1 /* libFLAC - Free Lossless Audio Codec library
2 * Copyright (C) 2000-2009 Josh Coalson
3 * Copyright (C) 2011-2016 Xiph.Org Foundation
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * - Neither the name of the Xiph.org Foundation nor the names of its
17 * contributors may be used to endorse or promote products derived from
18 * this software without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
24 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 #ifdef HAVE_CONFIG_H
34 # include <config.h>
35 #endif
36
37 #include "private/cpu.h"
38
39 #ifndef FLAC__INTEGER_ONLY_LIBRARY
40 #ifndef FLAC__NO_ASM
41 #if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
42 #include "private/fixed.h"
43 #ifdef FLAC__SSE2_SUPPORTED
44
45 #include <emmintrin.h> /* SSE2 */
46 #include <math.h>
47 #include "private/macros.h"
48 #include "share/compat.h"
49 #include "FLAC/assert.h"
50
51 #ifdef FLAC__CPU_IA32
52 #define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src)
53 #else
54 #define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src)
55 #endif
56
57 FLAC__SSE_TARGET("sse2")
FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[],uint32_t data_len,float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])58 uint32_t FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
59 {
60 FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
61 uint32_t i, order;
62
63 __m128i total_err0, total_err1, total_err2;
64
65 {
66 FLAC__int32 itmp;
67 __m128i last_error;
68
69 last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0
70 itmp = data[-2];
71 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
72 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1
73 itmp -= data[-3];
74 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
75 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2
76 itmp -= data[-3] - data[-4];
77 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
78 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3
79
80 total_err0 = total_err1 = _mm_setzero_si128();
81 for(i = 0; i < data_len; i++) {
82 __m128i err0, err1, tmp;
83 err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0
84 err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0
85 #if 1 /* OPT_SSE */
86 err1 = _mm_sub_epi32(err1, last_error);
87 last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2
88 err1 = _mm_sub_epi32(err1, last_error);
89 last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1
90 err1 = _mm_sub_epi32(err1, last_error);
91 last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0
92 err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
93 #else
94 last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1
95 last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0
96 err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
97 #endif
98 tmp = _mm_slli_si128(err0, 12); // e0 0 0 0
99 last_error = _mm_srli_si128(err1, 4); // 0 e1 e2 e3
100 last_error = _mm_or_si128(last_error, tmp); // e0 e1 e2 e3
101
102 tmp = _mm_srai_epi32(err0, 31);
103 err0 = _mm_xor_si128(err0, tmp);
104 err0 = _mm_sub_epi32(err0, tmp);
105 tmp = _mm_srai_epi32(err1, 31);
106 err1 = _mm_xor_si128(err1, tmp);
107 err1 = _mm_sub_epi32(err1, tmp);
108
109 total_err0 = _mm_add_epi32(total_err0, err0); // 0 0 0 te0
110 total_err1 = _mm_add_epi32(total_err1, err1); // te1 te2 te3 te4
111 }
112 }
113
114 total_error_0 = _mm_cvtsi128_si32(total_err0);
115 total_err2 = total_err1; // te1 te2 te3 te4
116 total_err1 = _mm_srli_si128(total_err1, 8); // 0 0 te1 te2
117 total_error_4 = _mm_cvtsi128_si32(total_err2);
118 total_error_2 = _mm_cvtsi128_si32(total_err1);
119 total_err2 = _mm_srli_si128(total_err2, 4); // 0 te1 te2 te3
120 total_err1 = _mm_srli_si128(total_err1, 4); // 0 0 0 te1
121 total_error_3 = _mm_cvtsi128_si32(total_err2);
122 total_error_1 = _mm_cvtsi128_si32(total_err1);
123
124 /* prefer higher order */
125 if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
126 order = 0;
127 else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4))
128 order = 1;
129 else if(total_error_2 < flac_min(total_error_3, total_error_4))
130 order = 2;
131 else if(total_error_3 < total_error_4)
132 order = 3;
133 else
134 order = 4;
135
136 /* Estimate the expected number of bits per residual signal sample. */
137 /* 'total_error*' is linearly related to the variance of the residual */
138 /* signal, so we use it directly to compute E(|x|) */
139 FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
140 FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
141 FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
142 FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
143 FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
144
145 residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
146 residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
147 residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
148 residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
149 residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
150
151 return order;
152 }
153
154 FLAC__SSE_TARGET("sse2")
FLAC__fixed_compute_best_predictor_wide_intrin_sse2(const FLAC__int32 data[],uint32_t data_len,float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1])155 uint32_t FLAC__fixed_compute_best_predictor_wide_intrin_sse2(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
156 {
157 FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
158 uint32_t i, order;
159
160 __m128i total_err0, total_err1, total_err3;
161
162 {
163 FLAC__int32 itmp;
164 __m128i last_error, zero = _mm_setzero_si128();
165
166 last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0
167 itmp = data[-2];
168 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
169 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1
170 itmp -= data[-3];
171 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
172 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2
173 itmp -= data[-3] - data[-4];
174 last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
175 last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3
176
177 total_err0 = total_err1 = total_err3 = _mm_setzero_si128();
178 for(i = 0; i < data_len; i++) {
179 __m128i err0, err1, tmp;
180 err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0
181 err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0
182 #if 1 /* OPT_SSE */
183 err1 = _mm_sub_epi32(err1, last_error);
184 last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2
185 err1 = _mm_sub_epi32(err1, last_error);
186 last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1
187 err1 = _mm_sub_epi32(err1, last_error);
188 last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0
189 err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
190 #else
191 last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1
192 last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0
193 err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
194 #endif
195 tmp = _mm_slli_si128(err0, 12); // e0 0 0 0
196 last_error = _mm_srli_si128(err1, 4); // 0 e1 e2 e3
197 last_error = _mm_or_si128(last_error, tmp); // e0 e1 e2 e3
198
199 tmp = _mm_srai_epi32(err0, 31);
200 err0 = _mm_xor_si128(err0, tmp);
201 err0 = _mm_sub_epi32(err0, tmp);
202 tmp = _mm_srai_epi32(err1, 31);
203 err1 = _mm_xor_si128(err1, tmp);
204 err1 = _mm_sub_epi32(err1, tmp);
205
206 total_err0 = _mm_add_epi64(total_err0, err0); // 0 te0
207 err0 = _mm_unpacklo_epi32(err1, zero); // 0 |e3| 0 |e4|
208 err1 = _mm_unpackhi_epi32(err1, zero); // 0 |e1| 0 |e2|
209 total_err3 = _mm_add_epi64(total_err3, err0); // te3 te4
210 total_err1 = _mm_add_epi64(total_err1, err1); // te1 te2
211 }
212 }
213
214 m128i_to_i64(total_error_0, total_err0);
215 m128i_to_i64(total_error_4, total_err3);
216 m128i_to_i64(total_error_2, total_err1);
217 total_err3 = _mm_srli_si128(total_err3, 8); // 0 te3
218 total_err1 = _mm_srli_si128(total_err1, 8); // 0 te1
219 m128i_to_i64(total_error_3, total_err3);
220 m128i_to_i64(total_error_1, total_err1);
221
222 /* prefer higher order */
223 if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
224 order = 0;
225 else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4))
226 order = 1;
227 else if(total_error_2 < flac_min(total_error_3, total_error_4))
228 order = 2;
229 else if(total_error_3 < total_error_4)
230 order = 3;
231 else
232 order = 4;
233
234 /* Estimate the expected number of bits per residual signal sample. */
235 /* 'total_error*' is linearly related to the variance of the residual */
236 /* signal, so we use it directly to compute E(|x|) */
237 FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
238 FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
239 FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
240 FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
241 FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
242
243 residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
244 residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
245 residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
246 residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
247 residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
248
249 return order;
250 }
251
252 #endif /* FLAC__SSE2_SUPPORTED */
253 #endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
254 #endif /* FLAC__NO_ASM */
255 #endif /* FLAC__INTEGER_ONLY_LIBRARY */
256