1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for eye.""" 16from __future__ import absolute_import 17from __future__ import division 18from __future__ import print_function 19 20import numpy as np 21import tensorflow.compat.v1 as tf 22from tensorflow.lite.testing.zip_test_utils import create_scalar_data 23from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 24from tensorflow.lite.testing.zip_test_utils import register_make_test_function 25 26 27@register_make_test_function() 28def make_eye_tests(options): 29 """Make a set of tests for tf.eye op.""" 30 31 test_parameters = [{ 32 "num_rows_shape": [[]], 33 "num_cols_shape": [[]], 34 "batch_shape": [[3], [2, 4], [4, 5, 6], None], 35 "use_num_cols": [True, False], 36 "dtype": [tf.float32, tf.int32], 37 }] 38 39 def build_graph(parameters): 40 """Make a set of tests to do eye.""" 41 42 input_tensor0 = tf.compat.v1.placeholder( 43 dtype=tf.int32, name="num_rows", shape=parameters["num_rows_shape"]) 44 input_tensor1 = tf.compat.v1.placeholder( 45 dtype=tf.int32, name="num_columns", shape=parameters["num_cols_shape"]) 46 if parameters["use_num_cols"]: 47 outs = tf.eye( 48 num_rows=input_tensor0, 49 num_columns=input_tensor1, 50 batch_shape=parameters["batch_shape"], 51 dtype=parameters["dtype"]) 52 return [input_tensor0, input_tensor1], [outs] 53 else: 54 outs = tf.eye(num_rows=input_tensor0, dtype=parameters["dtype"]) 55 return [input_tensor0], [outs] 56 57 def build_inputs(parameters, sess, inputs, outputs): 58 input_value0 = create_scalar_data(dtype=np.int32, min_value=1) 59 input_value1 = create_scalar_data(dtype=np.int32, min_value=1) 60 if parameters["use_num_cols"]: 61 return [input_value0, input_value1], sess.run( 62 outputs, feed_dict=dict(zip(inputs, [input_value0, input_value1]))) 63 else: 64 return [input_value0], sess.run( 65 outputs, feed_dict=dict(zip(inputs, [input_value0]))) 66 67 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 68