• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef _LIBINPUT_INPUT_TRANSPORT_H
18 #define _LIBINPUT_INPUT_TRANSPORT_H
19 
20 #pragma GCC system_header
21 
22 /**
23  * Native input transport.
24  *
25  * The InputChannel provides a mechanism for exchanging InputMessage structures across processes.
26  *
27  * The InputPublisher and InputConsumer each handle one end-point of an input channel.
28  * The InputPublisher is used by the input dispatcher to send events to the application.
29  * The InputConsumer is used by the application to receive events from the input dispatcher.
30  */
31 
32 #include <string>
33 #include <unordered_map>
34 
35 #include <android-base/chrono_utils.h>
36 #include <android-base/result.h>
37 #include <android-base/unique_fd.h>
38 
39 #include <binder/IBinder.h>
40 #include <binder/Parcelable.h>
41 #include <input/Input.h>
42 #include <sys/stat.h>
43 #include <ui/Transform.h>
44 #include <utils/BitSet.h>
45 #include <utils/Errors.h>
46 #include <utils/RefBase.h>
47 #include <utils/Timers.h>
48 
49 
50 namespace android {
51 class Parcel;
52 
53 /*
54  * Intermediate representation used to send input events and related signals.
55  *
56  * Note that this structure is used for IPCs so its layout must be identical
57  * on 64 and 32 bit processes. This is tested in StructLayout_test.cpp.
58  *
59  * Since the struct must be aligned to an 8-byte boundary, there could be uninitialized bytes
60  * in-between the defined fields. This padding data should be explicitly accounted for by adding
61  * "empty" fields into the struct. This data is memset to zero before sending the struct across
62  * the socket. Adding the explicit fields ensures that the memset is not optimized away by the
63  * compiler. When a new field is added to the struct, the corresponding change
64  * in StructLayout_test should be made.
65  */
66 struct InputMessage {
67     enum class Type : uint32_t {
68         KEY,
69         MOTION,
70         FINISHED,
71         FOCUS,
72         CAPTURE,
73         DRAG,
74         TIMELINE,
75     };
76 
77     struct Header {
78         Type type; // 4 bytes
79         uint32_t seq;
80     } header;
81 
82     // For keys and motions, rely on the fact that std::array takes up exactly as much space
83     // as the underlying data. This is not guaranteed by C++, but it simplifies the conversions.
84     static_assert(sizeof(std::array<uint8_t, 32>) == 32);
85 
86     // For bool values, rely on the fact that they take up exactly one byte. This is not guaranteed
87     // by C++ and is implementation-dependent, but it simplifies the conversions.
88     static_assert(sizeof(bool) == 1);
89 
90     // Body *must* be 8 byte aligned.
91     union Body {
92         struct Key {
93             int32_t eventId;
94             uint32_t empty1;
95             nsecs_t eventTime __attribute__((aligned(8)));
96             int32_t deviceId;
97             int32_t source;
98             int32_t displayId;
99             std::array<uint8_t, 32> hmac;
100             int32_t action;
101             int32_t flags;
102             int32_t keyCode;
103             int32_t scanCode;
104             int32_t metaState;
105             int32_t repeatCount;
106             uint32_t empty2;
107             nsecs_t downTime __attribute__((aligned(8)));
108 
sizeInputMessage::Body::Key109             inline size_t size() const { return sizeof(Key); }
110         } key;
111 
112         struct Motion {
113             int32_t eventId;
114             uint32_t empty1;
115             nsecs_t eventTime __attribute__((aligned(8)));
116             int32_t deviceId;
117             int32_t source;
118             int32_t displayId;
119             std::array<uint8_t, 32> hmac;
120             int32_t action;
121             int32_t actionButton;
122             int32_t flags;
123             int32_t metaState;
124             int32_t buttonState;
125             MotionClassification classification; // base type: uint8_t
126             uint8_t empty2[3];                   // 3 bytes to fill gap created by classification
127             int32_t edgeFlags;
128             nsecs_t downTime __attribute__((aligned(8)));
129             float dsdx;
130             float dtdx;
131             float dtdy;
132             float dsdy;
133             float tx;
134             float ty;
135             float xPrecision;
136             float yPrecision;
137             float xCursorPosition;
138             float yCursorPosition;
139             int32_t displayWidth;
140             int32_t displayHeight;
141             uint32_t pointerCount;
142             uint32_t empty3;
143             /**
144              * The "pointers" field must be the last field of the struct InputMessage.
145              * When we send the struct InputMessage across the socket, we are not
146              * writing the entire "pointers" array, but only the pointerCount portion
147              * of it as an optimization. Adding a field after "pointers" would break this.
148              */
149             struct Pointer {
150                 PointerProperties properties;
151                 PointerCoords coords;
152             } pointers[MAX_POINTERS] __attribute__((aligned(8)));
153 
getActionIdInputMessage::Body::Motion154             int32_t getActionId() const {
155                 uint32_t index = (action & AMOTION_EVENT_ACTION_POINTER_INDEX_MASK)
156                         >> AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT;
157                 return pointers[index].properties.id;
158             }
159 
sizeInputMessage::Body::Motion160             inline size_t size() const {
161                 return sizeof(Motion) - sizeof(Pointer) * MAX_POINTERS
162                         + sizeof(Pointer) * pointerCount;
163             }
164         } motion;
165 
166         struct Finished {
167             bool handled;
168             uint8_t empty[7];
169             nsecs_t consumeTime; // The time when the event was consumed by the receiving end
170 
sizeInputMessage::Body::Finished171             inline size_t size() const { return sizeof(Finished); }
172         } finished;
173 
174         struct Focus {
175             int32_t eventId;
176             // The following 3 fields take up 4 bytes total
177             bool hasFocus;
178             bool inTouchMode;
179             uint8_t empty[2];
180 
sizeInputMessage::Body::Focus181             inline size_t size() const { return sizeof(Focus); }
182         } focus;
183 
184         struct Capture {
185             int32_t eventId;
186             bool pointerCaptureEnabled;
187             uint8_t empty[3];
188 
sizeInputMessage::Body::Capture189             inline size_t size() const { return sizeof(Capture); }
190         } capture;
191 
192         struct Drag {
193             int32_t eventId;
194             float x;
195             float y;
196             bool isExiting;
197             uint8_t empty[3];
198 
sizeInputMessage::Body::Drag199             inline size_t size() const { return sizeof(Drag); }
200         } drag;
201 
202         struct Timeline {
203             int32_t eventId;
204             uint32_t empty;
205             std::array<nsecs_t, GraphicsTimeline::SIZE> graphicsTimeline;
206 
sizeInputMessage::Body::Timeline207             inline size_t size() const { return sizeof(Timeline); }
208         } timeline;
209     } __attribute__((aligned(8))) body;
210 
211     bool isValid(size_t actualSize) const;
212     size_t size() const;
213     void getSanitizedCopy(InputMessage* msg) const;
214 };
215 
216 /*
217  * An input channel consists of a local unix domain socket used to send and receive
218  * input messages across processes.  Each channel has a descriptive name for debugging purposes.
219  *
220  * Each endpoint has its own InputChannel object that specifies its file descriptor.
221  *
222  * The input channel is closed when all references to it are released.
223  */
224 class InputChannel : public Parcelable {
225 public:
226     static std::unique_ptr<InputChannel> create(const std::string& name,
227                                                 android::base::unique_fd fd, sp<IBinder> token);
228     InputChannel() = default;
InputChannel(const InputChannel & other)229     InputChannel(const InputChannel& other)
230           : mName(other.mName), mFd(::dup(other.mFd)), mToken(other.mToken){};
231     InputChannel(const std::string name, android::base::unique_fd fd, sp<IBinder> token);
232     ~InputChannel() override;
233     /**
234      * Create a pair of input channels.
235      * The two returned input channels are equivalent, and are labeled as "server" and "client"
236      * for convenience. The two input channels share the same token.
237      *
238      * Return OK on success.
239      */
240     static status_t openInputChannelPair(const std::string& name,
241                                          std::unique_ptr<InputChannel>& outServerChannel,
242                                          std::unique_ptr<InputChannel>& outClientChannel);
243 
getName()244     inline std::string getName() const { return mName; }
getFd()245     inline const android::base::unique_fd& getFd() const { return mFd; }
getToken()246     inline sp<IBinder> getToken() const { return mToken; }
247 
248     /* Send a message to the other endpoint.
249      *
250      * If the channel is full then the message is guaranteed not to have been sent at all.
251      * Try again after the consumer has sent a finished signal indicating that it has
252      * consumed some of the pending messages from the channel.
253      *
254      * Return OK on success.
255      * Return WOULD_BLOCK if the channel is full.
256      * Return DEAD_OBJECT if the channel's peer has been closed.
257      * Other errors probably indicate that the channel is broken.
258      */
259     status_t sendMessage(const InputMessage* msg);
260 
261     /* Receive a message sent by the other endpoint.
262      *
263      * If there is no message present, try again after poll() indicates that the fd
264      * is readable.
265      *
266      * Return OK on success.
267      * Return WOULD_BLOCK if there is no message present.
268      * Return DEAD_OBJECT if the channel's peer has been closed.
269      * Other errors probably indicate that the channel is broken.
270      */
271     status_t receiveMessage(InputMessage* msg);
272 
273     /* Return a new object that has a duplicate of this channel's fd. */
274     std::unique_ptr<InputChannel> dup() const;
275 
276     void copyTo(InputChannel& outChannel) const;
277 
278     status_t readFromParcel(const android::Parcel* parcel) override;
279     status_t writeToParcel(android::Parcel* parcel) const override;
280 
281     /**
282      * The connection token is used to identify the input connection, i.e.
283      * the pair of input channels that were created simultaneously. Input channels
284      * are always created in pairs, and the token can be used to find the server-side
285      * input channel from the client-side input channel, and vice versa.
286      *
287      * Do not use connection token to check equality of a specific input channel object
288      * to another, because two different (client and server) input channels will share the
289      * same connection token.
290      *
291      * Return the token that identifies this connection.
292      */
293     sp<IBinder> getConnectionToken() const;
294 
295     bool operator==(const InputChannel& inputChannel) const {
296         struct stat lhs, rhs;
297         if (fstat(mFd.get(), &lhs) != 0) {
298             return false;
299         }
300         if (fstat(inputChannel.getFd(), &rhs) != 0) {
301             return false;
302         }
303         // If file descriptors are pointing to same inode they are duplicated fds.
304         return inputChannel.getName() == getName() && inputChannel.getConnectionToken() == mToken &&
305                 lhs.st_ino == rhs.st_ino;
306     }
307 
308 private:
309     base::unique_fd dupFd() const;
310 
311     std::string mName;
312     android::base::unique_fd mFd;
313 
314     sp<IBinder> mToken;
315 };
316 
317 /*
318  * Publishes input events to an input channel.
319  */
320 class InputPublisher {
321 public:
322     /* Creates a publisher associated with an input channel. */
323     explicit InputPublisher(const std::shared_ptr<InputChannel>& channel);
324 
325     /* Destroys the publisher and releases its input channel. */
326     ~InputPublisher();
327 
328     /* Gets the underlying input channel. */
getChannel()329     inline std::shared_ptr<InputChannel> getChannel() { return mChannel; }
330 
331     /* Publishes a key event to the input channel.
332      *
333      * Returns OK on success.
334      * Returns WOULD_BLOCK if the channel is full.
335      * Returns DEAD_OBJECT if the channel's peer has been closed.
336      * Returns BAD_VALUE if seq is 0.
337      * Other errors probably indicate that the channel is broken.
338      */
339     status_t publishKeyEvent(uint32_t seq, int32_t eventId, int32_t deviceId, int32_t source,
340                              int32_t displayId, std::array<uint8_t, 32> hmac, int32_t action,
341                              int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
342                              int32_t repeatCount, nsecs_t downTime, nsecs_t eventTime);
343 
344     /* Publishes a motion event to the input channel.
345      *
346      * Returns OK on success.
347      * Returns WOULD_BLOCK if the channel is full.
348      * Returns DEAD_OBJECT if the channel's peer has been closed.
349      * Returns BAD_VALUE if seq is 0 or if pointerCount is less than 1 or greater than MAX_POINTERS.
350      * Other errors probably indicate that the channel is broken.
351      */
352     status_t publishMotionEvent(uint32_t seq, int32_t eventId, int32_t deviceId, int32_t source,
353                                 int32_t displayId, std::array<uint8_t, 32> hmac, int32_t action,
354                                 int32_t actionButton, int32_t flags, int32_t edgeFlags,
355                                 int32_t metaState, int32_t buttonState,
356                                 MotionClassification classification, const ui::Transform& transform,
357                                 float xPrecision, float yPrecision, float xCursorPosition,
358                                 float yCursorPosition, int32_t displayWidth, int32_t displayHeight,
359                                 nsecs_t downTime, nsecs_t eventTime, uint32_t pointerCount,
360                                 const PointerProperties* pointerProperties,
361                                 const PointerCoords* pointerCoords);
362 
363     /* Publishes a focus event to the input channel.
364      *
365      * Returns OK on success.
366      * Returns WOULD_BLOCK if the channel is full.
367      * Returns DEAD_OBJECT if the channel's peer has been closed.
368      * Other errors probably indicate that the channel is broken.
369      */
370     status_t publishFocusEvent(uint32_t seq, int32_t eventId, bool hasFocus, bool inTouchMode);
371 
372     /* Publishes a capture event to the input channel.
373      *
374      * Returns OK on success.
375      * Returns WOULD_BLOCK if the channel is full.
376      * Returns DEAD_OBJECT if the channel's peer has been closed.
377      * Other errors probably indicate that the channel is broken.
378      */
379     status_t publishCaptureEvent(uint32_t seq, int32_t eventId, bool pointerCaptureEnabled);
380 
381     /* Publishes a drag event to the input channel.
382      *
383      * Returns OK on success.
384      * Returns WOULD_BLOCK if the channel is full.
385      * Returns DEAD_OBJECT if the channel's peer has been closed.
386      * Other errors probably indicate that the channel is broken.
387      */
388     status_t publishDragEvent(uint32_t seq, int32_t eventId, float x, float y, bool isExiting);
389 
390     struct Finished {
391         uint32_t seq;
392         bool handled;
393         nsecs_t consumeTime;
394     };
395 
396     struct Timeline {
397         int32_t inputEventId;
398         std::array<nsecs_t, GraphicsTimeline::SIZE> graphicsTimeline;
399     };
400 
401     typedef std::variant<Finished, Timeline> ConsumerResponse;
402     /* Receive a signal from the consumer in reply to the original dispatch signal.
403      * If a signal was received, returns a Finished or a Timeline object.
404      * The InputConsumer should return a Finished object for every InputMessage that it is sent
405      * to confirm that it has been processed and that the InputConsumer is responsive.
406      * If several InputMessages are sent to InputConsumer, it's possible to receive Finished
407      * events out of order for those messages.
408      *
409      * The Timeline object is returned whenever the receiving end has processed a graphical frame
410      * and is returning the timeline of the frame. Not all input events will cause a Timeline
411      * object to be returned, and there is not guarantee about when it will arrive.
412      *
413      * If an object of Finished is returned, the returned sequence number is never 0 unless the
414      * operation failed.
415      *
416      * Returned error codes:
417      *         OK on success.
418      *         WOULD_BLOCK if there is no signal present.
419      *         DEAD_OBJECT if the channel's peer has been closed.
420      *         Other errors probably indicate that the channel is broken.
421      */
422     android::base::Result<ConsumerResponse> receiveConsumerResponse();
423 
424 private:
425     std::shared_ptr<InputChannel> mChannel;
426 };
427 
428 /*
429  * Consumes input events from an input channel.
430  */
431 class InputConsumer {
432 public:
433     /* Creates a consumer associated with an input channel. */
434     explicit InputConsumer(const std::shared_ptr<InputChannel>& channel);
435 
436     /* Destroys the consumer and releases its input channel. */
437     ~InputConsumer();
438 
439     /* Gets the underlying input channel. */
getChannel()440     inline std::shared_ptr<InputChannel> getChannel() { return mChannel; }
441 
442     /* Consumes an input event from the input channel and copies its contents into
443      * an InputEvent object created using the specified factory.
444      *
445      * Tries to combine a series of move events into larger batches whenever possible.
446      *
447      * If consumeBatches is false, then defers consuming pending batched events if it
448      * is possible for additional samples to be added to them later.  Call hasPendingBatch()
449      * to determine whether a pending batch is available to be consumed.
450      *
451      * If consumeBatches is true, then events are still batched but they are consumed
452      * immediately as soon as the input channel is exhausted.
453      *
454      * The frameTime parameter specifies the time when the current display frame started
455      * rendering in the CLOCK_MONOTONIC time base, or -1 if unknown.
456      *
457      * The returned sequence number is never 0 unless the operation failed.
458      *
459      * Returns OK on success.
460      * Returns WOULD_BLOCK if there is no event present.
461      * Returns DEAD_OBJECT if the channel's peer has been closed.
462      * Returns NO_MEMORY if the event could not be created.
463      * Other errors probably indicate that the channel is broken.
464      */
465     status_t consume(InputEventFactoryInterface* factory, bool consumeBatches, nsecs_t frameTime,
466                      uint32_t* outSeq, InputEvent** outEvent);
467 
468     /* Sends a finished signal to the publisher to inform it that the message
469      * with the specified sequence number has finished being process and whether
470      * the message was handled by the consumer.
471      *
472      * Returns OK on success.
473      * Returns BAD_VALUE if seq is 0.
474      * Other errors probably indicate that the channel is broken.
475      */
476     status_t sendFinishedSignal(uint32_t seq, bool handled);
477 
478     status_t sendTimeline(int32_t inputEventId,
479                           std::array<nsecs_t, GraphicsTimeline::SIZE> timeline);
480 
481     /* Returns true if there is a deferred event waiting.
482      *
483      * Should be called after calling consume() to determine whether the consumer
484      * has a deferred event to be processed.  Deferred events are somewhat special in
485      * that they have already been removed from the input channel.  If the input channel
486      * becomes empty, the client may need to do extra work to ensure that it processes
487      * the deferred event despite the fact that the input channel's file descriptor
488      * is not readable.
489      *
490      * One option is simply to call consume() in a loop until it returns WOULD_BLOCK.
491      * This guarantees that all deferred events will be processed.
492      *
493      * Alternately, the caller can call hasDeferredEvent() to determine whether there is
494      * a deferred event waiting and then ensure that its event loop wakes up at least
495      * one more time to consume the deferred event.
496      */
497     bool hasDeferredEvent() const;
498 
499     /* Returns true if there is a pending batch.
500      *
501      * Should be called after calling consume() with consumeBatches == false to determine
502      * whether consume() should be called again later on with consumeBatches == true.
503      */
504     bool hasPendingBatch() const;
505 
506     /* Returns the source of first pending batch if exist.
507      *
508      * Should be called after calling consume() with consumeBatches == false to determine
509      * whether consume() should be called again later on with consumeBatches == true.
510      */
511     int32_t getPendingBatchSource() const;
512 
513     std::string dump() const;
514 
515 private:
516     // True if touch resampling is enabled.
517     const bool mResampleTouch;
518 
519     std::shared_ptr<InputChannel> mChannel;
520 
521     // The current input message.
522     InputMessage mMsg;
523 
524     // True if mMsg contains a valid input message that was deferred from the previous
525     // call to consume and that still needs to be handled.
526     bool mMsgDeferred;
527 
528     // Batched motion events per device and source.
529     struct Batch {
530         std::vector<InputMessage> samples;
531     };
532     std::vector<Batch> mBatches;
533 
534     // Touch state per device and source, only for sources of class pointer.
535     struct History {
536         nsecs_t eventTime;
537         BitSet32 idBits;
538         int32_t idToIndex[MAX_POINTER_ID + 1];
539         PointerCoords pointers[MAX_POINTERS];
540 
initializeFromHistory541         void initializeFrom(const InputMessage& msg) {
542             eventTime = msg.body.motion.eventTime;
543             idBits.clear();
544             for (uint32_t i = 0; i < msg.body.motion.pointerCount; i++) {
545                 uint32_t id = msg.body.motion.pointers[i].properties.id;
546                 idBits.markBit(id);
547                 idToIndex[id] = i;
548                 pointers[i].copyFrom(msg.body.motion.pointers[i].coords);
549             }
550         }
551 
initializeFromHistory552         void initializeFrom(const History& other) {
553             eventTime = other.eventTime;
554             idBits = other.idBits; // temporary copy
555             for (size_t i = 0; i < other.idBits.count(); i++) {
556                 uint32_t id = idBits.clearFirstMarkedBit();
557                 int32_t index = other.idToIndex[id];
558                 idToIndex[id] = index;
559                 pointers[index].copyFrom(other.pointers[index]);
560             }
561             idBits = other.idBits; // final copy
562         }
563 
getPointerByIdHistory564         const PointerCoords& getPointerById(uint32_t id) const {
565             return pointers[idToIndex[id]];
566         }
567 
hasPointerIdHistory568         bool hasPointerId(uint32_t id) const {
569             return idBits.hasBit(id);
570         }
571     };
572     struct TouchState {
573         int32_t deviceId;
574         int32_t source;
575         size_t historyCurrent;
576         size_t historySize;
577         History history[2];
578         History lastResample;
579 
initializeTouchState580         void initialize(int32_t deviceId, int32_t source) {
581             this->deviceId = deviceId;
582             this->source = source;
583             historyCurrent = 0;
584             historySize = 0;
585             lastResample.eventTime = 0;
586             lastResample.idBits.clear();
587         }
588 
addHistoryTouchState589         void addHistory(const InputMessage& msg) {
590             historyCurrent ^= 1;
591             if (historySize < 2) {
592                 historySize += 1;
593             }
594             history[historyCurrent].initializeFrom(msg);
595         }
596 
getHistoryTouchState597         const History* getHistory(size_t index) const {
598             return &history[(historyCurrent + index) & 1];
599         }
600 
recentCoordinatesAreIdenticalTouchState601         bool recentCoordinatesAreIdentical(uint32_t id) const {
602             // Return true if the two most recently received "raw" coordinates are identical
603             if (historySize < 2) {
604                 return false;
605             }
606             if (!getHistory(0)->hasPointerId(id) || !getHistory(1)->hasPointerId(id)) {
607                 return false;
608             }
609             float currentX = getHistory(0)->getPointerById(id).getX();
610             float currentY = getHistory(0)->getPointerById(id).getY();
611             float previousX = getHistory(1)->getPointerById(id).getX();
612             float previousY = getHistory(1)->getPointerById(id).getY();
613             if (currentX == previousX && currentY == previousY) {
614                 return true;
615             }
616             return false;
617         }
618     };
619     std::vector<TouchState> mTouchStates;
620 
621     // Chain of batched sequence numbers.  When multiple input messages are combined into
622     // a batch, we append a record here that associates the last sequence number in the
623     // batch with the previous one.  When the finished signal is sent, we traverse the
624     // chain to individually finish all input messages that were part of the batch.
625     struct SeqChain {
626         uint32_t seq;   // sequence number of batched input message
627         uint32_t chain; // sequence number of previous batched input message
628     };
629     std::vector<SeqChain> mSeqChains;
630 
631     // The time at which each event with the sequence number 'seq' was consumed.
632     // This data is provided in 'finishInputEvent' so that the receiving end can measure the latency
633     // This collection is populated when the event is received, and the entries are erased when the
634     // events are finished. It should not grow infinitely because if an event is not ack'd, ANR
635     // will be raised for that connection, and no further events will be posted to that channel.
636     std::unordered_map<uint32_t /*seq*/, nsecs_t /*consumeTime*/> mConsumeTimes;
637 
638     status_t consumeBatch(InputEventFactoryInterface* factory,
639             nsecs_t frameTime, uint32_t* outSeq, InputEvent** outEvent);
640     status_t consumeSamples(InputEventFactoryInterface* factory,
641             Batch& batch, size_t count, uint32_t* outSeq, InputEvent** outEvent);
642 
643     void updateTouchState(InputMessage& msg);
644     void resampleTouchState(nsecs_t frameTime, MotionEvent* event,
645             const InputMessage *next);
646 
647     ssize_t findBatch(int32_t deviceId, int32_t source) const;
648     ssize_t findTouchState(int32_t deviceId, int32_t source) const;
649 
650     nsecs_t getConsumeTime(uint32_t seq) const;
651     void popConsumeTime(uint32_t seq);
652     status_t sendUnchainedFinishedSignal(uint32_t seq, bool handled);
653 
654     static void rewriteMessage(TouchState& state, InputMessage& msg);
655     static void initializeKeyEvent(KeyEvent* event, const InputMessage* msg);
656     static void initializeMotionEvent(MotionEvent* event, const InputMessage* msg);
657     static void initializeFocusEvent(FocusEvent* event, const InputMessage* msg);
658     static void initializeCaptureEvent(CaptureEvent* event, const InputMessage* msg);
659     static void initializeDragEvent(DragEvent* event, const InputMessage* msg);
660     static void addSample(MotionEvent* event, const InputMessage* msg);
661     static bool canAddSample(const Batch& batch, const InputMessage* msg);
662     static ssize_t findSampleNoLaterThan(const Batch& batch, nsecs_t time);
663     static bool shouldResampleTool(int32_t toolType);
664 
665     static bool isTouchResamplingEnabled();
666 };
667 
668 } // namespace android
669 
670 #endif // _LIBINPUT_INPUT_TRANSPORT_H
671