1 /* 2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the 7 * "Software"), to deal in the Software without restriction, including 8 * without limitation the rights to use, copy, modify, merge, publish, 9 * distribute, sub license, and/or sell copies of the Software, and to 10 * permit persons to whom the Software is furnished to do so, subject to 11 * the following conditions: 12 * 13 * The above copyright notice and this permission notice (including the 14 * next paragraph) shall be included in all copies or substantial portions 15 * of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 24 * 25 */ 26 27 #ifndef _I915_DRM_H_ 28 #define _I915_DRM_H_ 29 30 #include "drm.h" 31 32 #if defined(__cplusplus) 33 extern "C" { 34 #endif 35 36 /* Please note that modifications to all structs defined here are 37 * subject to backwards-compatibility constraints. 38 */ 39 40 /** 41 * DOC: uevents generated by i915 on it's device node 42 * 43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch 44 * event from the gpu l3 cache. Additional information supplied is ROW, 45 * BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep 46 * track of these events and if a specific cache-line seems to have a 47 * persistent error remap it with the l3 remapping tool supplied in 48 * intel-gpu-tools. The value supplied with the event is always 1. 49 * 50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via 51 * hangcheck. The error detection event is a good indicator of when things 52 * began to go badly. The value supplied with the event is a 1 upon error 53 * detection, and a 0 upon reset completion, signifying no more error 54 * exists. NOTE: Disabling hangcheck or reset via module parameter will 55 * cause the related events to not be seen. 56 * 57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the 58 * the GPU. The value supplied with the event is always 1. NOTE: Disable 59 * reset via module parameter will cause this event to not be seen. 60 */ 61 #define I915_L3_PARITY_UEVENT "L3_PARITY_ERROR" 62 #define I915_ERROR_UEVENT "ERROR" 63 #define I915_RESET_UEVENT "RESET" 64 65 /* 66 * i915_user_extension: Base class for defining a chain of extensions 67 * 68 * Many interfaces need to grow over time. In most cases we can simply 69 * extend the struct and have userspace pass in more data. Another option, 70 * as demonstrated by Vulkan's approach to providing extensions for forward 71 * and backward compatibility, is to use a list of optional structs to 72 * provide those extra details. 73 * 74 * The key advantage to using an extension chain is that it allows us to 75 * redefine the interface more easily than an ever growing struct of 76 * increasing complexity, and for large parts of that interface to be 77 * entirely optional. The downside is more pointer chasing; chasing across 78 * the boundary with pointers encapsulated inside u64. 79 */ 80 struct i915_user_extension { 81 __u64 next_extension; 82 __u32 name; 83 __u32 flags; /* All undefined bits must be zero. */ 84 __u32 rsvd[4]; /* Reserved for future use; must be zero. */ 85 }; 86 87 /* 88 * MOCS indexes used for GPU surfaces, defining the cacheability of the 89 * surface data and the coherency for this data wrt. CPU vs. GPU accesses. 90 */ 91 enum i915_mocs_table_index { 92 /* 93 * Not cached anywhere, coherency between CPU and GPU accesses is 94 * guaranteed. 95 */ 96 I915_MOCS_UNCACHED, 97 /* 98 * Cacheability and coherency controlled by the kernel automatically 99 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current 100 * usage of the surface (used for display scanout or not). 101 */ 102 I915_MOCS_PTE, 103 /* 104 * Cached in all GPU caches available on the platform. 105 * Coherency between CPU and GPU accesses to the surface is not 106 * guaranteed without extra synchronization. 107 */ 108 I915_MOCS_CACHED, 109 }; 110 111 /* 112 * Different engines serve different roles, and there may be more than one 113 * engine serving each role. enum drm_i915_gem_engine_class provides a 114 * classification of the role of the engine, which may be used when requesting 115 * operations to be performed on a certain subset of engines, or for providing 116 * information about that group. 117 */ 118 enum drm_i915_gem_engine_class { 119 I915_ENGINE_CLASS_RENDER = 0, 120 I915_ENGINE_CLASS_COPY = 1, 121 I915_ENGINE_CLASS_VIDEO = 2, 122 I915_ENGINE_CLASS_VIDEO_ENHANCE = 3, 123 124 /* should be kept compact */ 125 126 I915_ENGINE_CLASS_INVALID = -1 127 }; 128 129 /** 130 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915 131 * 132 */ 133 134 enum drm_i915_pmu_engine_sample { 135 I915_SAMPLE_BUSY = 0, 136 I915_SAMPLE_WAIT = 1, 137 I915_SAMPLE_SEMA = 2 138 }; 139 140 #define I915_PMU_SAMPLE_BITS (4) 141 #define I915_PMU_SAMPLE_MASK (0xf) 142 #define I915_PMU_SAMPLE_INSTANCE_BITS (8) 143 #define I915_PMU_CLASS_SHIFT \ 144 (I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS) 145 146 #define __I915_PMU_ENGINE(class, instance, sample) \ 147 ((class) << I915_PMU_CLASS_SHIFT | \ 148 (instance) << I915_PMU_SAMPLE_BITS | \ 149 (sample)) 150 151 #define I915_PMU_ENGINE_BUSY(class, instance) \ 152 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY) 153 154 #define I915_PMU_ENGINE_WAIT(class, instance) \ 155 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT) 156 157 #define I915_PMU_ENGINE_SEMA(class, instance) \ 158 __I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA) 159 160 #define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x)) 161 162 #define I915_PMU_ACTUAL_FREQUENCY __I915_PMU_OTHER(0) 163 #define I915_PMU_REQUESTED_FREQUENCY __I915_PMU_OTHER(1) 164 #define I915_PMU_INTERRUPTS __I915_PMU_OTHER(2) 165 #define I915_PMU_RC6_RESIDENCY __I915_PMU_OTHER(3) 166 167 #define I915_PMU_LAST I915_PMU_RC6_RESIDENCY 168 169 /* Each region is a minimum of 16k, and there are at most 255 of them. 170 */ 171 #define I915_NR_TEX_REGIONS 255 /* table size 2k - maximum due to use 172 * of chars for next/prev indices */ 173 #define I915_LOG_MIN_TEX_REGION_SIZE 14 174 175 typedef struct _drm_i915_init { 176 enum { 177 I915_INIT_DMA = 0x01, 178 I915_CLEANUP_DMA = 0x02, 179 I915_RESUME_DMA = 0x03 180 } func; 181 unsigned int mmio_offset; 182 int sarea_priv_offset; 183 unsigned int ring_start; 184 unsigned int ring_end; 185 unsigned int ring_size; 186 unsigned int front_offset; 187 unsigned int back_offset; 188 unsigned int depth_offset; 189 unsigned int w; 190 unsigned int h; 191 unsigned int pitch; 192 unsigned int pitch_bits; 193 unsigned int back_pitch; 194 unsigned int depth_pitch; 195 unsigned int cpp; 196 unsigned int chipset; 197 } drm_i915_init_t; 198 199 typedef struct _drm_i915_sarea { 200 struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1]; 201 int last_upload; /* last time texture was uploaded */ 202 int last_enqueue; /* last time a buffer was enqueued */ 203 int last_dispatch; /* age of the most recently dispatched buffer */ 204 int ctxOwner; /* last context to upload state */ 205 int texAge; 206 int pf_enabled; /* is pageflipping allowed? */ 207 int pf_active; 208 int pf_current_page; /* which buffer is being displayed? */ 209 int perf_boxes; /* performance boxes to be displayed */ 210 int width, height; /* screen size in pixels */ 211 212 drm_handle_t front_handle; 213 int front_offset; 214 int front_size; 215 216 drm_handle_t back_handle; 217 int back_offset; 218 int back_size; 219 220 drm_handle_t depth_handle; 221 int depth_offset; 222 int depth_size; 223 224 drm_handle_t tex_handle; 225 int tex_offset; 226 int tex_size; 227 int log_tex_granularity; 228 int pitch; 229 int rotation; /* 0, 90, 180 or 270 */ 230 int rotated_offset; 231 int rotated_size; 232 int rotated_pitch; 233 int virtualX, virtualY; 234 235 unsigned int front_tiled; 236 unsigned int back_tiled; 237 unsigned int depth_tiled; 238 unsigned int rotated_tiled; 239 unsigned int rotated2_tiled; 240 241 int pipeA_x; 242 int pipeA_y; 243 int pipeA_w; 244 int pipeA_h; 245 int pipeB_x; 246 int pipeB_y; 247 int pipeB_w; 248 int pipeB_h; 249 250 /* fill out some space for old userspace triple buffer */ 251 drm_handle_t unused_handle; 252 __u32 unused1, unused2, unused3; 253 254 /* buffer object handles for static buffers. May change 255 * over the lifetime of the client. 256 */ 257 __u32 front_bo_handle; 258 __u32 back_bo_handle; 259 __u32 unused_bo_handle; 260 __u32 depth_bo_handle; 261 262 } drm_i915_sarea_t; 263 264 /* due to userspace building against these headers we need some compat here */ 265 #define planeA_x pipeA_x 266 #define planeA_y pipeA_y 267 #define planeA_w pipeA_w 268 #define planeA_h pipeA_h 269 #define planeB_x pipeB_x 270 #define planeB_y pipeB_y 271 #define planeB_w pipeB_w 272 #define planeB_h pipeB_h 273 274 /* Flags for perf_boxes 275 */ 276 #define I915_BOX_RING_EMPTY 0x1 277 #define I915_BOX_FLIP 0x2 278 #define I915_BOX_WAIT 0x4 279 #define I915_BOX_TEXTURE_LOAD 0x8 280 #define I915_BOX_LOST_CONTEXT 0x10 281 282 /* 283 * i915 specific ioctls. 284 * 285 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie 286 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset 287 * against DRM_COMMAND_BASE and should be between [0x0, 0x60). 288 */ 289 #define DRM_I915_INIT 0x00 290 #define DRM_I915_FLUSH 0x01 291 #define DRM_I915_FLIP 0x02 292 #define DRM_I915_BATCHBUFFER 0x03 293 #define DRM_I915_IRQ_EMIT 0x04 294 #define DRM_I915_IRQ_WAIT 0x05 295 #define DRM_I915_GETPARAM 0x06 296 #define DRM_I915_SETPARAM 0x07 297 #define DRM_I915_ALLOC 0x08 298 #define DRM_I915_FREE 0x09 299 #define DRM_I915_INIT_HEAP 0x0a 300 #define DRM_I915_CMDBUFFER 0x0b 301 #define DRM_I915_DESTROY_HEAP 0x0c 302 #define DRM_I915_SET_VBLANK_PIPE 0x0d 303 #define DRM_I915_GET_VBLANK_PIPE 0x0e 304 #define DRM_I915_VBLANK_SWAP 0x0f 305 #define DRM_I915_HWS_ADDR 0x11 306 #define DRM_I915_GEM_INIT 0x13 307 #define DRM_I915_GEM_EXECBUFFER 0x14 308 #define DRM_I915_GEM_PIN 0x15 309 #define DRM_I915_GEM_UNPIN 0x16 310 #define DRM_I915_GEM_BUSY 0x17 311 #define DRM_I915_GEM_THROTTLE 0x18 312 #define DRM_I915_GEM_ENTERVT 0x19 313 #define DRM_I915_GEM_LEAVEVT 0x1a 314 #define DRM_I915_GEM_CREATE 0x1b 315 #define DRM_I915_GEM_PREAD 0x1c 316 #define DRM_I915_GEM_PWRITE 0x1d 317 #define DRM_I915_GEM_MMAP 0x1e 318 #define DRM_I915_GEM_SET_DOMAIN 0x1f 319 #define DRM_I915_GEM_SW_FINISH 0x20 320 #define DRM_I915_GEM_SET_TILING 0x21 321 #define DRM_I915_GEM_GET_TILING 0x22 322 #define DRM_I915_GEM_GET_APERTURE 0x23 323 #define DRM_I915_GEM_MMAP_GTT 0x24 324 #define DRM_I915_GET_PIPE_FROM_CRTC_ID 0x25 325 #define DRM_I915_GEM_MADVISE 0x26 326 #define DRM_I915_OVERLAY_PUT_IMAGE 0x27 327 #define DRM_I915_OVERLAY_ATTRS 0x28 328 #define DRM_I915_GEM_EXECBUFFER2 0x29 329 #define DRM_I915_GEM_EXECBUFFER2_WR DRM_I915_GEM_EXECBUFFER2 330 #define DRM_I915_GET_SPRITE_COLORKEY 0x2a 331 #define DRM_I915_SET_SPRITE_COLORKEY 0x2b 332 #define DRM_I915_GEM_WAIT 0x2c 333 #define DRM_I915_GEM_CONTEXT_CREATE 0x2d 334 #define DRM_I915_GEM_CONTEXT_DESTROY 0x2e 335 #define DRM_I915_GEM_SET_CACHING 0x2f 336 #define DRM_I915_GEM_GET_CACHING 0x30 337 #define DRM_I915_REG_READ 0x31 338 #define DRM_I915_GET_RESET_STATS 0x32 339 #define DRM_I915_GEM_USERPTR 0x33 340 #define DRM_I915_GEM_CONTEXT_GETPARAM 0x34 341 #define DRM_I915_GEM_CONTEXT_SETPARAM 0x35 342 #define DRM_I915_PERF_OPEN 0x36 343 #define DRM_I915_PERF_ADD_CONFIG 0x37 344 #define DRM_I915_PERF_REMOVE_CONFIG 0x38 345 #define DRM_I915_QUERY 0x39 346 /* Must be kept compact -- no holes */ 347 348 #define DRM_IOCTL_I915_INIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t) 349 #define DRM_IOCTL_I915_FLUSH DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH) 350 #define DRM_IOCTL_I915_FLIP DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP) 351 #define DRM_IOCTL_I915_BATCHBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t) 352 #define DRM_IOCTL_I915_IRQ_EMIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t) 353 #define DRM_IOCTL_I915_IRQ_WAIT DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t) 354 #define DRM_IOCTL_I915_GETPARAM DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t) 355 #define DRM_IOCTL_I915_SETPARAM DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t) 356 #define DRM_IOCTL_I915_ALLOC DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t) 357 #define DRM_IOCTL_I915_FREE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t) 358 #define DRM_IOCTL_I915_INIT_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t) 359 #define DRM_IOCTL_I915_CMDBUFFER DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t) 360 #define DRM_IOCTL_I915_DESTROY_HEAP DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t) 361 #define DRM_IOCTL_I915_SET_VBLANK_PIPE DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t) 362 #define DRM_IOCTL_I915_GET_VBLANK_PIPE DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t) 363 #define DRM_IOCTL_I915_VBLANK_SWAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t) 364 #define DRM_IOCTL_I915_HWS_ADDR DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init) 365 #define DRM_IOCTL_I915_GEM_INIT DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init) 366 #define DRM_IOCTL_I915_GEM_EXECBUFFER DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer) 367 #define DRM_IOCTL_I915_GEM_EXECBUFFER2 DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2) 368 #define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2) 369 #define DRM_IOCTL_I915_GEM_PIN DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin) 370 #define DRM_IOCTL_I915_GEM_UNPIN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin) 371 #define DRM_IOCTL_I915_GEM_BUSY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy) 372 #define DRM_IOCTL_I915_GEM_SET_CACHING DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching) 373 #define DRM_IOCTL_I915_GEM_GET_CACHING DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching) 374 #define DRM_IOCTL_I915_GEM_THROTTLE DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE) 375 #define DRM_IOCTL_I915_GEM_ENTERVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT) 376 #define DRM_IOCTL_I915_GEM_LEAVEVT DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT) 377 #define DRM_IOCTL_I915_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create) 378 #define DRM_IOCTL_I915_GEM_PREAD DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread) 379 #define DRM_IOCTL_I915_GEM_PWRITE DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite) 380 #define DRM_IOCTL_I915_GEM_MMAP DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap) 381 #define DRM_IOCTL_I915_GEM_MMAP_GTT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt) 382 #define DRM_IOCTL_I915_GEM_SET_DOMAIN DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain) 383 #define DRM_IOCTL_I915_GEM_SW_FINISH DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish) 384 #define DRM_IOCTL_I915_GEM_SET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling) 385 #define DRM_IOCTL_I915_GEM_GET_TILING DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling) 386 #define DRM_IOCTL_I915_GEM_GET_APERTURE DRM_IOR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture) 387 #define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id) 388 #define DRM_IOCTL_I915_GEM_MADVISE DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise) 389 #define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image) 390 #define DRM_IOCTL_I915_OVERLAY_ATTRS DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs) 391 #define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey) 392 #define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey) 393 #define DRM_IOCTL_I915_GEM_WAIT DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait) 394 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create) 395 #define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext) 396 #define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy) 397 #define DRM_IOCTL_I915_REG_READ DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read) 398 #define DRM_IOCTL_I915_GET_RESET_STATS DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats) 399 #define DRM_IOCTL_I915_GEM_USERPTR DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr) 400 #define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param) 401 #define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param) 402 #define DRM_IOCTL_I915_PERF_OPEN DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param) 403 #define DRM_IOCTL_I915_PERF_ADD_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config) 404 #define DRM_IOCTL_I915_PERF_REMOVE_CONFIG DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64) 405 #define DRM_IOCTL_I915_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query) 406 407 /* Allow drivers to submit batchbuffers directly to hardware, relying 408 * on the security mechanisms provided by hardware. 409 */ 410 typedef struct drm_i915_batchbuffer { 411 int start; /* agp offset */ 412 int used; /* nr bytes in use */ 413 int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */ 414 int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */ 415 int num_cliprects; /* mulitpass with multiple cliprects? */ 416 struct drm_clip_rect *cliprects; /* pointer to userspace cliprects */ 417 } drm_i915_batchbuffer_t; 418 419 /* As above, but pass a pointer to userspace buffer which can be 420 * validated by the kernel prior to sending to hardware. 421 */ 422 typedef struct _drm_i915_cmdbuffer { 423 char *buf; /* pointer to userspace command buffer */ 424 int sz; /* nr bytes in buf */ 425 int DR1; /* hw flags for GFX_OP_DRAWRECT_INFO */ 426 int DR4; /* window origin for GFX_OP_DRAWRECT_INFO */ 427 int num_cliprects; /* mulitpass with multiple cliprects? */ 428 struct drm_clip_rect *cliprects; /* pointer to userspace cliprects */ 429 } drm_i915_cmdbuffer_t; 430 431 /* Userspace can request & wait on irq's: 432 */ 433 typedef struct drm_i915_irq_emit { 434 int *irq_seq; 435 } drm_i915_irq_emit_t; 436 437 typedef struct drm_i915_irq_wait { 438 int irq_seq; 439 } drm_i915_irq_wait_t; 440 441 /* 442 * Different modes of per-process Graphics Translation Table, 443 * see I915_PARAM_HAS_ALIASING_PPGTT 444 */ 445 #define I915_GEM_PPGTT_NONE 0 446 #define I915_GEM_PPGTT_ALIASING 1 447 #define I915_GEM_PPGTT_FULL 2 448 449 /* Ioctl to query kernel params: 450 */ 451 #define I915_PARAM_IRQ_ACTIVE 1 452 #define I915_PARAM_ALLOW_BATCHBUFFER 2 453 #define I915_PARAM_LAST_DISPATCH 3 454 #define I915_PARAM_CHIPSET_ID 4 455 #define I915_PARAM_HAS_GEM 5 456 #define I915_PARAM_NUM_FENCES_AVAIL 6 457 #define I915_PARAM_HAS_OVERLAY 7 458 #define I915_PARAM_HAS_PAGEFLIPPING 8 459 #define I915_PARAM_HAS_EXECBUF2 9 460 #define I915_PARAM_HAS_BSD 10 461 #define I915_PARAM_HAS_BLT 11 462 #define I915_PARAM_HAS_RELAXED_FENCING 12 463 #define I915_PARAM_HAS_COHERENT_RINGS 13 464 #define I915_PARAM_HAS_EXEC_CONSTANTS 14 465 #define I915_PARAM_HAS_RELAXED_DELTA 15 466 #define I915_PARAM_HAS_GEN7_SOL_RESET 16 467 #define I915_PARAM_HAS_LLC 17 468 #define I915_PARAM_HAS_ALIASING_PPGTT 18 469 #define I915_PARAM_HAS_WAIT_TIMEOUT 19 470 #define I915_PARAM_HAS_SEMAPHORES 20 471 #define I915_PARAM_HAS_PRIME_VMAP_FLUSH 21 472 #define I915_PARAM_HAS_VEBOX 22 473 #define I915_PARAM_HAS_SECURE_BATCHES 23 474 #define I915_PARAM_HAS_PINNED_BATCHES 24 475 #define I915_PARAM_HAS_EXEC_NO_RELOC 25 476 #define I915_PARAM_HAS_EXEC_HANDLE_LUT 26 477 #define I915_PARAM_HAS_WT 27 478 #define I915_PARAM_CMD_PARSER_VERSION 28 479 #define I915_PARAM_HAS_COHERENT_PHYS_GTT 29 480 #define I915_PARAM_MMAP_VERSION 30 481 #define I915_PARAM_HAS_BSD2 31 482 #define I915_PARAM_REVISION 32 483 #define I915_PARAM_SUBSLICE_TOTAL 33 484 #define I915_PARAM_EU_TOTAL 34 485 #define I915_PARAM_HAS_GPU_RESET 35 486 #define I915_PARAM_HAS_RESOURCE_STREAMER 36 487 #define I915_PARAM_HAS_EXEC_SOFTPIN 37 488 #define I915_PARAM_HAS_POOLED_EU 38 489 #define I915_PARAM_MIN_EU_IN_POOL 39 490 #define I915_PARAM_MMAP_GTT_VERSION 40 491 492 /* 493 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution 494 * priorities and the driver will attempt to execute batches in priority order. 495 * The param returns a capability bitmask, nonzero implies that the scheduler 496 * is enabled, with different features present according to the mask. 497 * 498 * The initial priority for each batch is supplied by the context and is 499 * controlled via I915_CONTEXT_PARAM_PRIORITY. 500 */ 501 #define I915_PARAM_HAS_SCHEDULER 41 502 #define I915_SCHEDULER_CAP_ENABLED (1ul << 0) 503 #define I915_SCHEDULER_CAP_PRIORITY (1ul << 1) 504 #define I915_SCHEDULER_CAP_PREEMPTION (1ul << 2) 505 #define I915_SCHEDULER_CAP_SEMAPHORES (1ul << 3) 506 507 #define I915_PARAM_HUC_STATUS 42 508 509 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of 510 * synchronisation with implicit fencing on individual objects. 511 * See EXEC_OBJECT_ASYNC. 512 */ 513 #define I915_PARAM_HAS_EXEC_ASYNC 43 514 515 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support - 516 * both being able to pass in a sync_file fd to wait upon before executing, 517 * and being able to return a new sync_file fd that is signaled when the 518 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT. 519 */ 520 #define I915_PARAM_HAS_EXEC_FENCE 44 521 522 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture 523 * user specified buffers for post-mortem debugging of GPU hangs. See 524 * EXEC_OBJECT_CAPTURE. 525 */ 526 #define I915_PARAM_HAS_EXEC_CAPTURE 45 527 528 #define I915_PARAM_SLICE_MASK 46 529 530 /* Assuming it's uniform for each slice, this queries the mask of subslices 531 * per-slice for this system. 532 */ 533 #define I915_PARAM_SUBSLICE_MASK 47 534 535 /* 536 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer 537 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST. 538 */ 539 #define I915_PARAM_HAS_EXEC_BATCH_FIRST 48 540 541 /* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of 542 * drm_i915_gem_exec_fence structures. See I915_EXEC_FENCE_ARRAY. 543 */ 544 #define I915_PARAM_HAS_EXEC_FENCE_ARRAY 49 545 546 /* 547 * Query whether every context (both per-file default and user created) is 548 * isolated (insofar as HW supports). If this parameter is not true, then 549 * freshly created contexts may inherit values from an existing context, 550 * rather than default HW values. If true, it also ensures (insofar as HW 551 * supports) that all state set by this context will not leak to any other 552 * context. 553 * 554 * As not every engine across every gen support contexts, the returned 555 * value reports the support of context isolation for individual engines by 556 * returning a bitmask of each engine class set to true if that class supports 557 * isolation. 558 */ 559 #define I915_PARAM_HAS_CONTEXT_ISOLATION 50 560 561 /* Frequency of the command streamer timestamps given by the *_TIMESTAMP 562 * registers. This used to be fixed per platform but from CNL onwards, this 563 * might vary depending on the parts. 564 */ 565 #define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51 566 567 /* 568 * Once upon a time we supposed that writes through the GGTT would be 569 * immediately in physical memory (once flushed out of the CPU path). However, 570 * on a few different processors and chipsets, this is not necessarily the case 571 * as the writes appear to be buffered internally. Thus a read of the backing 572 * storage (physical memory) via a different path (with different physical tags 573 * to the indirect write via the GGTT) will see stale values from before 574 * the GGTT write. Inside the kernel, we can for the most part keep track of 575 * the different read/write domains in use (e.g. set-domain), but the assumption 576 * of coherency is baked into the ABI, hence reporting its true state in this 577 * parameter. 578 * 579 * Reports true when writes via mmap_gtt are immediately visible following an 580 * lfence to flush the WCB. 581 * 582 * Reports false when writes via mmap_gtt are indeterminately delayed in an in 583 * internal buffer and are _not_ immediately visible to third parties accessing 584 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC 585 * communications channel when reporting false is strongly disadvised. 586 */ 587 #define I915_PARAM_MMAP_GTT_COHERENT 52 588 589 /* Must be kept compact -- no holes and well documented */ 590 591 typedef struct drm_i915_getparam { 592 __s32 param; 593 /* 594 * WARNING: Using pointers instead of fixed-size u64 means we need to write 595 * compat32 code. Don't repeat this mistake. 596 */ 597 int *value; 598 } drm_i915_getparam_t; 599 600 /* Ioctl to set kernel params: 601 */ 602 #define I915_SETPARAM_USE_MI_BATCHBUFFER_START 1 603 #define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY 2 604 #define I915_SETPARAM_ALLOW_BATCHBUFFER 3 605 #define I915_SETPARAM_NUM_USED_FENCES 4 606 /* Must be kept compact -- no holes */ 607 608 typedef struct drm_i915_setparam { 609 int param; 610 int value; 611 } drm_i915_setparam_t; 612 613 /* A memory manager for regions of shared memory: 614 */ 615 #define I915_MEM_REGION_AGP 1 616 617 typedef struct drm_i915_mem_alloc { 618 int region; 619 int alignment; 620 int size; 621 int *region_offset; /* offset from start of fb or agp */ 622 } drm_i915_mem_alloc_t; 623 624 typedef struct drm_i915_mem_free { 625 int region; 626 int region_offset; 627 } drm_i915_mem_free_t; 628 629 typedef struct drm_i915_mem_init_heap { 630 int region; 631 int size; 632 int start; 633 } drm_i915_mem_init_heap_t; 634 635 /* Allow memory manager to be torn down and re-initialized (eg on 636 * rotate): 637 */ 638 typedef struct drm_i915_mem_destroy_heap { 639 int region; 640 } drm_i915_mem_destroy_heap_t; 641 642 /* Allow X server to configure which pipes to monitor for vblank signals 643 */ 644 #define DRM_I915_VBLANK_PIPE_A 1 645 #define DRM_I915_VBLANK_PIPE_B 2 646 647 typedef struct drm_i915_vblank_pipe { 648 int pipe; 649 } drm_i915_vblank_pipe_t; 650 651 /* Schedule buffer swap at given vertical blank: 652 */ 653 typedef struct drm_i915_vblank_swap { 654 drm_drawable_t drawable; 655 enum drm_vblank_seq_type seqtype; 656 unsigned int sequence; 657 } drm_i915_vblank_swap_t; 658 659 typedef struct drm_i915_hws_addr { 660 __u64 addr; 661 } drm_i915_hws_addr_t; 662 663 struct drm_i915_gem_init { 664 /** 665 * Beginning offset in the GTT to be managed by the DRM memory 666 * manager. 667 */ 668 __u64 gtt_start; 669 /** 670 * Ending offset in the GTT to be managed by the DRM memory 671 * manager. 672 */ 673 __u64 gtt_end; 674 }; 675 676 struct drm_i915_gem_create { 677 /** 678 * Requested size for the object. 679 * 680 * The (page-aligned) allocated size for the object will be returned. 681 */ 682 __u64 size; 683 /** 684 * Returned handle for the object. 685 * 686 * Object handles are nonzero. 687 */ 688 __u32 handle; 689 __u32 pad; 690 }; 691 692 struct drm_i915_gem_pread { 693 /** Handle for the object being read. */ 694 __u32 handle; 695 __u32 pad; 696 /** Offset into the object to read from */ 697 __u64 offset; 698 /** Length of data to read */ 699 __u64 size; 700 /** 701 * Pointer to write the data into. 702 * 703 * This is a fixed-size type for 32/64 compatibility. 704 */ 705 __u64 data_ptr; 706 }; 707 708 struct drm_i915_gem_pwrite { 709 /** Handle for the object being written to. */ 710 __u32 handle; 711 __u32 pad; 712 /** Offset into the object to write to */ 713 __u64 offset; 714 /** Length of data to write */ 715 __u64 size; 716 /** 717 * Pointer to read the data from. 718 * 719 * This is a fixed-size type for 32/64 compatibility. 720 */ 721 __u64 data_ptr; 722 }; 723 724 struct drm_i915_gem_mmap { 725 /** Handle for the object being mapped. */ 726 __u32 handle; 727 __u32 pad; 728 /** Offset in the object to map. */ 729 __u64 offset; 730 /** 731 * Length of data to map. 732 * 733 * The value will be page-aligned. 734 */ 735 __u64 size; 736 /** 737 * Returned pointer the data was mapped at. 738 * 739 * This is a fixed-size type for 32/64 compatibility. 740 */ 741 __u64 addr_ptr; 742 743 /** 744 * Flags for extended behaviour. 745 * 746 * Added in version 2. 747 */ 748 __u64 flags; 749 #define I915_MMAP_WC 0x1 750 }; 751 752 struct drm_i915_gem_mmap_gtt { 753 /** Handle for the object being mapped. */ 754 __u32 handle; 755 __u32 pad; 756 /** 757 * Fake offset to use for subsequent mmap call 758 * 759 * This is a fixed-size type for 32/64 compatibility. 760 */ 761 __u64 offset; 762 }; 763 764 struct drm_i915_gem_set_domain { 765 /** Handle for the object */ 766 __u32 handle; 767 768 /** New read domains */ 769 __u32 read_domains; 770 771 /** New write domain */ 772 __u32 write_domain; 773 }; 774 775 struct drm_i915_gem_sw_finish { 776 /** Handle for the object */ 777 __u32 handle; 778 }; 779 780 struct drm_i915_gem_relocation_entry { 781 /** 782 * Handle of the buffer being pointed to by this relocation entry. 783 * 784 * It's appealing to make this be an index into the mm_validate_entry 785 * list to refer to the buffer, but this allows the driver to create 786 * a relocation list for state buffers and not re-write it per 787 * exec using the buffer. 788 */ 789 __u32 target_handle; 790 791 /** 792 * Value to be added to the offset of the target buffer to make up 793 * the relocation entry. 794 */ 795 __u32 delta; 796 797 /** Offset in the buffer the relocation entry will be written into */ 798 __u64 offset; 799 800 /** 801 * Offset value of the target buffer that the relocation entry was last 802 * written as. 803 * 804 * If the buffer has the same offset as last time, we can skip syncing 805 * and writing the relocation. This value is written back out by 806 * the execbuffer ioctl when the relocation is written. 807 */ 808 __u64 presumed_offset; 809 810 /** 811 * Target memory domains read by this operation. 812 */ 813 __u32 read_domains; 814 815 /** 816 * Target memory domains written by this operation. 817 * 818 * Note that only one domain may be written by the whole 819 * execbuffer operation, so that where there are conflicts, 820 * the application will get -EINVAL back. 821 */ 822 __u32 write_domain; 823 }; 824 825 /** @{ 826 * Intel memory domains 827 * 828 * Most of these just align with the various caches in 829 * the system and are used to flush and invalidate as 830 * objects end up cached in different domains. 831 */ 832 /** CPU cache */ 833 #define I915_GEM_DOMAIN_CPU 0x00000001 834 /** Render cache, used by 2D and 3D drawing */ 835 #define I915_GEM_DOMAIN_RENDER 0x00000002 836 /** Sampler cache, used by texture engine */ 837 #define I915_GEM_DOMAIN_SAMPLER 0x00000004 838 /** Command queue, used to load batch buffers */ 839 #define I915_GEM_DOMAIN_COMMAND 0x00000008 840 /** Instruction cache, used by shader programs */ 841 #define I915_GEM_DOMAIN_INSTRUCTION 0x00000010 842 /** Vertex address cache */ 843 #define I915_GEM_DOMAIN_VERTEX 0x00000020 844 /** GTT domain - aperture and scanout */ 845 #define I915_GEM_DOMAIN_GTT 0x00000040 846 /** WC domain - uncached access */ 847 #define I915_GEM_DOMAIN_WC 0x00000080 848 /** @} */ 849 850 struct drm_i915_gem_exec_object { 851 /** 852 * User's handle for a buffer to be bound into the GTT for this 853 * operation. 854 */ 855 __u32 handle; 856 857 /** Number of relocations to be performed on this buffer */ 858 __u32 relocation_count; 859 /** 860 * Pointer to array of struct drm_i915_gem_relocation_entry containing 861 * the relocations to be performed in this buffer. 862 */ 863 __u64 relocs_ptr; 864 865 /** Required alignment in graphics aperture */ 866 __u64 alignment; 867 868 /** 869 * Returned value of the updated offset of the object, for future 870 * presumed_offset writes. 871 */ 872 __u64 offset; 873 }; 874 875 struct drm_i915_gem_execbuffer { 876 /** 877 * List of buffers to be validated with their relocations to be 878 * performend on them. 879 * 880 * This is a pointer to an array of struct drm_i915_gem_validate_entry. 881 * 882 * These buffers must be listed in an order such that all relocations 883 * a buffer is performing refer to buffers that have already appeared 884 * in the validate list. 885 */ 886 __u64 buffers_ptr; 887 __u32 buffer_count; 888 889 /** Offset in the batchbuffer to start execution from. */ 890 __u32 batch_start_offset; 891 /** Bytes used in batchbuffer from batch_start_offset */ 892 __u32 batch_len; 893 __u32 DR1; 894 __u32 DR4; 895 __u32 num_cliprects; 896 /** This is a struct drm_clip_rect *cliprects */ 897 __u64 cliprects_ptr; 898 }; 899 900 struct drm_i915_gem_exec_object2 { 901 /** 902 * User's handle for a buffer to be bound into the GTT for this 903 * operation. 904 */ 905 __u32 handle; 906 907 /** Number of relocations to be performed on this buffer */ 908 __u32 relocation_count; 909 /** 910 * Pointer to array of struct drm_i915_gem_relocation_entry containing 911 * the relocations to be performed in this buffer. 912 */ 913 __u64 relocs_ptr; 914 915 /** Required alignment in graphics aperture */ 916 __u64 alignment; 917 918 /** 919 * When the EXEC_OBJECT_PINNED flag is specified this is populated by 920 * the user with the GTT offset at which this object will be pinned. 921 * When the I915_EXEC_NO_RELOC flag is specified this must contain the 922 * presumed_offset of the object. 923 * During execbuffer2 the kernel populates it with the value of the 924 * current GTT offset of the object, for future presumed_offset writes. 925 */ 926 __u64 offset; 927 928 #define EXEC_OBJECT_NEEDS_FENCE (1<<0) 929 #define EXEC_OBJECT_NEEDS_GTT (1<<1) 930 #define EXEC_OBJECT_WRITE (1<<2) 931 #define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3) 932 #define EXEC_OBJECT_PINNED (1<<4) 933 #define EXEC_OBJECT_PAD_TO_SIZE (1<<5) 934 /* The kernel implicitly tracks GPU activity on all GEM objects, and 935 * synchronises operations with outstanding rendering. This includes 936 * rendering on other devices if exported via dma-buf. However, sometimes 937 * this tracking is too coarse and the user knows better. For example, 938 * if the object is split into non-overlapping ranges shared between different 939 * clients or engines (i.e. suballocating objects), the implicit tracking 940 * by kernel assumes that each operation affects the whole object rather 941 * than an individual range, causing needless synchronisation between clients. 942 * The kernel will also forgo any CPU cache flushes prior to rendering from 943 * the object as the client is expected to be also handling such domain 944 * tracking. 945 * 946 * The kernel maintains the implicit tracking in order to manage resources 947 * used by the GPU - this flag only disables the synchronisation prior to 948 * rendering with this object in this execbuf. 949 * 950 * Opting out of implicit synhronisation requires the user to do its own 951 * explicit tracking to avoid rendering corruption. See, for example, 952 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously. 953 */ 954 #define EXEC_OBJECT_ASYNC (1<<6) 955 /* Request that the contents of this execobject be copied into the error 956 * state upon a GPU hang involving this batch for post-mortem debugging. 957 * These buffers are recorded in no particular order as "user" in 958 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see 959 * if the kernel supports this flag. 960 */ 961 #define EXEC_OBJECT_CAPTURE (1<<7) 962 /* All remaining bits are MBZ and RESERVED FOR FUTURE USE */ 963 #define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1) 964 __u64 flags; 965 966 union { 967 __u64 rsvd1; 968 __u64 pad_to_size; 969 }; 970 __u64 rsvd2; 971 }; 972 973 struct drm_i915_gem_exec_fence { 974 /** 975 * User's handle for a drm_syncobj to wait on or signal. 976 */ 977 __u32 handle; 978 979 #define I915_EXEC_FENCE_WAIT (1<<0) 980 #define I915_EXEC_FENCE_SIGNAL (1<<1) 981 #define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1)) 982 __u32 flags; 983 }; 984 985 struct drm_i915_gem_execbuffer2 { 986 /** 987 * List of gem_exec_object2 structs 988 */ 989 __u64 buffers_ptr; 990 __u32 buffer_count; 991 992 /** Offset in the batchbuffer to start execution from. */ 993 __u32 batch_start_offset; 994 /** Bytes used in batchbuffer from batch_start_offset */ 995 __u32 batch_len; 996 __u32 DR1; 997 __u32 DR4; 998 __u32 num_cliprects; 999 /** 1000 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY 1001 * is not set. If I915_EXEC_FENCE_ARRAY is set, then this is a 1002 * struct drm_i915_gem_exec_fence *fences. 1003 */ 1004 __u64 cliprects_ptr; 1005 #define I915_EXEC_RING_MASK (0x3f) 1006 #define I915_EXEC_DEFAULT (0<<0) 1007 #define I915_EXEC_RENDER (1<<0) 1008 #define I915_EXEC_BSD (2<<0) 1009 #define I915_EXEC_BLT (3<<0) 1010 #define I915_EXEC_VEBOX (4<<0) 1011 1012 /* Used for switching the constants addressing mode on gen4+ RENDER ring. 1013 * Gen6+ only supports relative addressing to dynamic state (default) and 1014 * absolute addressing. 1015 * 1016 * These flags are ignored for the BSD and BLT rings. 1017 */ 1018 #define I915_EXEC_CONSTANTS_MASK (3<<6) 1019 #define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */ 1020 #define I915_EXEC_CONSTANTS_ABSOLUTE (1<<6) 1021 #define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */ 1022 __u64 flags; 1023 __u64 rsvd1; /* now used for context info */ 1024 __u64 rsvd2; 1025 }; 1026 1027 /** Resets the SO write offset registers for transform feedback on gen7. */ 1028 #define I915_EXEC_GEN7_SOL_RESET (1<<8) 1029 1030 /** Request a privileged ("secure") batch buffer. Note only available for 1031 * DRM_ROOT_ONLY | DRM_MASTER processes. 1032 */ 1033 #define I915_EXEC_SECURE (1<<9) 1034 1035 /** Inform the kernel that the batch is and will always be pinned. This 1036 * negates the requirement for a workaround to be performed to avoid 1037 * an incoherent CS (such as can be found on 830/845). If this flag is 1038 * not passed, the kernel will endeavour to make sure the batch is 1039 * coherent with the CS before execution. If this flag is passed, 1040 * userspace assumes the responsibility for ensuring the same. 1041 */ 1042 #define I915_EXEC_IS_PINNED (1<<10) 1043 1044 /** Provide a hint to the kernel that the command stream and auxiliary 1045 * state buffers already holds the correct presumed addresses and so the 1046 * relocation process may be skipped if no buffers need to be moved in 1047 * preparation for the execbuffer. 1048 */ 1049 #define I915_EXEC_NO_RELOC (1<<11) 1050 1051 /** Use the reloc.handle as an index into the exec object array rather 1052 * than as the per-file handle. 1053 */ 1054 #define I915_EXEC_HANDLE_LUT (1<<12) 1055 1056 /** Used for switching BSD rings on the platforms with two BSD rings */ 1057 #define I915_EXEC_BSD_SHIFT (13) 1058 #define I915_EXEC_BSD_MASK (3 << I915_EXEC_BSD_SHIFT) 1059 /* default ping-pong mode */ 1060 #define I915_EXEC_BSD_DEFAULT (0 << I915_EXEC_BSD_SHIFT) 1061 #define I915_EXEC_BSD_RING1 (1 << I915_EXEC_BSD_SHIFT) 1062 #define I915_EXEC_BSD_RING2 (2 << I915_EXEC_BSD_SHIFT) 1063 1064 /** Tell the kernel that the batchbuffer is processed by 1065 * the resource streamer. 1066 */ 1067 #define I915_EXEC_RESOURCE_STREAMER (1<<15) 1068 1069 /* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent 1070 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing 1071 * the batch. 1072 * 1073 * Returns -EINVAL if the sync_file fd cannot be found. 1074 */ 1075 #define I915_EXEC_FENCE_IN (1<<16) 1076 1077 /* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd 1078 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given 1079 * to the caller, and it should be close() after use. (The fd is a regular 1080 * file descriptor and will be cleaned up on process termination. It holds 1081 * a reference to the request, but nothing else.) 1082 * 1083 * The sync_file fd can be combined with other sync_file and passed either 1084 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip 1085 * will only occur after this request completes), or to other devices. 1086 * 1087 * Using I915_EXEC_FENCE_OUT requires use of 1088 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written 1089 * back to userspace. Failure to do so will cause the out-fence to always 1090 * be reported as zero, and the real fence fd to be leaked. 1091 */ 1092 #define I915_EXEC_FENCE_OUT (1<<17) 1093 1094 /* 1095 * Traditionally the execbuf ioctl has only considered the final element in 1096 * the execobject[] to be the executable batch. Often though, the client 1097 * will known the batch object prior to construction and being able to place 1098 * it into the execobject[] array first can simplify the relocation tracking. 1099 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the 1100 * execobject[] as the * batch instead (the default is to use the last 1101 * element). 1102 */ 1103 #define I915_EXEC_BATCH_FIRST (1<<18) 1104 1105 /* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr 1106 * define an array of i915_gem_exec_fence structures which specify a set of 1107 * dma fences to wait upon or signal. 1108 */ 1109 #define I915_EXEC_FENCE_ARRAY (1<<19) 1110 1111 #define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_ARRAY<<1)) 1112 1113 #define I915_EXEC_CONTEXT_ID_MASK (0xffffffff) 1114 #define i915_execbuffer2_set_context_id(eb2, context) \ 1115 (eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK 1116 #define i915_execbuffer2_get_context_id(eb2) \ 1117 ((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK) 1118 1119 struct drm_i915_gem_pin { 1120 /** Handle of the buffer to be pinned. */ 1121 __u32 handle; 1122 __u32 pad; 1123 1124 /** alignment required within the aperture */ 1125 __u64 alignment; 1126 1127 /** Returned GTT offset of the buffer. */ 1128 __u64 offset; 1129 }; 1130 1131 struct drm_i915_gem_unpin { 1132 /** Handle of the buffer to be unpinned. */ 1133 __u32 handle; 1134 __u32 pad; 1135 }; 1136 1137 struct drm_i915_gem_busy { 1138 /** Handle of the buffer to check for busy */ 1139 __u32 handle; 1140 1141 /** Return busy status 1142 * 1143 * A return of 0 implies that the object is idle (after 1144 * having flushed any pending activity), and a non-zero return that 1145 * the object is still in-flight on the GPU. (The GPU has not yet 1146 * signaled completion for all pending requests that reference the 1147 * object.) An object is guaranteed to become idle eventually (so 1148 * long as no new GPU commands are executed upon it). Due to the 1149 * asynchronous nature of the hardware, an object reported 1150 * as busy may become idle before the ioctl is completed. 1151 * 1152 * Furthermore, if the object is busy, which engine is busy is only 1153 * provided as a guide and only indirectly by reporting its class 1154 * (there may be more than one engine in each class). There are race 1155 * conditions which prevent the report of which engines are busy from 1156 * being always accurate. However, the converse is not true. If the 1157 * object is idle, the result of the ioctl, that all engines are idle, 1158 * is accurate. 1159 * 1160 * The returned dword is split into two fields to indicate both 1161 * the engine classess on which the object is being read, and the 1162 * engine class on which it is currently being written (if any). 1163 * 1164 * The low word (bits 0:15) indicate if the object is being written 1165 * to by any engine (there can only be one, as the GEM implicit 1166 * synchronisation rules force writes to be serialised). Only the 1167 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as 1168 * 1 not 0 etc) for the last write is reported. 1169 * 1170 * The high word (bits 16:31) are a bitmask of which engines classes 1171 * are currently reading from the object. Multiple engines may be 1172 * reading from the object simultaneously. 1173 * 1174 * The value of each engine class is the same as specified in the 1175 * I915_CONTEXT_SET_ENGINES parameter and via perf, i.e. 1176 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc. 1177 * reported as active itself. Some hardware may have parallel 1178 * execution engines, e.g. multiple media engines, which are 1179 * mapped to the same class identifier and so are not separately 1180 * reported for busyness. 1181 * 1182 * Caveat emptor: 1183 * Only the boolean result of this query is reliable; that is whether 1184 * the object is idle or busy. The report of which engines are busy 1185 * should be only used as a heuristic. 1186 */ 1187 __u32 busy; 1188 }; 1189 1190 /** 1191 * I915_CACHING_NONE 1192 * 1193 * GPU access is not coherent with cpu caches. Default for machines without an 1194 * LLC. 1195 */ 1196 #define I915_CACHING_NONE 0 1197 /** 1198 * I915_CACHING_CACHED 1199 * 1200 * GPU access is coherent with cpu caches and furthermore the data is cached in 1201 * last-level caches shared between cpu cores and the gpu GT. Default on 1202 * machines with HAS_LLC. 1203 */ 1204 #define I915_CACHING_CACHED 1 1205 /** 1206 * I915_CACHING_DISPLAY 1207 * 1208 * Special GPU caching mode which is coherent with the scanout engines. 1209 * Transparently falls back to I915_CACHING_NONE on platforms where no special 1210 * cache mode (like write-through or gfdt flushing) is available. The kernel 1211 * automatically sets this mode when using a buffer as a scanout target. 1212 * Userspace can manually set this mode to avoid a costly stall and clflush in 1213 * the hotpath of drawing the first frame. 1214 */ 1215 #define I915_CACHING_DISPLAY 2 1216 1217 struct drm_i915_gem_caching { 1218 /** 1219 * Handle of the buffer to set/get the caching level of. */ 1220 __u32 handle; 1221 1222 /** 1223 * Caching level to apply or return value 1224 * 1225 * bits0-15 are for generic caching control (i.e. the above defined 1226 * values). bits16-31 are reserved for platform-specific variations 1227 * (e.g. l3$ caching on gen7). */ 1228 __u32 caching; 1229 }; 1230 1231 #define I915_TILING_NONE 0 1232 #define I915_TILING_X 1 1233 #define I915_TILING_Y 2 1234 #define I915_TILING_LAST I915_TILING_Y 1235 1236 #define I915_BIT_6_SWIZZLE_NONE 0 1237 #define I915_BIT_6_SWIZZLE_9 1 1238 #define I915_BIT_6_SWIZZLE_9_10 2 1239 #define I915_BIT_6_SWIZZLE_9_11 3 1240 #define I915_BIT_6_SWIZZLE_9_10_11 4 1241 /* Not seen by userland */ 1242 #define I915_BIT_6_SWIZZLE_UNKNOWN 5 1243 /* Seen by userland. */ 1244 #define I915_BIT_6_SWIZZLE_9_17 6 1245 #define I915_BIT_6_SWIZZLE_9_10_17 7 1246 1247 struct drm_i915_gem_set_tiling { 1248 /** Handle of the buffer to have its tiling state updated */ 1249 __u32 handle; 1250 1251 /** 1252 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X, 1253 * I915_TILING_Y). 1254 * 1255 * This value is to be set on request, and will be updated by the 1256 * kernel on successful return with the actual chosen tiling layout. 1257 * 1258 * The tiling mode may be demoted to I915_TILING_NONE when the system 1259 * has bit 6 swizzling that can't be managed correctly by GEM. 1260 * 1261 * Buffer contents become undefined when changing tiling_mode. 1262 */ 1263 __u32 tiling_mode; 1264 1265 /** 1266 * Stride in bytes for the object when in I915_TILING_X or 1267 * I915_TILING_Y. 1268 */ 1269 __u32 stride; 1270 1271 /** 1272 * Returned address bit 6 swizzling required for CPU access through 1273 * mmap mapping. 1274 */ 1275 __u32 swizzle_mode; 1276 }; 1277 1278 struct drm_i915_gem_get_tiling { 1279 /** Handle of the buffer to get tiling state for. */ 1280 __u32 handle; 1281 1282 /** 1283 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X, 1284 * I915_TILING_Y). 1285 */ 1286 __u32 tiling_mode; 1287 1288 /** 1289 * Returned address bit 6 swizzling required for CPU access through 1290 * mmap mapping. 1291 */ 1292 __u32 swizzle_mode; 1293 1294 /** 1295 * Returned address bit 6 swizzling required for CPU access through 1296 * mmap mapping whilst bound. 1297 */ 1298 __u32 phys_swizzle_mode; 1299 }; 1300 1301 struct drm_i915_gem_get_aperture { 1302 /** Total size of the aperture used by i915_gem_execbuffer, in bytes */ 1303 __u64 aper_size; 1304 1305 /** 1306 * Available space in the aperture used by i915_gem_execbuffer, in 1307 * bytes 1308 */ 1309 __u64 aper_available_size; 1310 }; 1311 1312 struct drm_i915_get_pipe_from_crtc_id { 1313 /** ID of CRTC being requested **/ 1314 __u32 crtc_id; 1315 1316 /** pipe of requested CRTC **/ 1317 __u32 pipe; 1318 }; 1319 1320 #define I915_MADV_WILLNEED 0 1321 #define I915_MADV_DONTNEED 1 1322 #define __I915_MADV_PURGED 2 /* internal state */ 1323 1324 struct drm_i915_gem_madvise { 1325 /** Handle of the buffer to change the backing store advice */ 1326 __u32 handle; 1327 1328 /* Advice: either the buffer will be needed again in the near future, 1329 * or wont be and could be discarded under memory pressure. 1330 */ 1331 __u32 madv; 1332 1333 /** Whether the backing store still exists. */ 1334 __u32 retained; 1335 }; 1336 1337 /* flags */ 1338 #define I915_OVERLAY_TYPE_MASK 0xff 1339 #define I915_OVERLAY_YUV_PLANAR 0x01 1340 #define I915_OVERLAY_YUV_PACKED 0x02 1341 #define I915_OVERLAY_RGB 0x03 1342 1343 #define I915_OVERLAY_DEPTH_MASK 0xff00 1344 #define I915_OVERLAY_RGB24 0x1000 1345 #define I915_OVERLAY_RGB16 0x2000 1346 #define I915_OVERLAY_RGB15 0x3000 1347 #define I915_OVERLAY_YUV422 0x0100 1348 #define I915_OVERLAY_YUV411 0x0200 1349 #define I915_OVERLAY_YUV420 0x0300 1350 #define I915_OVERLAY_YUV410 0x0400 1351 1352 #define I915_OVERLAY_SWAP_MASK 0xff0000 1353 #define I915_OVERLAY_NO_SWAP 0x000000 1354 #define I915_OVERLAY_UV_SWAP 0x010000 1355 #define I915_OVERLAY_Y_SWAP 0x020000 1356 #define I915_OVERLAY_Y_AND_UV_SWAP 0x030000 1357 1358 #define I915_OVERLAY_FLAGS_MASK 0xff000000 1359 #define I915_OVERLAY_ENABLE 0x01000000 1360 1361 struct drm_intel_overlay_put_image { 1362 /* various flags and src format description */ 1363 __u32 flags; 1364 /* source picture description */ 1365 __u32 bo_handle; 1366 /* stride values and offsets are in bytes, buffer relative */ 1367 __u16 stride_Y; /* stride for packed formats */ 1368 __u16 stride_UV; 1369 __u32 offset_Y; /* offset for packet formats */ 1370 __u32 offset_U; 1371 __u32 offset_V; 1372 /* in pixels */ 1373 __u16 src_width; 1374 __u16 src_height; 1375 /* to compensate the scaling factors for partially covered surfaces */ 1376 __u16 src_scan_width; 1377 __u16 src_scan_height; 1378 /* output crtc description */ 1379 __u32 crtc_id; 1380 __u16 dst_x; 1381 __u16 dst_y; 1382 __u16 dst_width; 1383 __u16 dst_height; 1384 }; 1385 1386 /* flags */ 1387 #define I915_OVERLAY_UPDATE_ATTRS (1<<0) 1388 #define I915_OVERLAY_UPDATE_GAMMA (1<<1) 1389 #define I915_OVERLAY_DISABLE_DEST_COLORKEY (1<<2) 1390 struct drm_intel_overlay_attrs { 1391 __u32 flags; 1392 __u32 color_key; 1393 __s32 brightness; 1394 __u32 contrast; 1395 __u32 saturation; 1396 __u32 gamma0; 1397 __u32 gamma1; 1398 __u32 gamma2; 1399 __u32 gamma3; 1400 __u32 gamma4; 1401 __u32 gamma5; 1402 }; 1403 1404 /* 1405 * Intel sprite handling 1406 * 1407 * Color keying works with a min/mask/max tuple. Both source and destination 1408 * color keying is allowed. 1409 * 1410 * Source keying: 1411 * Sprite pixels within the min & max values, masked against the color channels 1412 * specified in the mask field, will be transparent. All other pixels will 1413 * be displayed on top of the primary plane. For RGB surfaces, only the min 1414 * and mask fields will be used; ranged compares are not allowed. 1415 * 1416 * Destination keying: 1417 * Primary plane pixels that match the min value, masked against the color 1418 * channels specified in the mask field, will be replaced by corresponding 1419 * pixels from the sprite plane. 1420 * 1421 * Note that source & destination keying are exclusive; only one can be 1422 * active on a given plane. 1423 */ 1424 1425 #define I915_SET_COLORKEY_NONE (1<<0) /* Deprecated. Instead set 1426 * flags==0 to disable colorkeying. 1427 */ 1428 #define I915_SET_COLORKEY_DESTINATION (1<<1) 1429 #define I915_SET_COLORKEY_SOURCE (1<<2) 1430 struct drm_intel_sprite_colorkey { 1431 __u32 plane_id; 1432 __u32 min_value; 1433 __u32 channel_mask; 1434 __u32 max_value; 1435 __u32 flags; 1436 }; 1437 1438 struct drm_i915_gem_wait { 1439 /** Handle of BO we shall wait on */ 1440 __u32 bo_handle; 1441 __u32 flags; 1442 /** Number of nanoseconds to wait, Returns time remaining. */ 1443 __s64 timeout_ns; 1444 }; 1445 1446 struct drm_i915_gem_context_create { 1447 __u32 ctx_id; /* output: id of new context*/ 1448 __u32 pad; 1449 }; 1450 1451 struct drm_i915_gem_context_create_ext { 1452 __u32 ctx_id; /* output: id of new context*/ 1453 __u32 flags; 1454 #define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS (1u << 0) 1455 #define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \ 1456 (-(I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS << 1)) 1457 __u64 extensions; 1458 }; 1459 1460 struct drm_i915_gem_context_param { 1461 __u32 ctx_id; 1462 __u32 size; 1463 __u64 param; 1464 #define I915_CONTEXT_PARAM_BAN_PERIOD 0x1 1465 #define I915_CONTEXT_PARAM_NO_ZEROMAP 0x2 1466 #define I915_CONTEXT_PARAM_GTT_SIZE 0x3 1467 #define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE 0x4 1468 #define I915_CONTEXT_PARAM_BANNABLE 0x5 1469 #define I915_CONTEXT_PARAM_PRIORITY 0x6 1470 #define I915_CONTEXT_MAX_USER_PRIORITY 1023 /* inclusive */ 1471 #define I915_CONTEXT_DEFAULT_PRIORITY 0 1472 #define I915_CONTEXT_MIN_USER_PRIORITY -1023 /* inclusive */ 1473 /* 1474 * When using the following param, value should be a pointer to 1475 * drm_i915_gem_context_param_sseu. 1476 */ 1477 #define I915_CONTEXT_PARAM_SSEU 0x7 1478 1479 /* 1480 * Not all clients may want to attempt automatic recover of a context after 1481 * a hang (for example, some clients may only submit very small incremental 1482 * batches relying on known logical state of previous batches which will never 1483 * recover correctly and each attempt will hang), and so would prefer that 1484 * the context is forever banned instead. 1485 * 1486 * If set to false (0), after a reset, subsequent (and in flight) rendering 1487 * from this context is discarded, and the client will need to create a new 1488 * context to use instead. 1489 * 1490 * If set to true (1), the kernel will automatically attempt to recover the 1491 * context by skipping the hanging batch and executing the next batch starting 1492 * from the default context state (discarding the incomplete logical context 1493 * state lost due to the reset). 1494 * 1495 * On creation, all new contexts are marked as recoverable. 1496 */ 1497 #define I915_CONTEXT_PARAM_RECOVERABLE 0x8 1498 /* Must be kept compact -- no holes and well documented */ 1499 1500 __u64 value; 1501 }; 1502 1503 /** 1504 * Context SSEU programming 1505 * 1506 * It may be necessary for either functional or performance reason to configure 1507 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/ 1508 * Sub-slice/EU). 1509 * 1510 * This is done by configuring SSEU configuration using the below 1511 * @struct drm_i915_gem_context_param_sseu for every supported engine which 1512 * userspace intends to use. 1513 * 1514 * Not all GPUs or engines support this functionality in which case an error 1515 * code -ENODEV will be returned. 1516 * 1517 * Also, flexibility of possible SSEU configuration permutations varies between 1518 * GPU generations and software imposed limitations. Requesting such a 1519 * combination will return an error code of -EINVAL. 1520 * 1521 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in 1522 * favour of a single global setting. 1523 */ 1524 struct drm_i915_gem_context_param_sseu { 1525 /* 1526 * Engine class & instance to be configured or queried. 1527 */ 1528 __u16 engine_class; 1529 __u16 engine_instance; 1530 1531 /* 1532 * Unused for now. Must be cleared to zero. 1533 */ 1534 __u32 flags; 1535 1536 /* 1537 * Mask of slices to enable for the context. Valid values are a subset 1538 * of the bitmask value returned for I915_PARAM_SLICE_MASK. 1539 */ 1540 __u64 slice_mask; 1541 1542 /* 1543 * Mask of subslices to enable for the context. Valid values are a 1544 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK. 1545 */ 1546 __u64 subslice_mask; 1547 1548 /* 1549 * Minimum/Maximum number of EUs to enable per subslice for the 1550 * context. min_eus_per_subslice must be inferior or equal to 1551 * max_eus_per_subslice. 1552 */ 1553 __u16 min_eus_per_subslice; 1554 __u16 max_eus_per_subslice; 1555 1556 /* 1557 * Unused for now. Must be cleared to zero. 1558 */ 1559 __u32 rsvd; 1560 }; 1561 1562 struct drm_i915_gem_context_create_ext_setparam { 1563 #define I915_CONTEXT_CREATE_EXT_SETPARAM 0 1564 struct i915_user_extension base; 1565 struct drm_i915_gem_context_param param; 1566 }; 1567 1568 struct drm_i915_gem_context_destroy { 1569 __u32 ctx_id; 1570 __u32 pad; 1571 }; 1572 1573 /* 1574 * DRM_I915_GEM_VM_CREATE - 1575 * 1576 * Create a new virtual memory address space (ppGTT) for use within a context 1577 * on the same file. Extensions can be provided to configure exactly how the 1578 * address space is setup upon creation. 1579 * 1580 * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is 1581 * returned in the outparam @id. 1582 * 1583 * No flags are defined, with all bits reserved and must be zero. 1584 * 1585 * An extension chain maybe provided, starting with @extensions, and terminated 1586 * by the @next_extension being 0. Currently, no extensions are defined. 1587 * 1588 * DRM_I915_GEM_VM_DESTROY - 1589 * 1590 * Destroys a previously created VM id, specified in @id. 1591 * 1592 * No extensions or flags are allowed currently, and so must be zero. 1593 */ 1594 struct drm_i915_gem_vm_control { 1595 __u64 extensions; 1596 __u32 flags; 1597 __u32 vm_id; 1598 }; 1599 1600 struct drm_i915_reg_read { 1601 /* 1602 * Register offset. 1603 * For 64bit wide registers where the upper 32bits don't immediately 1604 * follow the lower 32bits, the offset of the lower 32bits must 1605 * be specified 1606 */ 1607 __u64 offset; 1608 #define I915_REG_READ_8B_WA (1ul << 0) 1609 1610 __u64 val; /* Return value */ 1611 }; 1612 1613 /* Known registers: 1614 * 1615 * Render engine timestamp - 0x2358 + 64bit - gen7+ 1616 * - Note this register returns an invalid value if using the default 1617 * single instruction 8byte read, in order to workaround that pass 1618 * flag I915_REG_READ_8B_WA in offset field. 1619 * 1620 */ 1621 1622 struct drm_i915_reset_stats { 1623 __u32 ctx_id; 1624 __u32 flags; 1625 1626 /* All resets since boot/module reload, for all contexts */ 1627 __u32 reset_count; 1628 1629 /* Number of batches lost when active in GPU, for this context */ 1630 __u32 batch_active; 1631 1632 /* Number of batches lost pending for execution, for this context */ 1633 __u32 batch_pending; 1634 1635 __u32 pad; 1636 }; 1637 1638 struct drm_i915_gem_userptr { 1639 __u64 user_ptr; 1640 __u64 user_size; 1641 __u32 flags; 1642 #define I915_USERPTR_READ_ONLY 0x1 1643 #define I915_USERPTR_UNSYNCHRONIZED 0x80000000 1644 /** 1645 * Returned handle for the object. 1646 * 1647 * Object handles are nonzero. 1648 */ 1649 __u32 handle; 1650 }; 1651 1652 enum drm_i915_oa_format { 1653 I915_OA_FORMAT_A13 = 1, /* HSW only */ 1654 I915_OA_FORMAT_A29, /* HSW only */ 1655 I915_OA_FORMAT_A13_B8_C8, /* HSW only */ 1656 I915_OA_FORMAT_B4_C8, /* HSW only */ 1657 I915_OA_FORMAT_A45_B8_C8, /* HSW only */ 1658 I915_OA_FORMAT_B4_C8_A16, /* HSW only */ 1659 I915_OA_FORMAT_C4_B8, /* HSW+ */ 1660 1661 /* Gen8+ */ 1662 I915_OA_FORMAT_A12, 1663 I915_OA_FORMAT_A12_B8_C8, 1664 I915_OA_FORMAT_A32u40_A4u32_B8_C8, 1665 1666 I915_OA_FORMAT_MAX /* non-ABI */ 1667 }; 1668 1669 enum drm_i915_perf_property_id { 1670 /** 1671 * Open the stream for a specific context handle (as used with 1672 * execbuffer2). A stream opened for a specific context this way 1673 * won't typically require root privileges. 1674 */ 1675 DRM_I915_PERF_PROP_CTX_HANDLE = 1, 1676 1677 /** 1678 * A value of 1 requests the inclusion of raw OA unit reports as 1679 * part of stream samples. 1680 */ 1681 DRM_I915_PERF_PROP_SAMPLE_OA, 1682 1683 /** 1684 * The value specifies which set of OA unit metrics should be 1685 * be configured, defining the contents of any OA unit reports. 1686 */ 1687 DRM_I915_PERF_PROP_OA_METRICS_SET, 1688 1689 /** 1690 * The value specifies the size and layout of OA unit reports. 1691 */ 1692 DRM_I915_PERF_PROP_OA_FORMAT, 1693 1694 /** 1695 * Specifying this property implicitly requests periodic OA unit 1696 * sampling and (at least on Haswell) the sampling frequency is derived 1697 * from this exponent as follows: 1698 * 1699 * 80ns * 2^(period_exponent + 1) 1700 */ 1701 DRM_I915_PERF_PROP_OA_EXPONENT, 1702 1703 DRM_I915_PERF_PROP_MAX /* non-ABI */ 1704 }; 1705 1706 struct drm_i915_perf_open_param { 1707 __u32 flags; 1708 #define I915_PERF_FLAG_FD_CLOEXEC (1<<0) 1709 #define I915_PERF_FLAG_FD_NONBLOCK (1<<1) 1710 #define I915_PERF_FLAG_DISABLED (1<<2) 1711 1712 /** The number of u64 (id, value) pairs */ 1713 __u32 num_properties; 1714 1715 /** 1716 * Pointer to array of u64 (id, value) pairs configuring the stream 1717 * to open. 1718 */ 1719 __u64 properties_ptr; 1720 }; 1721 1722 /** 1723 * Enable data capture for a stream that was either opened in a disabled state 1724 * via I915_PERF_FLAG_DISABLED or was later disabled via 1725 * I915_PERF_IOCTL_DISABLE. 1726 * 1727 * It is intended to be cheaper to disable and enable a stream than it may be 1728 * to close and re-open a stream with the same configuration. 1729 * 1730 * It's undefined whether any pending data for the stream will be lost. 1731 */ 1732 #define I915_PERF_IOCTL_ENABLE _IO('i', 0x0) 1733 1734 /** 1735 * Disable data capture for a stream. 1736 * 1737 * It is an error to try and read a stream that is disabled. 1738 */ 1739 #define I915_PERF_IOCTL_DISABLE _IO('i', 0x1) 1740 1741 /** 1742 * Common to all i915 perf records 1743 */ 1744 struct drm_i915_perf_record_header { 1745 __u32 type; 1746 __u16 pad; 1747 __u16 size; 1748 }; 1749 1750 enum drm_i915_perf_record_type { 1751 1752 /** 1753 * Samples are the work horse record type whose contents are extensible 1754 * and defined when opening an i915 perf stream based on the given 1755 * properties. 1756 * 1757 * Boolean properties following the naming convention 1758 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in 1759 * every sample. 1760 * 1761 * The order of these sample properties given by userspace has no 1762 * affect on the ordering of data within a sample. The order is 1763 * documented here. 1764 * 1765 * struct { 1766 * struct drm_i915_perf_record_header header; 1767 * 1768 * { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA 1769 * }; 1770 */ 1771 DRM_I915_PERF_RECORD_SAMPLE = 1, 1772 1773 /* 1774 * Indicates that one or more OA reports were not written by the 1775 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT 1776 * command collides with periodic sampling - which would be more likely 1777 * at higher sampling frequencies. 1778 */ 1779 DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2, 1780 1781 /** 1782 * An error occurred that resulted in all pending OA reports being lost. 1783 */ 1784 DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3, 1785 1786 DRM_I915_PERF_RECORD_MAX /* non-ABI */ 1787 }; 1788 1789 /** 1790 * Structure to upload perf dynamic configuration into the kernel. 1791 */ 1792 struct drm_i915_perf_oa_config { 1793 /** String formatted like "%08x-%04x-%04x-%04x-%012x" */ 1794 char uuid[36]; 1795 1796 __u32 n_mux_regs; 1797 __u32 n_boolean_regs; 1798 __u32 n_flex_regs; 1799 1800 /* 1801 * These fields are pointers to tuples of u32 values (register address, 1802 * value). For example the expected length of the buffer pointed by 1803 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs). 1804 */ 1805 __u64 mux_regs_ptr; 1806 __u64 boolean_regs_ptr; 1807 __u64 flex_regs_ptr; 1808 }; 1809 1810 struct drm_i915_query_item { 1811 __u64 query_id; 1812 #define DRM_I915_QUERY_TOPOLOGY_INFO 1 1813 /* Must be kept compact -- no holes and well documented */ 1814 1815 /* 1816 * When set to zero by userspace, this is filled with the size of the 1817 * data to be written at the data_ptr pointer. The kernel sets this 1818 * value to a negative value to signal an error on a particular query 1819 * item. 1820 */ 1821 __s32 length; 1822 1823 /* 1824 * Unused for now. Must be cleared to zero. 1825 */ 1826 __u32 flags; 1827 1828 /* 1829 * Data will be written at the location pointed by data_ptr when the 1830 * value of length matches the length of the data to be written by the 1831 * kernel. 1832 */ 1833 __u64 data_ptr; 1834 }; 1835 1836 struct drm_i915_query { 1837 __u32 num_items; 1838 1839 /* 1840 * Unused for now. Must be cleared to zero. 1841 */ 1842 __u32 flags; 1843 1844 /* 1845 * This points to an array of num_items drm_i915_query_item structures. 1846 */ 1847 __u64 items_ptr; 1848 }; 1849 1850 /* 1851 * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO : 1852 * 1853 * data: contains the 3 pieces of information : 1854 * 1855 * - the slice mask with one bit per slice telling whether a slice is 1856 * available. The availability of slice X can be queried with the following 1857 * formula : 1858 * 1859 * (data[X / 8] >> (X % 8)) & 1 1860 * 1861 * - the subslice mask for each slice with one bit per subslice telling 1862 * whether a subslice is available. The availability of subslice Y in slice 1863 * X can be queried with the following formula : 1864 * 1865 * (data[subslice_offset + 1866 * X * subslice_stride + 1867 * Y / 8] >> (Y % 8)) & 1 1868 * 1869 * - the EU mask for each subslice in each slice with one bit per EU telling 1870 * whether an EU is available. The availability of EU Z in subslice Y in 1871 * slice X can be queried with the following formula : 1872 * 1873 * (data[eu_offset + 1874 * (X * max_subslices + Y) * eu_stride + 1875 * Z / 8] >> (Z % 8)) & 1 1876 */ 1877 struct drm_i915_query_topology_info { 1878 /* 1879 * Unused for now. Must be cleared to zero. 1880 */ 1881 __u16 flags; 1882 1883 __u16 max_slices; 1884 __u16 max_subslices; 1885 __u16 max_eus_per_subslice; 1886 1887 /* 1888 * Offset in data[] at which the subslice masks are stored. 1889 */ 1890 __u16 subslice_offset; 1891 1892 /* 1893 * Stride at which each of the subslice masks for each slice are 1894 * stored. 1895 */ 1896 __u16 subslice_stride; 1897 1898 /* 1899 * Offset in data[] at which the EU masks are stored. 1900 */ 1901 __u16 eu_offset; 1902 1903 /* 1904 * Stride at which each of the EU masks for each subslice are stored. 1905 */ 1906 __u16 eu_stride; 1907 1908 __u8 data[]; 1909 }; 1910 1911 #if defined(__cplusplus) 1912 } 1913 #endif 1914 1915 #endif /* _I915_DRM_H_ */ 1916