufferCapacity;
819   i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
820   for (; i < nbSamples; ++i) {
821     const size_t size = ZSTD_compress_usingCDict(
822         cctx, dst, dstCapacity, samples + offsets[i],
823         samplesSizes[i], cdict);
824     if (ZSTD_isError(size)) {
825       totalCompressedSize = size;
826       goto _compressCleanup;
827     }
828     totalCompressedSize += size;
829   }
830 _compressCleanup:
831   ZSTD_freeCCtx(cctx);
832   ZSTD_freeCDict(cdict);
833   if (dst) {
834     free(dst);
835   }
836   return totalCompressedSize;
837 }
838 
839 
840 /**
841  * Initialize the `COVER_best_t`.
842  */
COVER_best_init(COVER_best_t * best)843 void COVER_best_init(COVER_best_t *best) {
844   if (best==NULL) return; /* compatible with init on NULL */
845   (void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
846   (void)ZSTD_pthread_cond_init(&best->cond, NULL);
847   best->liveJobs = 0;
848   best->dict = NULL;
849   best->dictSize = 0;
850   best->compressedSize = (size_t)-1;
851   memset(&best->parameters, 0, sizeof(best->parameters));
852 }
853 
854 /**
855  * Wait until liveJobs == 0.
856  */
COVER_best_wait(COVER_best_t * best)857 void COVER_best_wait(COVER_best_t *best) {
858   if (!best) {
859     return;
860   }
861   ZSTD_pthread_mutex_lock(&best->mutex);
862   while (best->liveJobs != 0) {
863     ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
864   }
865   ZSTD_pthread_mutex_unlock(&best->mutex);
866 }
867 
868 /**
869  * Call COVER_best_wait() and then destroy the COVER_best_t.
870  */
COVER_best_destroy(COVER_best_t * best)871 void COVER_best_destroy(COVER_best_t *best) {
872   if (!best) {
873     return;
874   }
875   COVER_best_wait(best);
876   if (best->dict) {
877     free(best->dict);
878   }
879   ZSTD_pthread_mutex_destroy(&best->mutex);
880   ZSTD_pthread_cond_destroy(&best->cond);
881 }
882 
883 /**
884  * Called when a thread is about to be launched.
885  * Increments liveJobs.
886  */
COVER_best_start(COVER_best_t * best)887 void COVER_best_start(COVER_best_t *best) {
888   if (!best) {
889     return;
890   }
891   ZSTD_pthread_mutex_lock(&best->mutex);
892   ++best->liveJobs;
893   ZSTD_pthread_mutex_unlock(&best->mutex);
894 }
895 
896 /**
897  * Called when a thread finishes executing, both on error or success.
898  * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
899  * If this dictionary is the best so far save it and its parameters.
900  */
COVER_best_finish(COVER_best_t * best,ZDICT_cover_params_t parameters,COVER_dictSelection_t selection)901 void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
902                               COVER_dictSelection_t selection) {
903   void* dict = selection.dictContent;
904   size_t compressedSize = selection.totalCompressedSize;
905   size_t dictSize = selection.dictSize;
906   if (!best) {
907     return;
908   }
909   {
910     size_t liveJobs;
911     ZSTD_pthread_mutex_lock(&best->mutex);
912     --best->liveJobs;
913     liveJobs = best->liveJobs;
914     /* If the new dictionary is better */
915     if (compressedSize < best->compressedSize) {
916       /* Allocate space if necessary */
917       if (!best->dict || best->dictSize < dictSize) {
918         if (best->dict) {
919           free(best->dict);
920         }
921         best->dict = malloc(dictSize);
922         if (!best->dict) {
923           best->compressedSize = ERROR(GENERIC);
924           best->dictSize = 0;
925           ZSTD_pthread_cond_signal(&best->cond);
926           ZSTD_pthread_mutex_unlock(&best->mutex);
927           return;
928         }
929       }
930       /* Save the dictionary, parameters, and size */
931       if (dict) {
932         memcpy(best->dict, dict, dictSize);
933         best->dictSize = dictSize;
934         best->parameters = parameters;
935         best->compressedSize = compressedSize;
936       }
937     }
938     if (liveJobs == 0) {
939       ZSTD_pthread_cond_broadcast(&best->cond);
940     }
941     ZSTD_pthread_mutex_unlock(&best->mutex);
942   }
943 }
944 
COVER_dictSelectionError(size_t error)945 COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
946     COVER_dictSelection_t selection = { NULL, 0, error };
947     return selection;
948 }
949 
COVER_dictSelectionIsError(COVER_dictSelection_t selection)950 unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
951   return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
952 }
953 
COVER_dictSelectionFree(COVER_dictSelection_t selection)954 void COVER_dictSelectionFree(COVER_dictSelection_t selection){
955   free(selection.dictContent);
956 }
957 
COVER_selectDict(BYTE * customDictContent,size_t dictBufferCapacity,size_t dictContentSize,const BYTE * samplesBuffer,const size_t * samplesSizes,unsigned nbFinalizeSamples,size_t nbCheckSamples,size_t nbSamples,ZDICT_cover_params_t params,size_t * offsets,size_t totalCompressedSize)958 COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
959         size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
960         size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
961 
962   size_t largestDict = 0;
963   size_t largestCompressed = 0;
964   BYTE* customDictContentEnd = customDictContent + dictContentSize;
965 
966   BYTE * largestDictbuffer = (BYTE *)malloc(dictBufferCapacity);
967   BYTE * candidateDictBuffer = (BYTE *)malloc(dictBufferCapacity);
968   double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
969 
970   if (!largestDictbuffer || !candidateDictBuffer) {
971     free(largestDictbuffer);
972     free(candidateDictBuffer);
973     return COVER_dictSelectionError(dictContentSize);
974   }
975 
976   /* Initial dictionary size and compressed size */
977   memcpy(largestDictbuffer, customDictContent, dictContentSize);
978   dictContentSize = ZDICT_finalizeDictionary(
979     largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize,
980     samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
981 
982   if (ZDICT_isError(dictContentSize)) {
983     free(largestDictbuffer);
984     free(candidateDictBuffer);
985     return COVER_dictSelectionError(dictContentSize);
986   }
987 
988   totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
989                                                        samplesBuffer, offsets,
990                                                        nbCheckSamples, nbSamples,
991                                                        largestDictbuffer, dictContentSize);
992 
993   if (ZSTD_isError(totalCompressedSize)) {
994     free(largestDictbuffer);
995     free(candidateDictBuffer);
996     return COVER_dictSelectionError(totalCompressedSize);
997   }
998 
999   if (params.shrinkDict == 0) {
1000     COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
1001     free(candidateDictBuffer);
1002     return selection;
1003   }
1004 
1005   largestDict = dictContentSize;
1006   largestCompressed = totalCompressedSize;
1007   dictContentSize = ZDICT_DICTSIZE_MIN;
1008 
1009   /* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
1010   while (dictContentSize < largestDict) {
1011     memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
1012     dictContentSize = ZDICT_finalizeDictionary(
1013       candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize,
1014       samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
1015 
1016     if (ZDICT_isError(dictContentSize)) {
1017       free(largestDictbuffer);
1018       free(candidateDictBuffer);
1019       return COVER_dictSelectionError(dictContentSize);
1020 
1021     }
1022 
1023     totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
1024                                                          samplesBuffer, offsets,
1025                                                          nbCheckSamples, nbSamples,
1026                                                          candidateDictBuffer, dictContentSize);
1027 
1028     if (ZSTD_isError(totalCompressedSize)) {
1029       free(largestDictbuffer);
1030       free(candidateDictBuffer);
1031       return COVER_dictSelectionError(totalCompressedSize);
1032     }
1033 
1034     if (totalCompressedSize <= largestCompressed * regressionTolerance) {
1035       COVER_dictSelection_t selection = { candidateDictBuffer, dictContentSize, totalCompressedSize };
1036       free(largestDictbuffer);
1037       return selection;
1038     }
1039     dictContentSize *= 2;
1040   }
1041   dictContentSize = largestDict;
1042   totalCompressedSize = largestCompressed;
1043   {
1044     COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
1045     free(candidateDictBuffer);
1046     return selection;
1047   }
1048 }
1049 
1050 /**
1051  * Parameters for COVER_tryParameters().
1052  */
1053 typedef struct COVER_tryParameters_data_s {
1054   const COVER_ctx_t *ctx;
1055   COVER_best_t *best;
1056   size_t dictBufferCapacity;
1057   ZDICT_cover_params_t parameters;
1058 } COVER_tryParameters_data_t;
1059 
1060 /**
1061  * Tries a set of parameters and updates the COVER_best_t with the results.
1062  * This function is thread safe if zstd is compiled with multithreaded support.
1063  * It takes its parameters as an *OWNING* opaque pointer to support threading.
1064  */
COVER_tryParameters(void * opaque)1065 static void COVER_tryParameters(void *opaque) {
1066   /* Save parameters as local variables */
1067   COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t *)opaque;
1068   const COVER_ctx_t *const ctx = data->ctx;
1069   const ZDICT_cover_params_t parameters = data->parameters;
1070   size_t dictBufferCapacity = data->dictBufferCapacity;
1071   size_t totalCompressedSize = ERROR(GENERIC);
1072   /* Allocate space for hash table, dict, and freqs */
1073   COVER_map_t activeDmers;
1074   BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
1075   COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
1076   U32 *freqs = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
1077   if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
1078     DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
1079     goto _cleanup;
1080   }
1081   if (!dict || !freqs) {
1082     DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
1083     goto _cleanup;
1084   }
1085   /* Copy the frequencies because we need to modify them */
1086   memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
1087   /* Build the dictionary */
1088   {
1089     const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
1090                                               dictBufferCapacity, parameters);
1091     selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
1092         ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
1093         totalCompressedSize);
1094 
1095     if (COVER_dictSelectionIsError(selection)) {
1096       DISPLAYLEVEL(1, "Failed to select dictionary\n");
1097       goto _cleanup;
1098     }
1099   }
1100 _cleanup:
1101   free(dict);
1102   COVER_best_finish(data->best, parameters, selection);
1103   free(data);
1104   COVER_map_destroy(&activeDmers);
1105   COVER_dictSelectionFree(selection);
1106   if (freqs) {
1107     free(freqs);
1108   }
1109 }
1110 
ZDICT_optimizeTrainFromBuffer_cover(void * dictBuffer,size_t dictBufferCapacity,const void * samplesBuffer,const size_t * samplesSizes,unsigned nbSamples,ZDICT_cover_params_t * parameters)1111 ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
1112     void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
1113     const size_t *samplesSizes, unsigned nbSamples,
1114     ZDICT_cover_params_t *parameters) {
1115   /* constants */
1116   const unsigned nbThreads = parameters->nbThreads;
1117   const double splitPoint =
1118       parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
1119   const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
1120   const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
1121   const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
1122   const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
1123   const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
1124   const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
1125   const unsigned kIterations =
1126       (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
1127   const unsigned shrinkDict = 0;
1128   /* Local variables */
1129   const int displayLevel = parameters->zParams.notificationLevel;
1130   unsigned iteration = 1;
1131   unsigned d;
1132   unsigned k;
1133   COVER_best_t best;
1134   POOL_ctx *pool = NULL;
1135   int warned = 0;
1136 
1137   /* Checks */
1138   if (splitPoint <= 0 || splitPoint > 1) {
1139     LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1140     return ERROR(parameter_outOfBound);
1141   }
1142   if (kMinK < kMaxD || kMaxK < kMinK) {
1143     LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1144     return ERROR(parameter_outOfBound);
1145   }
1146   if (nbSamples == 0) {
1147     DISPLAYLEVEL(1, "Cover must have at least one input file\n");
1148     return ERROR(srcSize_wrong);
1149   }
1150   if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
1151     DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
1152                  ZDICT_DICTSIZE_MIN);
1153     return ERROR(dstSize_tooSmall);
1154   }
1155   if (nbThreads > 1) {
1156     pool = POOL_create(nbThreads, 1);
1157     if (!pool) {
1158       return ERROR(memory_allocation);
1159     }
1160   }
1161   /* Initialization */
1162   COVER_best_init(&best);
1163   /* Turn down global display level to clean up display at level 2 and below */
1164   g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
1165   /* Loop through d first because each new value needs a new context */
1166   LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
1167                     kIterations);
1168   for (d = kMinD; d <= kMaxD; d += 2) {
1169     /* Initialize the context for this value of d */
1170     COVER_ctx_t ctx;
1171     LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
1172     {
1173       const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
1174       if (ZSTD_isError(initVal)) {
1175         LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
1176         COVER_best_destroy(&best);
1177         POOL_free(pool);
1178         return initVal;
1179       }
1180     }
1181     if (!warned) {
1182       COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
1183       warned = 1;
1184     }
1185     /* Loop through k reusing the same context */
1186     for (k = kMinK; k <= kMaxK; k += kStepSize) {
1187       /* Prepare the arguments */
1188       COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
1189           sizeof(COVER_tryParameters_data_t));
1190       LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
1191       if (!data) {
1192         LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
1193         COVER_best_destroy(&best);
1194         COVER_ctx_destroy(&ctx);
1195         POOL_free(pool);
1196         return ERROR(memory_allocation);
1197       }
1198       data->ctx = &ctx;
1199       data->best = &best;
1200       data->dictBufferCapacity = dictBufferCapacity;
1201       data->parameters = *parameters;
1202       data->parameters.k = k;
1203       data->parameters.d = d;
1204       data->parameters.splitPoint = splitPoint;
1205       data->parameters.steps = kSteps;
1206       data->parameters.shrinkDict = shrinkDict;
1207       data->parameters.zParams.notificationLevel = g_displayLevel;
1208       /* Check the parameters */
1209       if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
1210         DISPLAYLEVEL(1, "Cover parameters incorrect\n");
1211         free(data);
1212         continue;
1213       }
1214       /* Call the function and pass ownership of data to it */
1215       COVER_best_start(&best);
1216       if (pool) {
1217         POOL_add(pool, &COVER_tryParameters, data);
1218       } else {
1219         COVER_tryParameters(data);
1220       }
1221       /* Print status */
1222       LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%%       ",
1223                          (unsigned)((iteration * 100) / kIterations));
1224       ++iteration;
1225     }
1226     COVER_best_wait(&best);
1227     COVER_ctx_destroy(&ctx);
1228   }
1229   LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
1230   /* Fill the output buffer and parameters with output of the best parameters */
1231   {
1232     const size_t dictSize = best.dictSize;
1233     if (ZSTD_isError(best.compressedSize)) {
1234       const size_t compressedSize = best.compressedSize;
1235       COVER_best_destroy(&best);
1236       POOL_free(pool);
1237       return compressedSize;
1238     }
1239     *parameters = best.parameters;
1240     memcpy(dictBuffer, best.dict, dictSize);
1241     COVER_best_destroy(&best);
1242     POOL_free(pool);
1243     return dictSize;
1244   }
1245 }
1246