• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*
2 * The implementations contained in this file are heavily based on the
3 * implementations found in the Berkeley SoftFloat library. As such, they are
4 * licensed under the same 3-clause BSD license:
5 *
6 * License for Berkeley SoftFloat Release 3e
7 *
8 * John R. Hauser
9 * 2018 January 20
10 *
11 * The following applies to the whole of SoftFloat Release 3e as well as to
12 * each source file individually.
13 *
14 * Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018 The Regents of the
15 * University of California.  All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are met:
19 *
20 *  1. Redistributions of source code must retain the above copyright notice,
21 *     this list of conditions, and the following disclaimer.
22 *
23 *  2. Redistributions in binary form must reproduce the above copyright
24 *     notice, this list of conditions, and the following disclaimer in the
25 *     documentation and/or other materials provided with the distribution.
26 *
27 *  3. Neither the name of the University nor the names of its contributors
28 *     may be used to endorse or promote products derived from this software
29 *     without specific prior written permission.
30 *
31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS", AND ANY
32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
34 * DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY
35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
40 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41*/
42
43#version 430
44#extension GL_ARB_gpu_shader_int64 : enable
45#extension GL_ARB_shader_bit_encoding : enable
46#extension GL_EXT_shader_integer_mix : enable
47#extension GL_MESA_shader_integer_functions : enable
48
49#pragma warning(off)
50
51/* Software IEEE floating-point rounding mode.
52 * GLSL spec section "4.7.1 Range and Precision":
53 * The rounding mode cannot be set and is undefined.
54 * But here, we are able to define the rounding mode at the compilation time.
55 */
56#define FLOAT_ROUND_NEAREST_EVEN    0
57#define FLOAT_ROUND_TO_ZERO         1
58#define FLOAT_ROUND_DOWN            2
59#define FLOAT_ROUND_UP              3
60#define FLOAT_ROUNDING_MODE         FLOAT_ROUND_NEAREST_EVEN
61
62/* Relax propagation of NaN.  Binary operations with a NaN source will still
63 * produce a NaN result, but it won't follow strict IEEE rules.
64 */
65#define RELAXED_NAN_PROPAGATION
66
67/* Absolute value of a Float64 :
68 * Clear the sign bit
69 */
70uint64_t
71__fabs64(uint64_t __a)
72{
73   uvec2 a = unpackUint2x32(__a);
74   a.y &= 0x7FFFFFFFu;
75   return packUint2x32(a);
76}
77
78/* Returns 1 if the double-precision floating-point value `a' is a NaN;
79 * otherwise returns 0.
80 */
81bool
82__is_nan(uint64_t __a)
83{
84   uvec2 a = unpackUint2x32(__a);
85   return (0xFFE00000u <= (a.y<<1)) &&
86      ((a.x != 0u) || ((a.y & 0x000FFFFFu) != 0u));
87}
88
89/* Negate value of a Float64 :
90 * Toggle the sign bit
91 */
92uint64_t
93__fneg64(uint64_t __a)
94{
95   uvec2 a = unpackUint2x32(__a);
96   a.y ^= (1u << 31);
97   return packUint2x32(a);
98}
99
100uint64_t
101__fsign64(uint64_t __a)
102{
103   uvec2 a = unpackUint2x32(__a);
104   uvec2 retval;
105   retval.x = 0u;
106   retval.y = mix((a.y & 0x80000000u) | 0x3FF00000u, 0u, (a.y << 1 | a.x) == 0u);
107   return packUint2x32(retval);
108}
109
110/* Returns the fraction bits of the double-precision floating-point value `a'.*/
111uint
112__extractFloat64FracLo(uint64_t a)
113{
114   return unpackUint2x32(a).x;
115}
116
117uint
118__extractFloat64FracHi(uint64_t a)
119{
120   return unpackUint2x32(a).y & 0x000FFFFFu;
121}
122
123/* Returns the exponent bits of the double-precision floating-point value `a'.*/
124int
125__extractFloat64Exp(uint64_t __a)
126{
127   uvec2 a = unpackUint2x32(__a);
128   return int((a.y>>20) & 0x7FFu);
129}
130
131bool
132__feq64_nonnan(uint64_t __a, uint64_t __b)
133{
134   uvec2 a = unpackUint2x32(__a);
135   uvec2 b = unpackUint2x32(__b);
136   return (a.x == b.x) &&
137          ((a.y == b.y) || ((a.x == 0u) && (((a.y | b.y)<<1) == 0u)));
138}
139
140/* Returns true if the double-precision floating-point value `a' is equal to the
141 * corresponding value `b', and false otherwise.  The comparison is performed
142 * according to the IEEE Standard for Floating-Point Arithmetic.
143 */
144bool
145__feq64(uint64_t a, uint64_t b)
146{
147   if (__is_nan(a) || __is_nan(b))
148      return false;
149
150   return __feq64_nonnan(a, b);
151}
152
153/* Returns true if the double-precision floating-point value `a' is not equal
154 * to the corresponding value `b', and false otherwise.  The comparison is
155 * performed according to the IEEE Standard for Floating-Point Arithmetic.
156 */
157bool
158__fneu64(uint64_t a, uint64_t b)
159{
160   if (__is_nan(a) || __is_nan(b))
161      return true;
162
163   return !__feq64_nonnan(a, b);
164}
165
166/* Returns the sign bit of the double-precision floating-point value `a'.*/
167uint
168__extractFloat64Sign(uint64_t a)
169{
170   return unpackUint2x32(a).y & 0x80000000u;
171}
172
173/* Returns true if the signed 64-bit value formed by concatenating `a0' and
174 * `a1' is less than the signed 64-bit value formed by concatenating `b0' and
175 * `b1'.  Otherwise, returns false.
176 */
177bool
178ilt64(uint a0, uint a1, uint b0, uint b1)
179{
180   return (int(a0) < int(b0)) || ((a0 == b0) && (a1 < b1));
181}
182
183bool
184__flt64_nonnan(uint64_t __a, uint64_t __b)
185{
186   uvec2 a = unpackUint2x32(__a);
187   uvec2 b = unpackUint2x32(__b);
188
189   /* IEEE 754 floating point numbers are specifically designed so that, with
190    * two exceptions, values can be compared by bit-casting to signed integers
191    * with the same number of bits.
192    *
193    * From https://en.wikipedia.org/wiki/IEEE_754-1985#Comparing_floating-point_numbers:
194    *
195    *    When comparing as 2's-complement integers: If the sign bits differ,
196    *    the negative number precedes the positive number, so 2's complement
197    *    gives the correct result (except that negative zero and positive zero
198    *    should be considered equal). If both values are positive, the 2's
199    *    complement comparison again gives the correct result. Otherwise (two
200    *    negative numbers), the correct FP ordering is the opposite of the 2's
201    *    complement ordering.
202    *
203    * The logic implied by the above quotation is:
204    *
205    *    !both_are_zero(a, b) && (both_negative(a, b) ? a > b : a < b)
206    *
207    * This is equivalent to
208    *
209    *    fneu(a, b) && (both_negative(a, b) ? a >= b : a < b)
210    *
211    *    fneu(a, b) && (both_negative(a, b) ? !(a < b) : a < b)
212    *
213    *    fneu(a, b) && ((both_negative(a, b) && !(a < b)) ||
214    *                  (!both_negative(a, b) && (a < b)))
215    *
216    * (A!|B)&(A|!B) is (A xor B) which is implemented here using !=.
217    *
218    *    fneu(a, b) && (both_negative(a, b) != (a < b))
219    */
220   bool lt = ilt64(a.y, a.x, b.y, b.x);
221   bool both_negative = (a.y & b.y & 0x80000000u) != 0;
222
223   return !__feq64_nonnan(__a, __b) && (lt != both_negative);
224}
225
226/* Returns true if the double-precision floating-point value `a' is less than
227 * the corresponding value `b', and false otherwise.  The comparison is performed
228 * according to the IEEE Standard for Floating-Point Arithmetic.
229 */
230bool
231__flt64(uint64_t a, uint64_t b)
232{
233   /* This weird layout matters.  Doing the "obvious" thing results in extra
234    * flow control being inserted to implement the short-circuit evaluation
235    * rules.  Flow control is bad!
236    */
237   bool x = !__is_nan(a);
238   bool y = !__is_nan(b);
239   bool z = __flt64_nonnan(a, b);
240
241   return (x && y && z);
242}
243
244/* Returns true if the double-precision floating-point value `a' is greater
245 * than or equal to * the corresponding value `b', and false otherwise.  The
246 * comparison is performed * according to the IEEE Standard for Floating-Point
247 * Arithmetic.
248 */
249bool
250__fge64(uint64_t a, uint64_t b)
251{
252   /* This weird layout matters.  Doing the "obvious" thing results in extra
253    * flow control being inserted to implement the short-circuit evaluation
254    * rules.  Flow control is bad!
255    */
256   bool x = !__is_nan(a);
257   bool y = !__is_nan(b);
258   bool z = !__flt64_nonnan(a, b);
259
260   return (x && y && z);
261}
262
263uint64_t
264__fsat64(uint64_t __a)
265{
266   uvec2 a = unpackUint2x32(__a);
267
268   /* fsat(NaN) should be zero. */
269   if (__is_nan(__a) || int(a.y) < 0)
270      return 0ul;
271
272   /* IEEE 754 floating point numbers are specifically designed so that, with
273    * two exceptions, values can be compared by bit-casting to signed integers
274    * with the same number of bits.
275    *
276    * From https://en.wikipedia.org/wiki/IEEE_754-1985#Comparing_floating-point_numbers:
277    *
278    *    When comparing as 2's-complement integers: If the sign bits differ,
279    *    the negative number precedes the positive number, so 2's complement
280    *    gives the correct result (except that negative zero and positive zero
281    *    should be considered equal). If both values are positive, the 2's
282    *    complement comparison again gives the correct result. Otherwise (two
283    *    negative numbers), the correct FP ordering is the opposite of the 2's
284    *    complement ordering.
285    *
286    * We know that both values are not negative, and we know that at least one
287    * value is not zero.  Therefore, we can just use the 2's complement
288    * comparison ordering.
289    */
290   if (ilt64(0x3FF00000, 0x00000000, a.y, a.x))
291      return 0x3FF0000000000000ul;
292
293   return __a;
294}
295
296/* Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
297 * value formed by concatenating `b0' and `b1'.  Addition is modulo 2^64, so
298 * any carry out is lost.  The result is broken into two 32-bit pieces which
299 * are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
300 */
301void
302__add64(uint a0, uint a1, uint b0, uint b1,
303        out uint z0Ptr,
304        out uint z1Ptr)
305{
306   uint z1 = a1 + b1;
307   z1Ptr = z1;
308   z0Ptr = a0 + b0 + uint(z1 < a1);
309}
310
311
312/* Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
313 * 64-bit value formed by concatenating `a0' and `a1'.  Subtraction is modulo
314 * 2^64, so any borrow out (carry out) is lost.  The result is broken into two
315 * 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
316 * `z1Ptr'.
317 */
318void
319__sub64(uint a0, uint a1, uint b0, uint b1,
320        out uint z0Ptr,
321        out uint z1Ptr)
322{
323   z1Ptr = a1 - b1;
324   z0Ptr = a0 - b0 - uint(a1 < b1);
325}
326
327/* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
328 * number of bits given in `count'.  If any nonzero bits are shifted off, they
329 * are "jammed" into the least significant bit of the result by setting the
330 * least significant bit to 1.  The value of `count' can be arbitrarily large;
331 * in particular, if `count' is greater than 64, the result will be either 0
332 * or 1, depending on whether the concatenation of `a0' and `a1' is zero or
333 * nonzero.  The result is broken into two 32-bit pieces which are stored at
334 * the locations pointed to by `z0Ptr' and `z1Ptr'.
335 */
336void
337__shift64RightJamming(uint a0,
338                      uint a1,
339                      int count,
340                      out uint z0Ptr,
341                      out uint z1Ptr)
342{
343   uint z0;
344   uint z1;
345   int negCount = (-count) & 31;
346
347   z0 = mix(0u, a0, count == 0);
348   z0 = mix(z0, (a0 >> count), count < 32);
349
350   z1 = uint((a0 | a1) != 0u); /* count >= 64 */
351   uint z1_lt64 = (a0>>(count & 31)) | uint(((a0<<negCount) | a1) != 0u);
352   z1 = mix(z1, z1_lt64, count < 64);
353   z1 = mix(z1, (a0 | uint(a1 != 0u)), count == 32);
354   uint z1_lt32 = (a0<<negCount) | (a1>>count) | uint ((a1<<negCount) != 0u);
355   z1 = mix(z1, z1_lt32, count < 32);
356   z1 = mix(z1, a1, count == 0);
357   z1Ptr = z1;
358   z0Ptr = z0;
359}
360
361/* Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
362 * by 32 _plus_ the number of bits given in `count'.  The shifted result is
363 * at most 64 nonzero bits; these are broken into two 32-bit pieces which are
364 * stored at the locations pointed to by `z0Ptr' and `z1Ptr'.  The bits shifted
365 * off form a third 32-bit result as follows:  The _last_ bit shifted off is
366 * the most-significant bit of the extra result, and the other 31 bits of the
367 * extra result are all zero if and only if _all_but_the_last_ bits shifted off
368 * were all zero.  This extra result is stored in the location pointed to by
369 * `z2Ptr'.  The value of `count' can be arbitrarily large.
370 *     (This routine makes more sense if `a0', `a1', and `a2' are considered
371 * to form a fixed-point value with binary point between `a1' and `a2'.  This
372 * fixed-point value is shifted right by the number of bits given in `count',
373 * and the integer part of the result is returned at the locations pointed to
374 * by `z0Ptr' and `z1Ptr'.  The fractional part of the result may be slightly
375 * corrupted as described above, and is returned at the location pointed to by
376 * `z2Ptr'.)
377 */
378void
379__shift64ExtraRightJamming(uint a0, uint a1, uint a2,
380                           int count,
381                           out uint z0Ptr,
382                           out uint z1Ptr,
383                           out uint z2Ptr)
384{
385   uint z0 = 0u;
386   uint z1;
387   uint z2;
388   int negCount = (-count) & 31;
389
390   z2 = mix(uint(a0 != 0u), a0, count == 64);
391   z2 = mix(z2, a0 << negCount, count < 64);
392   z2 = mix(z2, a1 << negCount, count < 32);
393
394   z1 = mix(0u, (a0 >> (count & 31)), count < 64);
395   z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);
396
397   a2 = mix(a2 | a1, a2, count < 32);
398   z0 = mix(z0, a0 >> count, count < 32);
399   z2 |= uint(a2 != 0u);
400
401   z0 = mix(z0, 0u, (count == 32));
402   z1 = mix(z1, a0, (count == 32));
403   z2 = mix(z2, a1, (count == 32));
404   z0 = mix(z0, a0, (count == 0));
405   z1 = mix(z1, a1, (count == 0));
406   z2 = mix(z2, a2, (count == 0));
407   z2Ptr = z2;
408   z1Ptr = z1;
409   z0Ptr = z0;
410}
411
412/* Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
413 * number of bits given in `count'.  Any bits shifted off are lost.  The value
414 * of `count' must be less than 32.  The result is broken into two 32-bit
415 * pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
416 */
417void
418__shortShift64Left(uint a0, uint a1,
419                   int count,
420                   out uint z0Ptr,
421                   out uint z1Ptr)
422{
423   z1Ptr = a1<<count;
424   z0Ptr = mix((a0 << count | (a1 >> ((-count) & 31))), a0, count == 0);
425}
426
427/* Packs the sign `zSign', the exponent `zExp', and the significand formed by
428 * the concatenation of `zFrac0' and `zFrac1' into a double-precision floating-
429 * point value, returning the result.  After being shifted into the proper
430 * positions, the three fields `zSign', `zExp', and `zFrac0' are simply added
431 * together to form the most significant 32 bits of the result.  This means
432 * that any integer portion of `zFrac0' will be added into the exponent.  Since
433 * a properly normalized significand will have an integer portion equal to 1,
434 * the `zExp' input should be 1 less than the desired result exponent whenever
435 * `zFrac0' and `zFrac1' concatenated form a complete, normalized significand.
436 */
437uint64_t
438__packFloat64(uint zSign, int zExp, uint zFrac0, uint zFrac1)
439{
440   uvec2 z;
441
442   z.y = zSign + (uint(zExp) << 20) + zFrac0;
443   z.x = zFrac1;
444   return packUint2x32(z);
445}
446
447/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
448 * and extended significand formed by the concatenation of `zFrac0', `zFrac1',
449 * and `zFrac2', and returns the proper double-precision floating-point value
450 * corresponding to the abstract input.  Ordinarily, the abstract value is
451 * simply rounded and packed into the double-precision format, with the inexact
452 * exception raised if the abstract input cannot be represented exactly.
453 * However, if the abstract value is too large, the overflow and inexact
454 * exceptions are raised and an infinity or maximal finite value is returned.
455 * If the abstract value is too small, the input value is rounded to a
456 * subnormal number, and the underflow and inexact exceptions are raised if the
457 * abstract input cannot be represented exactly as a subnormal double-precision
458 * floating-point number.
459 *     The input significand must be normalized or smaller.  If the input
460 * significand is not normalized, `zExp' must be 0; in that case, the result
461 * returned is a subnormal number, and it must not require rounding.  In the
462 * usual case that the input significand is normalized, `zExp' must be 1 less
463 * than the "true" floating-point exponent.  The handling of underflow and
464 * overflow follows the IEEE Standard for Floating-Point Arithmetic.
465 */
466uint64_t
467__roundAndPackFloat64(uint zSign,
468                      int zExp,
469                      uint zFrac0,
470                      uint zFrac1,
471                      uint zFrac2)
472{
473   bool roundNearestEven;
474   bool increment;
475
476   roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
477   increment = int(zFrac2) < 0;
478   if (!roundNearestEven) {
479      if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
480         increment = false;
481      } else {
482         if (zSign != 0u) {
483            increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
484               (zFrac2 != 0u);
485         } else {
486            increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
487               (zFrac2 != 0u);
488         }
489      }
490   }
491   if (0x7FD <= zExp) {
492      if ((0x7FD < zExp) ||
493         ((zExp == 0x7FD) &&
494            (0x001FFFFFu == zFrac0 && 0xFFFFFFFFu == zFrac1) &&
495               increment)) {
496         if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) ||
497            ((zSign != 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)) ||
498               ((zSign == 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN))) {
499            return __packFloat64(zSign, 0x7FE, 0x000FFFFFu, 0xFFFFFFFFu);
500         }
501         return __packFloat64(zSign, 0x7FF, 0u, 0u);
502      }
503   }
504
505   if (zExp < 0) {
506      __shift64ExtraRightJamming(
507         zFrac0, zFrac1, zFrac2, -zExp, zFrac0, zFrac1, zFrac2);
508      zExp = 0;
509      if (roundNearestEven) {
510         increment = zFrac2 < 0u;
511      } else {
512         if (zSign != 0u) {
513            increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
514               (zFrac2 != 0u);
515         } else {
516            increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
517               (zFrac2 != 0u);
518         }
519      }
520   }
521
522   if (increment) {
523      __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
524      zFrac1 &= ~((zFrac2 + uint(zFrac2 == 0u)) & uint(roundNearestEven));
525   } else {
526      zExp = mix(zExp, 0, (zFrac0 | zFrac1) == 0u);
527   }
528   return __packFloat64(zSign, zExp, zFrac0, zFrac1);
529}
530
531uint64_t
532__roundAndPackUInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2)
533{
534   bool roundNearestEven;
535   bool increment;
536   uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
537
538   roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
539
540   if (zFrac2 >= 0x80000000u)
541      increment = false;
542
543   if (!roundNearestEven) {
544      if (zSign != 0u) {
545         if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) && (zFrac2 != 0u)) {
546            increment = false;
547         }
548      } else {
549         increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
550            (zFrac2 != 0u);
551      }
552   }
553
554   if (increment) {
555      __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
556      if ((zFrac0 | zFrac1) != 0u)
557         zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven);
558   }
559   return mix(packUint2x32(uvec2(zFrac1, zFrac0)), default_nan,
560              (zSign != 0u && (zFrac0 | zFrac1) != 0u));
561}
562
563int64_t
564__roundAndPackInt64(uint zSign, uint zFrac0, uint zFrac1, uint zFrac2)
565{
566   bool roundNearestEven;
567   bool increment;
568   int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
569   int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
570
571   roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
572
573   if (zFrac2 >= 0x80000000u)
574      increment = false;
575
576   if (!roundNearestEven) {
577      if (zSign != 0u) {
578         increment = ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
579            (zFrac2 != 0u));
580      } else {
581         increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
582            (zFrac2 != 0u);
583      }
584   }
585
586   if (increment) {
587      __add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
588      if ((zFrac0 | zFrac1) != 0u)
589         zFrac1 &= ~(1u) + uint(zFrac2 == 0u) & uint(roundNearestEven);
590   }
591
592   int64_t absZ = mix(int64_t(packUint2x32(uvec2(zFrac1, zFrac0))),
593                      -int64_t(packUint2x32(uvec2(zFrac1, zFrac0))),
594                      zSign != 0u);
595   int64_t nan = mix(default_PosNaN, default_NegNaN, zSign != 0u);
596   return mix(absZ, nan, ((zSign != 0u) != (absZ < 0)) && bool(absZ));
597}
598
599/* Returns the number of leading 0 bits before the most-significant 1 bit of
600 * `a'.  If `a' is zero, 32 is returned.
601 */
602int
603__countLeadingZeros32(uint a)
604{
605   return 31 - findMSB(a);
606}
607
608/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
609 * and significand formed by the concatenation of `zSig0' and `zSig1', and
610 * returns the proper double-precision floating-point value corresponding
611 * to the abstract input.  This routine is just like `__roundAndPackFloat64'
612 * except that the input significand has fewer bits and does not have to be
613 * normalized.  In all cases, `zExp' must be 1 less than the "true" floating-
614 * point exponent.
615 */
616uint64_t
617__normalizeRoundAndPackFloat64(uint zSign,
618                               int zExp,
619                               uint zFrac0,
620                               uint zFrac1)
621{
622   int shiftCount;
623   uint zFrac2;
624
625   if (zFrac0 == 0u) {
626      zExp -= 32;
627      zFrac0 = zFrac1;
628      zFrac1 = 0u;
629   }
630
631   shiftCount = __countLeadingZeros32(zFrac0) - 11;
632   if (0 <= shiftCount) {
633      zFrac2 = 0u;
634      __shortShift64Left(zFrac0, zFrac1, shiftCount, zFrac0, zFrac1);
635   } else {
636      __shift64ExtraRightJamming(
637         zFrac0, zFrac1, 0u, -shiftCount, zFrac0, zFrac1, zFrac2);
638   }
639   zExp -= shiftCount;
640   return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
641}
642
643/* Takes two double-precision floating-point values `a' and `b', one of which
644 * is a NaN, and returns the appropriate NaN result.
645 */
646uint64_t
647__propagateFloat64NaN(uint64_t __a, uint64_t __b)
648{
649#if defined RELAXED_NAN_PROPAGATION
650   uvec2 a = unpackUint2x32(__a);
651   uvec2 b = unpackUint2x32(__b);
652
653   return packUint2x32(uvec2(a.x | b.x, a.y | b.y));
654#else
655   bool aIsNaN = __is_nan(__a);
656   bool bIsNaN = __is_nan(__b);
657   uvec2 a = unpackUint2x32(__a);
658   uvec2 b = unpackUint2x32(__b);
659   a.y |= 0x00080000u;
660   b.y |= 0x00080000u;
661
662   return packUint2x32(mix(b, mix(a, b, bvec2(bIsNaN, bIsNaN)), bvec2(aIsNaN, aIsNaN)));
663#endif
664}
665
666/* If a shader is in the soft-fp64 path, it almost certainly has register
667 * pressure problems.  Choose a method to exchange two values that does not
668 * require a temporary.
669 */
670#define EXCHANGE(a, b) \
671   do {                \
672       a ^= b;         \
673       b ^= a;         \
674       a ^= b;         \
675   } while (false)
676
677/* Returns the result of adding the double-precision floating-point values
678 * `a' and `b'.  The operation is performed according to the IEEE Standard for
679 * Floating-Point Arithmetic.
680 */
681uint64_t
682__fadd64(uint64_t a, uint64_t b)
683{
684   uint aSign = __extractFloat64Sign(a);
685   uint bSign = __extractFloat64Sign(b);
686   uint aFracLo = __extractFloat64FracLo(a);
687   uint aFracHi = __extractFloat64FracHi(a);
688   uint bFracLo = __extractFloat64FracLo(b);
689   uint bFracHi = __extractFloat64FracHi(b);
690   int aExp = __extractFloat64Exp(a);
691   int bExp = __extractFloat64Exp(b);
692   int expDiff = aExp - bExp;
693   if (aSign == bSign) {
694      uint zFrac0;
695      uint zFrac1;
696      uint zFrac2;
697      int zExp;
698
699      if (expDiff == 0) {
700         if (aExp == 0x7FF) {
701            bool propagate = ((aFracHi | bFracHi) | (aFracLo| bFracLo)) != 0u;
702            return mix(a, __propagateFloat64NaN(a, b), propagate);
703         }
704         __add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
705         if (aExp == 0)
706            return __packFloat64(aSign, 0, zFrac0, zFrac1);
707         zFrac2 = 0u;
708         zFrac0 |= 0x00200000u;
709         zExp = aExp;
710         __shift64ExtraRightJamming(
711            zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
712      } else {
713         if (expDiff < 0) {
714            EXCHANGE(aFracHi, bFracHi);
715            EXCHANGE(aFracLo, bFracLo);
716            EXCHANGE(aExp, bExp);
717         }
718
719         if (aExp == 0x7FF) {
720            bool propagate = (aFracHi | aFracLo) != 0u;
721            return mix(__packFloat64(aSign, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
722         }
723
724         expDiff = mix(abs(expDiff), abs(expDiff) - 1, bExp == 0);
725         bFracHi = mix(bFracHi | 0x00100000u, bFracHi, bExp == 0);
726         __shift64ExtraRightJamming(
727            bFracHi, bFracLo, 0u, expDiff, bFracHi, bFracLo, zFrac2);
728         zExp = aExp;
729
730         aFracHi |= 0x00100000u;
731         __add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
732         --zExp;
733         if (!(zFrac0 < 0x00200000u)) {
734            __shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
735            ++zExp;
736         }
737      }
738      return __roundAndPackFloat64(aSign, zExp, zFrac0, zFrac1, zFrac2);
739
740   } else {
741      int zExp;
742
743      __shortShift64Left(aFracHi, aFracLo, 10, aFracHi, aFracLo);
744      __shortShift64Left(bFracHi, bFracLo, 10, bFracHi, bFracLo);
745      if (expDiff != 0) {
746         uint zFrac0;
747         uint zFrac1;
748
749         if (expDiff < 0) {
750            EXCHANGE(aFracHi, bFracHi);
751            EXCHANGE(aFracLo, bFracLo);
752            EXCHANGE(aExp, bExp);
753            aSign ^= 0x80000000u;
754         }
755
756         if (aExp == 0x7FF) {
757            bool propagate = (aFracHi | aFracLo) != 0u;
758            return mix(__packFloat64(aSign, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
759         }
760
761         expDiff = mix(abs(expDiff), abs(expDiff) - 1, bExp == 0);
762         bFracHi = mix(bFracHi | 0x40000000u, bFracHi, bExp == 0);
763         __shift64RightJamming(bFracHi, bFracLo, expDiff, bFracHi, bFracLo);
764         aFracHi |= 0x40000000u;
765         __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
766         zExp = aExp;
767         --zExp;
768         return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1);
769      }
770      if (aExp == 0x7FF) {
771         bool propagate = ((aFracHi | bFracHi) | (aFracLo | bFracLo)) != 0u;
772         return mix(0xFFFFFFFFFFFFFFFFUL, __propagateFloat64NaN(a, b), propagate);
773      }
774      bExp = mix(bExp, 1, aExp == 0);
775      aExp = mix(aExp, 1, aExp == 0);
776
777      uint zFrac0;
778      uint zFrac1;
779      uint sign_of_difference = 0;
780      if (bFracHi < aFracHi) {
781         __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
782      }
783      else if (aFracHi < bFracHi) {
784         __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
785         sign_of_difference = 0x80000000;
786      }
787      else if (bFracLo <= aFracLo) {
788         /* It is possible that zFrac0 and zFrac1 may be zero after this. */
789         __sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
790      }
791      else {
792         __sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
793         sign_of_difference = 0x80000000;
794      }
795      zExp = mix(bExp, aExp, sign_of_difference == 0u);
796      aSign ^= sign_of_difference;
797      uint64_t retval_0 = __packFloat64(uint(FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) << 31, 0, 0u, 0u);
798      uint64_t retval_1 = __normalizeRoundAndPackFloat64(aSign, zExp - 11, zFrac0, zFrac1);
799      return mix(retval_0, retval_1, zFrac0 != 0u || zFrac1 != 0u);
800   }
801}
802
803/* Multiplies the 64-bit value formed by concatenating `a0' and `a1' to the
804 * 64-bit value formed by concatenating `b0' and `b1' to obtain a 128-bit
805 * product.  The product is broken into four 32-bit pieces which are stored at
806 * the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
807 */
808void
809__mul64To128(uint a0, uint a1, uint b0, uint b1,
810             out uint z0Ptr,
811             out uint z1Ptr,
812             out uint z2Ptr,
813             out uint z3Ptr)
814{
815   uint z0 = 0u;
816   uint z1 = 0u;
817   uint z2 = 0u;
818   uint z3 = 0u;
819   uint more1 = 0u;
820   uint more2 = 0u;
821
822   umulExtended(a1, b1, z2, z3);
823   umulExtended(a1, b0, z1, more2);
824   __add64(z1, more2, 0u, z2, z1, z2);
825   umulExtended(a0, b0, z0, more1);
826   __add64(z0, more1, 0u, z1, z0, z1);
827   umulExtended(a0, b1, more1, more2);
828   __add64(more1, more2, 0u, z2, more1, z2);
829   __add64(z0, z1, 0u, more1, z0, z1);
830   z3Ptr = z3;
831   z2Ptr = z2;
832   z1Ptr = z1;
833   z0Ptr = z0;
834}
835
836/* Normalizes the subnormal double-precision floating-point value represented
837 * by the denormalized significand formed by the concatenation of `aFrac0' and
838 * `aFrac1'.  The normalized exponent is stored at the location pointed to by
839 * `zExpPtr'.  The most significant 21 bits of the normalized significand are
840 * stored at the location pointed to by `zFrac0Ptr', and the least significant
841 * 32 bits of the normalized significand are stored at the location pointed to
842 * by `zFrac1Ptr'.
843 */
844void
845__normalizeFloat64Subnormal(uint aFrac0, uint aFrac1,
846                            out int zExpPtr,
847                            out uint zFrac0Ptr,
848                            out uint zFrac1Ptr)
849{
850   int shiftCount;
851   uint temp_zfrac0, temp_zfrac1;
852   shiftCount = __countLeadingZeros32(mix(aFrac0, aFrac1, aFrac0 == 0u)) - 11;
853   zExpPtr = mix(1 - shiftCount, -shiftCount - 31, aFrac0 == 0u);
854
855   temp_zfrac0 = mix(aFrac1<<shiftCount, aFrac1>>(-shiftCount), shiftCount < 0);
856   temp_zfrac1 = mix(0u, aFrac1<<(shiftCount & 31), shiftCount < 0);
857
858   __shortShift64Left(aFrac0, aFrac1, shiftCount, zFrac0Ptr, zFrac1Ptr);
859
860   zFrac0Ptr = mix(zFrac0Ptr, temp_zfrac0, aFrac0 == 0);
861   zFrac1Ptr = mix(zFrac1Ptr, temp_zfrac1, aFrac0 == 0);
862}
863
864/* Returns the result of multiplying the double-precision floating-point values
865 * `a' and `b'.  The operation is performed according to the IEEE Standard for
866 * Floating-Point Arithmetic.
867 */
868uint64_t
869__fmul64(uint64_t a, uint64_t b)
870{
871   uint zFrac0 = 0u;
872   uint zFrac1 = 0u;
873   uint zFrac2 = 0u;
874   uint zFrac3 = 0u;
875   int zExp;
876
877   uint aFracLo = __extractFloat64FracLo(a);
878   uint aFracHi = __extractFloat64FracHi(a);
879   uint bFracLo = __extractFloat64FracLo(b);
880   uint bFracHi = __extractFloat64FracHi(b);
881   int aExp = __extractFloat64Exp(a);
882   uint aSign = __extractFloat64Sign(a);
883   int bExp = __extractFloat64Exp(b);
884   uint bSign = __extractFloat64Sign(b);
885   uint zSign = aSign ^ bSign;
886   if (aExp == 0x7FF) {
887      if (((aFracHi | aFracLo) != 0u) ||
888         ((bExp == 0x7FF) && ((bFracHi | bFracLo) != 0u))) {
889         return __propagateFloat64NaN(a, b);
890      }
891      if ((uint(bExp) | bFracHi | bFracLo) == 0u)
892            return 0xFFFFFFFFFFFFFFFFUL;
893      return __packFloat64(zSign, 0x7FF, 0u, 0u);
894   }
895   if (bExp == 0x7FF) {
896      /* a cannot be NaN, but is b NaN? */
897      if ((bFracHi | bFracLo) != 0u)
898#if defined RELAXED_NAN_PROPAGATION
899         return b;
900#else
901         return __propagateFloat64NaN(a, b);
902#endif
903      if ((uint(aExp) | aFracHi | aFracLo) == 0u)
904         return 0xFFFFFFFFFFFFFFFFUL;
905      return __packFloat64(zSign, 0x7FF, 0u, 0u);
906   }
907   if (aExp == 0) {
908      if ((aFracHi | aFracLo) == 0u)
909         return __packFloat64(zSign, 0, 0u, 0u);
910      __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo);
911   }
912   if (bExp == 0) {
913      if ((bFracHi | bFracLo) == 0u)
914         return __packFloat64(zSign, 0, 0u, 0u);
915      __normalizeFloat64Subnormal(bFracHi, bFracLo, bExp, bFracHi, bFracLo);
916   }
917   zExp = aExp + bExp - 0x400;
918   aFracHi |= 0x00100000u;
919   __shortShift64Left(bFracHi, bFracLo, 12, bFracHi, bFracLo);
920   __mul64To128(
921      aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1, zFrac2, zFrac3);
922   __add64(zFrac0, zFrac1, aFracHi, aFracLo, zFrac0, zFrac1);
923   zFrac2 |= uint(zFrac3 != 0u);
924   if (0x00200000u <= zFrac0) {
925      __shift64ExtraRightJamming(
926         zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
927      ++zExp;
928   }
929   return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
930}
931
932uint64_t
933__ffma64(uint64_t a, uint64_t b, uint64_t c)
934{
935   return __fadd64(__fmul64(a, b), c);
936}
937
938/* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
939 * number of bits given in `count'.  Any bits shifted off are lost.  The value
940 * of `count' can be arbitrarily large; in particular, if `count' is greater
941 * than 64, the result will be 0.  The result is broken into two 32-bit pieces
942 * which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
943 */
944void
945__shift64Right(uint a0, uint a1,
946               int count,
947               out uint z0Ptr,
948               out uint z1Ptr)
949{
950   uint z0;
951   uint z1;
952   int negCount = (-count) & 31;
953
954   z0 = 0u;
955   z0 = mix(z0, (a0 >> count), count < 32);
956   z0 = mix(z0, a0, count == 0);
957
958   z1 = mix(0u, (a0 >> (count & 31)), count < 64);
959   z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);
960   z1 = mix(z1, a0, count == 0);
961
962   z1Ptr = z1;
963   z0Ptr = z0;
964}
965
966/* Returns the result of converting the double-precision floating-point value
967 * `a' to the unsigned integer format.  The conversion is performed according
968 * to the IEEE Standard for Floating-Point Arithmetic.
969 */
970uint
971__fp64_to_uint(uint64_t a)
972{
973   uint aFracLo = __extractFloat64FracLo(a);
974   uint aFracHi = __extractFloat64FracHi(a);
975   int aExp = __extractFloat64Exp(a);
976   uint aSign = __extractFloat64Sign(a);
977
978   if ((aExp == 0x7FF) && ((aFracHi | aFracLo) != 0u))
979      return 0xFFFFFFFFu;
980
981   aFracHi |= mix(0u, 0x00100000u, aExp != 0);
982
983   int shiftDist = 0x427 - aExp;
984   if (0 < shiftDist)
985      __shift64RightJamming(aFracHi, aFracLo, shiftDist, aFracHi, aFracLo);
986
987   if ((aFracHi & 0xFFFFF000u) != 0u)
988      return mix(~0u, 0u, aSign != 0u);
989
990   uint z = 0u;
991   uint zero = 0u;
992   __shift64Right(aFracHi, aFracLo, 12, zero, z);
993
994   uint expt = mix(~0u, 0u, aSign != 0u);
995
996   return mix(z, expt, (aSign != 0u) && (z != 0u));
997}
998
999uint64_t
1000__uint_to_fp64(uint a)
1001{
1002   if (a == 0u)
1003      return 0ul;
1004
1005   int shiftDist = __countLeadingZeros32(a) + 21;
1006
1007   uint aHigh = 0u;
1008   uint aLow = 0u;
1009   int negCount = (- shiftDist) & 31;
1010
1011   aHigh = mix(0u, a<< shiftDist - 32, shiftDist < 64);
1012   aLow = 0u;
1013   aHigh = mix(aHigh, 0u, shiftDist == 0);
1014   aLow = mix(aLow, a, shiftDist ==0);
1015   aHigh = mix(aHigh, a >> negCount, shiftDist < 32);
1016   aLow = mix(aLow, a << shiftDist, shiftDist < 32);
1017
1018   return __packFloat64(0u, 0x432 - shiftDist, aHigh, aLow);
1019}
1020
1021uint64_t
1022__uint64_to_fp64(uint64_t a)
1023{
1024   if (a == 0u)
1025      return 0ul;
1026
1027   uvec2 aFrac = unpackUint2x32(a);
1028   uint aFracLo = __extractFloat64FracLo(a);
1029   uint aFracHi = __extractFloat64FracHi(a);
1030
1031   if ((aFracHi & 0x80000000u) != 0u) {
1032      __shift64RightJamming(aFracHi, aFracLo, 1, aFracHi, aFracLo);
1033      return __roundAndPackFloat64(0, 0x433, aFracHi, aFracLo, 0u);
1034   } else {
1035      return __normalizeRoundAndPackFloat64(0, 0x432, aFrac.y, aFrac.x);
1036   }
1037}
1038
1039uint64_t
1040__fp64_to_uint64(uint64_t a)
1041{
1042   uint aFracLo = __extractFloat64FracLo(a);
1043   uint aFracHi = __extractFloat64FracHi(a);
1044   int aExp = __extractFloat64Exp(a);
1045   uint aSign = __extractFloat64Sign(a);
1046   uint zFrac2 = 0u;
1047   uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
1048
1049   aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0);
1050   int shiftCount = 0x433 - aExp;
1051
1052   if ( shiftCount <= 0 ) {
1053      if (shiftCount < -11 && aExp == 0x7FF) {
1054         if ((aFracHi | aFracLo) != 0u)
1055            return __propagateFloat64NaN(a, a);
1056         return mix(default_nan, a, aSign == 0u);
1057      }
1058      __shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo);
1059   } else {
1060      __shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount,
1061                                 aFracHi, aFracLo, zFrac2);
1062   }
1063   return __roundAndPackUInt64(aSign, aFracHi, aFracLo, zFrac2);
1064}
1065
1066int64_t
1067__fp64_to_int64(uint64_t a)
1068{
1069   uint zFrac2 = 0u;
1070   uint aFracLo = __extractFloat64FracLo(a);
1071   uint aFracHi = __extractFloat64FracHi(a);
1072   int aExp = __extractFloat64Exp(a);
1073   uint aSign = __extractFloat64Sign(a);
1074   int64_t default_NegNaN = -0x7FFFFFFFFFFFFFFEL;
1075   int64_t default_PosNaN = 0xFFFFFFFFFFFFFFFFL;
1076
1077   aFracHi = mix(aFracHi, aFracHi | 0x00100000u, aExp != 0);
1078   int shiftCount = 0x433 - aExp;
1079
1080   if (shiftCount <= 0) {
1081      if (shiftCount < -11 && aExp == 0x7FF) {
1082         if ((aFracHi | aFracLo) != 0u)
1083            return default_NegNaN;
1084         return mix(default_NegNaN, default_PosNaN, aSign == 0u);
1085      }
1086      __shortShift64Left(aFracHi, aFracLo, -shiftCount, aFracHi, aFracLo);
1087   } else {
1088      __shift64ExtraRightJamming(aFracHi, aFracLo, zFrac2, shiftCount,
1089                                 aFracHi, aFracLo, zFrac2);
1090   }
1091
1092   return __roundAndPackInt64(aSign, aFracHi, aFracLo, zFrac2);
1093}
1094
1095uint64_t
1096__int64_to_fp64(int64_t a)
1097{
1098   if (a==0)
1099      return 0ul;
1100
1101   uint64_t absA = mix(uint64_t(a), uint64_t(-a), a < 0);
1102   uint aFracHi = __extractFloat64FracHi(absA);
1103   uvec2 aFrac = unpackUint2x32(absA);
1104   uint zSign = uint(unpackInt2x32(a).y) & 0x80000000u;
1105
1106   if ((aFracHi & 0x80000000u) != 0u) {
1107      return mix(0ul, __packFloat64(0x80000000u, 0x434, 0u, 0u), a < 0);
1108   }
1109
1110   return __normalizeRoundAndPackFloat64(zSign, 0x432, aFrac.y, aFrac.x);
1111}
1112
1113/* Returns the result of converting the double-precision floating-point value
1114 * `a' to the 32-bit two's complement integer format.  The conversion is
1115 * performed according to the IEEE Standard for Floating-Point Arithmetic---
1116 * which means in particular that the conversion is rounded according to the
1117 * current rounding mode.  If `a' is a NaN, the largest positive integer is
1118 * returned.  Otherwise, if the conversion overflows, the largest integer with
1119 * the same sign as `a' is returned.
1120 */
1121int
1122__fp64_to_int(uint64_t a)
1123{
1124   uint aFracLo = __extractFloat64FracLo(a);
1125   uint aFracHi = __extractFloat64FracHi(a);
1126   int aExp = __extractFloat64Exp(a);
1127   uint aSign = __extractFloat64Sign(a);
1128
1129   uint absZ = 0u;
1130   uint aFracExtra = 0u;
1131   int shiftCount = aExp - 0x413;
1132
1133   if (0 <= shiftCount) {
1134      if (0x41E < aExp) {
1135         if ((aExp == 0x7FF) && bool(aFracHi | aFracLo))
1136            aSign = 0u;
1137         return mix(0x7FFFFFFF, 0x80000000, aSign != 0u);
1138      }
1139      __shortShift64Left(aFracHi | 0x00100000u, aFracLo, shiftCount, absZ, aFracExtra);
1140   } else {
1141      if (aExp < 0x3FF)
1142         return 0;
1143
1144      aFracHi |= 0x00100000u;
1145      aFracExtra = ( aFracHi << (shiftCount & 31)) | aFracLo;
1146      absZ = aFracHi >> (- shiftCount);
1147   }
1148
1149   int z = mix(int(absZ), -int(absZ), aSign != 0u);
1150   int nan = mix(0x7FFFFFFF, 0x80000000, aSign != 0u);
1151   return mix(z, nan, ((aSign != 0u) != (z < 0)) && bool(z));
1152}
1153
1154/* Returns the result of converting the 32-bit two's complement integer `a'
1155 * to the double-precision floating-point format.  The conversion is performed
1156 * according to the IEEE Standard for Floating-Point Arithmetic.
1157 */
1158uint64_t
1159__int_to_fp64(int a)
1160{
1161   uint zFrac0 = 0u;
1162   uint zFrac1 = 0u;
1163   if (a==0)
1164      return __packFloat64(0u, 0, 0u, 0u);
1165   uint zSign = uint(a) & 0x80000000u;
1166   uint absA = mix(uint(a), uint(-a), a < 0);
1167   int shiftCount = __countLeadingZeros32(absA) - 11;
1168   if (0 <= shiftCount) {
1169      zFrac0 = absA << shiftCount;
1170      zFrac1 = 0u;
1171   } else {
1172      __shift64Right(absA, 0u, -shiftCount, zFrac0, zFrac1);
1173   }
1174   return __packFloat64(zSign, 0x412 - shiftCount, zFrac0, zFrac1);
1175}
1176
1177bool
1178__fp64_to_bool(uint64_t a)
1179{
1180   return !__feq64_nonnan(__fabs64(a), 0ul);
1181}
1182
1183uint64_t
1184__bool_to_fp64(bool a)
1185{
1186   return packUint2x32(uvec2(0x00000000u, uint(-int(a) & 0x3ff00000)));
1187}
1188
1189/* Packs the sign `zSign', exponent `zExp', and significand `zFrac' into a
1190 * single-precision floating-point value, returning the result.  After being
1191 * shifted into the proper positions, the three fields are simply added
1192 * together to form the result.  This means that any integer portion of `zSig'
1193 * will be added into the exponent.  Since a properly normalized significand
1194 * will have an integer portion equal to 1, the `zExp' input should be 1 less
1195 * than the desired result exponent whenever `zFrac' is a complete, normalized
1196 * significand.
1197 */
1198float
1199__packFloat32(uint zSign, int zExp, uint zFrac)
1200{
1201   return uintBitsToFloat(zSign + (uint(zExp)<<23) + zFrac);
1202}
1203
1204/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
1205 * and significand `zFrac', and returns the proper single-precision floating-
1206 * point value corresponding to the abstract input.  Ordinarily, the abstract
1207 * value is simply rounded and packed into the single-precision format, with
1208 * the inexact exception raised if the abstract input cannot be represented
1209 * exactly.  However, if the abstract value is too large, the overflow and
1210 * inexact exceptions are raised and an infinity or maximal finite value is
1211 * returned.  If the abstract value is too small, the input value is rounded to
1212 * a subnormal number, and the underflow and inexact exceptions are raised if
1213 * the abstract input cannot be represented exactly as a subnormal single-
1214 * precision floating-point number.
1215 *     The input significand `zFrac' has its binary point between bits 30
1216 * and 29, which is 7 bits to the left of the usual location.  This shifted
1217 * significand must be normalized or smaller.  If `zFrac' is not normalized,
1218 * `zExp' must be 0; in that case, the result returned is a subnormal number,
1219 * and it must not require rounding.  In the usual case that `zFrac' is
1220 * normalized, `zExp' must be 1 less than the "true" floating-point exponent.
1221 * The handling of underflow and overflow follows the IEEE Standard for
1222 * Floating-Point Arithmetic.
1223 */
1224float
1225__roundAndPackFloat32(uint zSign, int zExp, uint zFrac)
1226{
1227   bool roundNearestEven;
1228   int roundIncrement;
1229   int roundBits;
1230
1231   roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
1232   roundIncrement = 0x40;
1233   if (!roundNearestEven) {
1234      if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
1235         roundIncrement = 0;
1236      } else {
1237         roundIncrement = 0x7F;
1238         if (zSign != 0u) {
1239            if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)
1240               roundIncrement = 0;
1241         } else {
1242            if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN)
1243               roundIncrement = 0;
1244         }
1245      }
1246   }
1247   roundBits = int(zFrac & 0x7Fu);
1248   if (0xFDu <= uint(zExp)) {
1249      if ((0xFD < zExp) || ((zExp == 0xFD) && (int(zFrac) + roundIncrement) < 0))
1250         return __packFloat32(zSign, 0xFF, 0u) - float(roundIncrement == 0);
1251      int count = -zExp;
1252      bool zexp_lt0 = zExp < 0;
1253      uint zFrac_lt0 = mix(uint(zFrac != 0u), (zFrac>>count) | uint((zFrac<<((-count) & 31)) != 0u), (-zExp) < 32);
1254      zFrac = mix(zFrac, zFrac_lt0, zexp_lt0);
1255      roundBits = mix(roundBits, int(zFrac) & 0x7f, zexp_lt0);
1256      zExp = mix(zExp, 0, zexp_lt0);
1257   }
1258   zFrac = (zFrac + uint(roundIncrement))>>7;
1259   zFrac &= ~uint(((roundBits ^ 0x40) == 0) && roundNearestEven);
1260
1261   return __packFloat32(zSign, mix(zExp, 0, zFrac == 0u), zFrac);
1262}
1263
1264/* Returns the result of converting the double-precision floating-point value
1265 * `a' to the single-precision floating-point format.  The conversion is
1266 * performed according to the IEEE Standard for Floating-Point Arithmetic.
1267 */
1268float
1269__fp64_to_fp32(uint64_t __a)
1270{
1271   uvec2 a = unpackUint2x32(__a);
1272   uint zFrac = 0u;
1273   uint allZero = 0u;
1274
1275   uint aFracLo = __extractFloat64FracLo(__a);
1276   uint aFracHi = __extractFloat64FracHi(__a);
1277   int aExp = __extractFloat64Exp(__a);
1278   uint aSign = __extractFloat64Sign(__a);
1279   if (aExp == 0x7FF) {
1280      __shortShift64Left(a.y, a.x, 12, a.y, a.x);
1281      float rval = uintBitsToFloat(aSign | 0x7FC00000u | (a.y>>9));
1282      rval = mix(__packFloat32(aSign, 0xFF, 0u), rval, (aFracHi | aFracLo) != 0u);
1283      return rval;
1284   }
1285   __shift64RightJamming(aFracHi, aFracLo, 22, allZero, zFrac);
1286   zFrac = mix(zFrac, zFrac | 0x40000000u, aExp != 0);
1287   return __roundAndPackFloat32(aSign, aExp - 0x381, zFrac);
1288}
1289
1290/* Returns the result of converting the single-precision floating-point value
1291 * `a' to the double-precision floating-point format.
1292 */
1293uint64_t
1294__fp32_to_fp64(float f)
1295{
1296   uint a = floatBitsToUint(f);
1297   uint aFrac = a & 0x007FFFFFu;
1298   int aExp = int((a>>23) & 0xFFu);
1299   uint aSign = a & 0x80000000u;
1300   uint zFrac0 = 0u;
1301   uint zFrac1 = 0u;
1302
1303   if (aExp == 0xFF) {
1304      if (aFrac != 0u) {
1305         uint nanLo = 0u;
1306         uint nanHi = a<<9;
1307         __shift64Right(nanHi, nanLo, 12, nanHi, nanLo);
1308         nanHi |= aSign | 0x7FF80000u;
1309         return packUint2x32(uvec2(nanLo, nanHi));
1310      }
1311      return __packFloat64(aSign, 0x7FF, 0u, 0u);
1312    }
1313
1314   if (aExp == 0) {
1315      if (aFrac == 0u)
1316         return __packFloat64(aSign, 0, 0u, 0u);
1317      /* Normalize subnormal */
1318      int shiftCount = __countLeadingZeros32(aFrac) - 8;
1319      aFrac <<= shiftCount;
1320      aExp = 1 - shiftCount;
1321      --aExp;
1322   }
1323
1324   __shift64Right(aFrac, 0u, 3, zFrac0, zFrac1);
1325   return __packFloat64(aSign, aExp + 0x380, zFrac0, zFrac1);
1326}
1327
1328/* Adds the 96-bit value formed by concatenating `a0', `a1', and `a2' to the
1329 * 96-bit value formed by concatenating `b0', `b1', and `b2'.  Addition is
1330 * modulo 2^96, so any carry out is lost.  The result is broken into three
1331 * 32-bit pieces which are stored at the locations pointed to by `z0Ptr',
1332 * `z1Ptr', and `z2Ptr'.
1333 */
1334void
1335__add96(uint a0, uint a1, uint a2,
1336        uint b0, uint b1, uint b2,
1337        out uint z0Ptr,
1338        out uint z1Ptr,
1339        out uint z2Ptr)
1340{
1341   uint z2 = a2 + b2;
1342   uint carry1 = uint(z2 < a2);
1343   uint z1 = a1 + b1;
1344   uint carry0 = uint(z1 < a1);
1345   uint z0 = a0 + b0;
1346   z1 += carry1;
1347   z0 += uint(z1 < carry1);
1348   z0 += carry0;
1349   z2Ptr = z2;
1350   z1Ptr = z1;
1351   z0Ptr = z0;
1352}
1353
1354/* Subtracts the 96-bit value formed by concatenating `b0', `b1', and `b2' from
1355 * the 96-bit value formed by concatenating `a0', `a1', and `a2'.  Subtraction
1356 * is modulo 2^96, so any borrow out (carry out) is lost.  The result is broken
1357 * into three 32-bit pieces which are stored at the locations pointed to by
1358 * `z0Ptr', `z1Ptr', and `z2Ptr'.
1359 */
1360void
1361__sub96(uint a0, uint a1, uint a2,
1362        uint b0, uint b1, uint b2,
1363        out uint z0Ptr,
1364        out uint z1Ptr,
1365        out uint z2Ptr)
1366{
1367   uint z2 = a2 - b2;
1368   uint borrow1 = uint(a2 < b2);
1369   uint z1 = a1 - b1;
1370   uint borrow0 = uint(a1 < b1);
1371   uint z0 = a0 - b0;
1372   z0 -= uint(z1 < borrow1);
1373   z1 -= borrow1;
1374   z0 -= borrow0;
1375   z2Ptr = z2;
1376   z1Ptr = z1;
1377   z0Ptr = z0;
1378}
1379
1380/* Returns an approximation to the 32-bit integer quotient obtained by dividing
1381 * `b' into the 64-bit value formed by concatenating `a0' and `a1'.  The
1382 * divisor `b' must be at least 2^31.  If q is the exact quotient truncated
1383 * toward zero, the approximation returned lies between q and q + 2 inclusive.
1384 * If the exact quotient q is larger than 32 bits, the maximum positive 32-bit
1385 * unsigned integer is returned.
1386 */
1387uint
1388__estimateDiv64To32(uint a0, uint a1, uint b)
1389{
1390   uint b0;
1391   uint b1;
1392   uint rem0 = 0u;
1393   uint rem1 = 0u;
1394   uint term0 = 0u;
1395   uint term1 = 0u;
1396   uint z;
1397
1398   if (b <= a0)
1399      return 0xFFFFFFFFu;
1400   b0 = b>>16;
1401   z = (b0<<16 <= a0) ? 0xFFFF0000u : (a0 / b0)<<16;
1402   umulExtended(b, z, term0, term1);
1403   __sub64(a0, a1, term0, term1, rem0, rem1);
1404   while (int(rem0) < 0) {
1405      z -= 0x10000u;
1406      b1 = b<<16;
1407      __add64(rem0, rem1, b0, b1, rem0, rem1);
1408   }
1409   rem0 = (rem0<<16) | (rem1>>16);
1410   z |= (b0<<16 <= rem0) ? 0xFFFFu : rem0 / b0;
1411   return z;
1412}
1413
1414uint
1415__sqrtOddAdjustments(int index)
1416{
1417   uint res = 0u;
1418   if (index == 0)
1419      res = 0x0004u;
1420   if (index == 1)
1421      res = 0x0022u;
1422   if (index == 2)
1423      res = 0x005Du;
1424   if (index == 3)
1425      res = 0x00B1u;
1426   if (index == 4)
1427      res = 0x011Du;
1428   if (index == 5)
1429      res = 0x019Fu;
1430   if (index == 6)
1431      res = 0x0236u;
1432   if (index == 7)
1433      res = 0x02E0u;
1434   if (index == 8)
1435      res = 0x039Cu;
1436   if (index == 9)
1437      res = 0x0468u;
1438   if (index == 10)
1439      res = 0x0545u;
1440   if (index == 11)
1441      res = 0x631u;
1442   if (index == 12)
1443      res = 0x072Bu;
1444   if (index == 13)
1445      res = 0x0832u;
1446   if (index == 14)
1447      res = 0x0946u;
1448   if (index == 15)
1449      res = 0x0A67u;
1450
1451   return res;
1452}
1453
1454uint
1455__sqrtEvenAdjustments(int index)
1456{
1457   uint res = 0u;
1458   if (index == 0)
1459      res = 0x0A2Du;
1460   if (index == 1)
1461      res = 0x08AFu;
1462   if (index == 2)
1463      res = 0x075Au;
1464   if (index == 3)
1465      res = 0x0629u;
1466   if (index == 4)
1467      res = 0x051Au;
1468   if (index == 5)
1469      res = 0x0429u;
1470   if (index == 6)
1471      res = 0x0356u;
1472   if (index == 7)
1473      res = 0x029Eu;
1474   if (index == 8)
1475      res = 0x0200u;
1476   if (index == 9)
1477      res = 0x0179u;
1478   if (index == 10)
1479      res = 0x0109u;
1480   if (index == 11)
1481      res = 0x00AFu;
1482   if (index == 12)
1483      res = 0x0068u;
1484   if (index == 13)
1485      res = 0x0034u;
1486   if (index == 14)
1487      res = 0x0012u;
1488   if (index == 15)
1489      res = 0x0002u;
1490
1491   return res;
1492}
1493
1494/* Returns an approximation to the square root of the 32-bit significand given
1495 * by `a'.  Considered as an integer, `a' must be at least 2^31.  If bit 0 of
1496 * `aExp' (the least significant bit) is 1, the integer returned approximates
1497 * 2^31*sqrt(`a'/2^31), where `a' is considered an integer.  If bit 0 of `aExp'
1498 * is 0, the integer returned approximates 2^31*sqrt(`a'/2^30).  In either
1499 * case, the approximation returned lies strictly within +/-2 of the exact
1500 * value.
1501 */
1502uint
1503__estimateSqrt32(int aExp, uint a)
1504{
1505   uint z;
1506
1507   int index = int(a>>27 & 15u);
1508   if ((aExp & 1) != 0) {
1509      z = 0x4000u + (a>>17) - __sqrtOddAdjustments(index);
1510      z = ((a / z)<<14) + (z<<15);
1511      a >>= 1;
1512   } else {
1513      z = 0x8000u + (a>>17) - __sqrtEvenAdjustments(index);
1514      z = a / z + z;
1515      z = (0x20000u <= z) ? 0xFFFF8000u : (z<<15);
1516      if (z <= a)
1517         return uint(int(a)>>1);
1518   }
1519   return ((__estimateDiv64To32(a, 0u, z))>>1) + (z>>1);
1520}
1521
1522/* Returns the square root of the double-precision floating-point value `a'.
1523 * The operation is performed according to the IEEE Standard for Floating-Point
1524 * Arithmetic.
1525 */
1526uint64_t
1527__fsqrt64(uint64_t a)
1528{
1529   uint zFrac0 = 0u;
1530   uint zFrac1 = 0u;
1531   uint zFrac2 = 0u;
1532   uint doubleZFrac0 = 0u;
1533   uint rem0 = 0u;
1534   uint rem1 = 0u;
1535   uint rem2 = 0u;
1536   uint rem3 = 0u;
1537   uint term0 = 0u;
1538   uint term1 = 0u;
1539   uint term2 = 0u;
1540   uint term3 = 0u;
1541   uint64_t default_nan = 0xFFFFFFFFFFFFFFFFUL;
1542
1543   uint aFracLo = __extractFloat64FracLo(a);
1544   uint aFracHi = __extractFloat64FracHi(a);
1545   int aExp = __extractFloat64Exp(a);
1546   uint aSign = __extractFloat64Sign(a);
1547   if (aExp == 0x7FF) {
1548      if ((aFracHi | aFracLo) != 0u)
1549         return __propagateFloat64NaN(a, a);
1550      if (aSign == 0u)
1551         return a;
1552      return default_nan;
1553   }
1554   if (aSign != 0u) {
1555      if ((uint(aExp) | aFracHi | aFracLo) == 0u)
1556         return a;
1557      return default_nan;
1558   }
1559   if (aExp == 0) {
1560      if ((aFracHi | aFracLo) == 0u)
1561         return __packFloat64(0u, 0, 0u, 0u);
1562      __normalizeFloat64Subnormal(aFracHi, aFracLo, aExp, aFracHi, aFracLo);
1563   }
1564   int zExp = ((aExp - 0x3FF)>>1) + 0x3FE;
1565   aFracHi |= 0x00100000u;
1566   __shortShift64Left(aFracHi, aFracLo, 11, term0, term1);
1567   zFrac0 = (__estimateSqrt32(aExp, term0)>>1) + 1u;
1568   if (zFrac0 == 0u)
1569      zFrac0 = 0x7FFFFFFFu;
1570   doubleZFrac0 = zFrac0 + zFrac0;
1571   __shortShift64Left(aFracHi, aFracLo, 9 - (aExp & 1), aFracHi, aFracLo);
1572   umulExtended(zFrac0, zFrac0, term0, term1);
1573   __sub64(aFracHi, aFracLo, term0, term1, rem0, rem1);
1574   while (int(rem0) < 0) {
1575      --zFrac0;
1576      doubleZFrac0 -= 2u;
1577      __add64(rem0, rem1, 0u, doubleZFrac0 | 1u, rem0, rem1);
1578   }
1579   zFrac1 = __estimateDiv64To32(rem1, 0u, doubleZFrac0);
1580   if ((zFrac1 & 0x1FFu) <= 5u) {
1581      if (zFrac1 == 0u)
1582         zFrac1 = 1u;
1583      umulExtended(doubleZFrac0, zFrac1, term1, term2);
1584      __sub64(rem1, 0u, term1, term2, rem1, rem2);
1585      umulExtended(zFrac1, zFrac1, term2, term3);
1586      __sub96(rem1, rem2, 0u, 0u, term2, term3, rem1, rem2, rem3);
1587      while (int(rem1) < 0) {
1588         --zFrac1;
1589         __shortShift64Left(0u, zFrac1, 1, term2, term3);
1590         term3 |= 1u;
1591         term2 |= doubleZFrac0;
1592         __add96(rem1, rem2, rem3, 0u, term2, term3, rem1, rem2, rem3);
1593      }
1594      zFrac1 |= uint((rem1 | rem2 | rem3) != 0u);
1595   }
1596   __shift64ExtraRightJamming(zFrac0, zFrac1, 0u, 10, zFrac0, zFrac1, zFrac2);
1597   return __roundAndPackFloat64(0u, zExp, zFrac0, zFrac1, zFrac2);
1598}
1599
1600uint64_t
1601__ftrunc64(uint64_t __a)
1602{
1603   uvec2 a = unpackUint2x32(__a);
1604   int aExp = __extractFloat64Exp(__a);
1605   uint zLo;
1606   uint zHi;
1607
1608   int unbiasedExp = aExp - 1023;
1609   int fracBits = 52 - unbiasedExp;
1610   uint maskLo = mix(~0u << fracBits, 0u, fracBits >= 32);
1611   uint maskHi = mix(~0u << (fracBits - 32), ~0u, fracBits < 33);
1612   zLo = maskLo & a.x;
1613   zHi = maskHi & a.y;
1614
1615   zLo = mix(zLo, 0u, unbiasedExp < 0);
1616   zHi = mix(zHi, 0u, unbiasedExp < 0);
1617   zLo = mix(zLo, a.x, unbiasedExp > 52);
1618   zHi = mix(zHi, a.y, unbiasedExp > 52);
1619   return packUint2x32(uvec2(zLo, zHi));
1620}
1621
1622uint64_t
1623__ffloor64(uint64_t a)
1624{
1625   /* The big assumtion is that when 'a' is NaN, __ftrunc(a) returns a.  Based
1626    * on that assumption, NaN values that don't have the sign bit will safely
1627    * return NaN (identity).  This is guarded by RELAXED_NAN_PROPAGATION
1628    * because otherwise the NaN should have the "signal" bit set.  The
1629    * __fadd64 will ensure that occurs.
1630    */
1631   bool is_positive =
1632#if defined RELAXED_NAN_PROPAGATION
1633      int(unpackUint2x32(a).y) >= 0
1634#else
1635      __fge64(a, 0ul)
1636#endif
1637      ;
1638   uint64_t tr = __ftrunc64(a);
1639
1640   if (is_positive || __feq64(tr, a)) {
1641      return tr;
1642   } else {
1643      return __fadd64(tr, 0xbff0000000000000ul /* -1.0 */);
1644   }
1645}
1646
1647uint64_t
1648__fround64(uint64_t __a)
1649{
1650   uvec2 a = unpackUint2x32(__a);
1651   int unbiasedExp = __extractFloat64Exp(__a) - 1023;
1652   uint aHi = a.y;
1653   uint aLo = a.x;
1654
1655   if (unbiasedExp < 20) {
1656      if (unbiasedExp < 0) {
1657         if ((aHi & 0x80000000u) != 0u && aLo == 0u) {
1658            return 0;
1659         }
1660         aHi &= 0x80000000u;
1661         if ((a.y & 0x000FFFFFu) == 0u && a.x == 0u) {
1662            aLo = 0u;
1663            return packUint2x32(uvec2(aLo, aHi));
1664         }
1665         aHi = mix(aHi, (aHi | 0x3FF00000u), unbiasedExp == -1);
1666         aLo = 0u;
1667      } else {
1668         uint maskExp = 0x000FFFFFu >> unbiasedExp;
1669         uint lastBit = maskExp + 1;
1670         aHi += 0x00080000u >> unbiasedExp;
1671         if ((aHi & maskExp) == 0u)
1672            aHi &= ~lastBit;
1673         aHi &= ~maskExp;
1674         aLo = 0u;
1675      }
1676   } else if (unbiasedExp > 51 || unbiasedExp == 1024) {
1677      return __a;
1678   } else {
1679      uint maskExp = 0xFFFFFFFFu >> (unbiasedExp - 20);
1680      if ((aLo & maskExp) == 0u)
1681         return __a;
1682      uint tmp = aLo + (1u << (51 - unbiasedExp));
1683      if(tmp < aLo)
1684         aHi += 1u;
1685      aLo = tmp;
1686      aLo &= ~maskExp;
1687   }
1688
1689   return packUint2x32(uvec2(aLo, aHi));
1690}
1691
1692uint64_t
1693__fmin64(uint64_t a, uint64_t b)
1694{
1695   /* This weird layout matters.  Doing the "obvious" thing results in extra
1696    * flow control being inserted to implement the short-circuit evaluation
1697    * rules.  Flow control is bad!
1698    */
1699   bool b_nan = __is_nan(b);
1700   bool a_lt_b = __flt64_nonnan(a, b);
1701   bool a_nan = __is_nan(a);
1702
1703   return (b_nan || a_lt_b) && !a_nan ? a : b;
1704}
1705
1706uint64_t
1707__fmax64(uint64_t a, uint64_t b)
1708{
1709   /* This weird layout matters.  Doing the "obvious" thing results in extra
1710    * flow control being inserted to implement the short-circuit evaluation
1711    * rules.  Flow control is bad!
1712    */
1713   bool b_nan = __is_nan(b);
1714   bool a_lt_b = __flt64_nonnan(a, b);
1715   bool a_nan = __is_nan(a);
1716
1717   return (b_nan || a_lt_b) && !a_nan ? b : a;
1718}
1719
1720uint64_t
1721__ffract64(uint64_t a)
1722{
1723   return __fadd64(a, __fneg64(__ffloor64(a)));
1724}
1725