• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006-2007 Universiteit Leiden
3  * Copyright 2008-2009 Katholieke Universiteit Leuven
4  * Copyright 2010      INRIA Saclay
5  *
6  * Use of this software is governed by the MIT license
7  *
8  * Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
9  * Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
10  * and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
11  * B-3001 Leuven, Belgium
12  * and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
13  * ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
14  */
15 
16 #include <isl_ctx_private.h>
17 #include <isl_map_private.h>
18 #include <isl/set.h>
19 #include <isl_seq.h>
20 #include <isl_morph.h>
21 #include <isl_factorization.h>
22 #include <isl_vertices_private.h>
23 #include <isl_polynomial_private.h>
24 #include <isl_options_private.h>
25 #include <isl_vec_private.h>
26 #include <isl_bernstein.h>
27 
28 struct bernstein_data {
29 	enum isl_fold type;
30 	isl_qpolynomial *poly;
31 	int check_tight;
32 
33 	isl_cell *cell;
34 
35 	isl_qpolynomial_fold *fold;
36 	isl_qpolynomial_fold *fold_tight;
37 	isl_pw_qpolynomial_fold *pwf;
38 	isl_pw_qpolynomial_fold *pwf_tight;
39 };
40 
vertex_is_integral(__isl_keep isl_basic_set * vertex)41 static isl_bool vertex_is_integral(__isl_keep isl_basic_set *vertex)
42 {
43 	isl_size nvar;
44 	isl_size nparam;
45 	int i;
46 
47 	nvar = isl_basic_set_dim(vertex, isl_dim_set);
48 	nparam = isl_basic_set_dim(vertex, isl_dim_param);
49 	if (nvar < 0 || nparam < 0)
50 		return isl_bool_error;
51 	for (i = 0; i < nvar; ++i) {
52 		int r = nvar - 1 - i;
53 		if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
54 		    !isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
55 			return isl_bool_false;
56 	}
57 
58 	return isl_bool_true;
59 }
60 
vertex_coordinate(__isl_keep isl_basic_set * vertex,int i,__isl_take isl_space * space)61 static __isl_give isl_qpolynomial *vertex_coordinate(
62 	__isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *space)
63 {
64 	isl_size nvar;
65 	isl_size nparam;
66 	isl_size total;
67 	int r;
68 	isl_int denom;
69 	isl_qpolynomial *v;
70 
71 	isl_int_init(denom);
72 
73 	nvar = isl_basic_set_dim(vertex, isl_dim_set);
74 	nparam = isl_basic_set_dim(vertex, isl_dim_param);
75 	total = isl_basic_set_dim(vertex, isl_dim_all);
76 	if (nvar < 0 || nparam < 0 || total < 0)
77 		goto error;
78 	r = nvar - 1 - i;
79 
80 	isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
81 	isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
82 
83 	if (isl_int_is_pos(denom))
84 		isl_seq_neg(vertex->eq[r], vertex->eq[r], 1 + total);
85 	else
86 		isl_int_neg(denom, denom);
87 
88 	v = isl_qpolynomial_from_affine(space, vertex->eq[r], denom);
89 	isl_int_clear(denom);
90 
91 	return v;
92 error:
93 	isl_space_free(space);
94 	isl_int_clear(denom);
95 	return NULL;
96 }
97 
98 /* Check whether the bound associated to the selection "k" is tight,
99  * which is the case if we select exactly one vertex (i.e., one of the
100  * exponents in "k" is exactly "d") and if that vertex
101  * is integral for all values of the parameters.
102  */
is_tight(int * k,int n,int d,isl_cell * cell)103 static isl_bool is_tight(int *k, int n, int d, isl_cell *cell)
104 {
105 	int i;
106 
107 	for (i = 0; i < n; ++i) {
108 		int v;
109 		if (!k[i])
110 			continue;
111 		if (k[i] != d)
112 			return isl_bool_false;
113 		v = cell->ids[n - 1 - i];
114 		return vertex_is_integral(cell->vertices->v[v].vertex);
115 	}
116 
117 	return isl_bool_false;
118 }
119 
add_fold(__isl_take isl_qpolynomial * b,__isl_keep isl_set * dom,int * k,int n,int d,struct bernstein_data * data)120 static isl_stat add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
121 	int *k, int n, int d, struct bernstein_data *data)
122 {
123 	isl_qpolynomial_fold *fold;
124 	isl_bool tight;
125 
126 	fold = isl_qpolynomial_fold_alloc(data->type, b);
127 
128 	tight = isl_bool_false;
129 	if (data->check_tight)
130 		tight = is_tight(k, n, d, data->cell);
131 	if (tight < 0)
132 		return isl_stat_error;
133 	if (tight)
134 		data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
135 							data->fold_tight, fold);
136 	else
137 		data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
138 							data->fold, fold);
139 	return isl_stat_ok;
140 }
141 
142 /* Extract the coefficients of the Bernstein base polynomials and store
143  * them in data->fold and data->fold_tight.
144  *
145  * In particular, the coefficient of each monomial
146  * of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
147  * multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
148  *
149  * c[i] contains the coefficient of the selected powers of the first i+1 vars.
150  * multinom[i] contains the partial multinomial coefficient.
151  */
extract_coefficients(isl_qpolynomial * poly,__isl_keep isl_set * dom,struct bernstein_data * data)152 static isl_stat extract_coefficients(isl_qpolynomial *poly,
153 	__isl_keep isl_set *dom, struct bernstein_data *data)
154 {
155 	int i;
156 	int d;
157 	isl_size n;
158 	isl_ctx *ctx;
159 	isl_qpolynomial **c = NULL;
160 	int *k = NULL;
161 	int *left = NULL;
162 	isl_vec *multinom = NULL;
163 
164 	n = isl_qpolynomial_dim(poly, isl_dim_in);
165 	if (n < 0)
166 		return isl_stat_error;
167 
168 	ctx = isl_qpolynomial_get_ctx(poly);
169 	d = isl_qpolynomial_degree(poly);
170 	isl_assert(ctx, n >= 2, return isl_stat_error);
171 
172 	c = isl_calloc_array(ctx, isl_qpolynomial *, n);
173 	k = isl_alloc_array(ctx, int, n);
174 	left = isl_alloc_array(ctx, int, n);
175 	multinom = isl_vec_alloc(ctx, n);
176 	if (!c || !k || !left || !multinom)
177 		goto error;
178 
179 	isl_int_set_si(multinom->el[0], 1);
180 	for (k[0] = d; k[0] >= 0; --k[0]) {
181 		int i = 1;
182 		isl_qpolynomial_free(c[0]);
183 		c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
184 		left[0] = d - k[0];
185 		k[1] = -1;
186 		isl_int_set(multinom->el[1], multinom->el[0]);
187 		while (i > 0) {
188 			if (i == n - 1) {
189 				int j;
190 				isl_space *space;
191 				isl_qpolynomial *b;
192 				isl_qpolynomial *f;
193 				for (j = 2; j <= left[i - 1]; ++j)
194 					isl_int_divexact_ui(multinom->el[i],
195 						multinom->el[i], j);
196 				b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
197 					n - 1 - i, left[i - 1]);
198 				b = isl_qpolynomial_project_domain_on_params(b);
199 				space = isl_qpolynomial_get_domain_space(b);
200 				f = isl_qpolynomial_rat_cst_on_domain(space,
201 					ctx->one, multinom->el[i]);
202 				b = isl_qpolynomial_mul(b, f);
203 				k[n - 1] = left[n - 2];
204 				if (add_fold(b, dom, k, n, d, data) < 0)
205 					goto error;
206 				--i;
207 				continue;
208 			}
209 			if (k[i] >= left[i - 1]) {
210 				--i;
211 				continue;
212 			}
213 			++k[i];
214 			if (k[i])
215 				isl_int_divexact_ui(multinom->el[i],
216 					multinom->el[i], k[i]);
217 			isl_qpolynomial_free(c[i]);
218 			c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
219 					n - 1 - i, k[i]);
220 			left[i] = left[i - 1] - k[i];
221 			k[i + 1] = -1;
222 			isl_int_set(multinom->el[i + 1], multinom->el[i]);
223 			++i;
224 		}
225 		isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
226 	}
227 
228 	for (i = 0; i < n; ++i)
229 		isl_qpolynomial_free(c[i]);
230 
231 	isl_vec_free(multinom);
232 	free(left);
233 	free(k);
234 	free(c);
235 	return isl_stat_ok;
236 error:
237 	isl_vec_free(multinom);
238 	free(left);
239 	free(k);
240 	if (c)
241 		for (i = 0; i < n; ++i)
242 			isl_qpolynomial_free(c[i]);
243 	free(c);
244 	return isl_stat_error;
245 }
246 
247 /* Perform bernstein expansion on the parametric vertices that are active
248  * on "cell".
249  *
250  * data->poly has been homogenized in the calling function.
251  *
252  * We plug in the barycentric coordinates for the set variables
253  *
254  *		\vec x = \sum_i \alpha_i v_i(\vec p)
255  *
256  * and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
257  * Next, we extract the coefficients of the Bernstein base polynomials.
258  */
bernstein_coefficients_cell(__isl_take isl_cell * cell,void * user)259 static isl_stat bernstein_coefficients_cell(__isl_take isl_cell *cell,
260 	void *user)
261 {
262 	int i, j;
263 	struct bernstein_data *data = (struct bernstein_data *)user;
264 	isl_space *space_param;
265 	isl_space *space_dst;
266 	isl_qpolynomial *poly = data->poly;
267 	isl_size n_in;
268 	unsigned nvar;
269 	int n_vertices;
270 	isl_qpolynomial **subs;
271 	isl_pw_qpolynomial_fold *pwf;
272 	isl_set *dom;
273 	isl_ctx *ctx;
274 
275 	n_in = isl_qpolynomial_dim(poly, isl_dim_in);
276 	if (n_in < 0)
277 		goto error;
278 
279 	nvar = n_in - 1;
280 	n_vertices = cell->n_vertices;
281 
282 	ctx = isl_qpolynomial_get_ctx(poly);
283 	if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
284 		return isl_cell_foreach_simplex(cell,
285 					    &bernstein_coefficients_cell, user);
286 
287 	subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
288 	if (!subs)
289 		goto error;
290 
291 	space_param = isl_basic_set_get_space(cell->dom);
292 	space_dst = isl_qpolynomial_get_domain_space(poly);
293 	space_dst = isl_space_add_dims(space_dst, isl_dim_set, n_vertices);
294 
295 	for (i = 0; i < 1 + nvar; ++i)
296 		subs[i] =
297 		    isl_qpolynomial_zero_on_domain(isl_space_copy(space_dst));
298 
299 	for (i = 0; i < n_vertices; ++i) {
300 		isl_qpolynomial *c;
301 		c = isl_qpolynomial_var_on_domain(isl_space_copy(space_dst),
302 					isl_dim_set, 1 + nvar + i);
303 		for (j = 0; j < nvar; ++j) {
304 			int k = cell->ids[i];
305 			isl_qpolynomial *v;
306 			v = vertex_coordinate(cell->vertices->v[k].vertex, j,
307 						isl_space_copy(space_param));
308 			v = isl_qpolynomial_add_dims(v, isl_dim_in,
309 							1 + nvar + n_vertices);
310 			v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
311 			subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
312 		}
313 		subs[0] = isl_qpolynomial_add(subs[0], c);
314 	}
315 	isl_space_free(space_dst);
316 
317 	poly = isl_qpolynomial_copy(poly);
318 
319 	poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
320 	poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
321 	poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
322 
323 	data->cell = cell;
324 	dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
325 	data->fold = isl_qpolynomial_fold_empty(data->type,
326 						isl_space_copy(space_param));
327 	data->fold_tight = isl_qpolynomial_fold_empty(data->type, space_param);
328 	if (extract_coefficients(poly, dom, data) < 0) {
329 		data->fold = isl_qpolynomial_fold_free(data->fold);
330 		data->fold_tight = isl_qpolynomial_fold_free(data->fold_tight);
331 	}
332 
333 	pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
334 					    data->fold);
335 	data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
336 	pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
337 	data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
338 
339 	isl_qpolynomial_free(poly);
340 	isl_cell_free(cell);
341 	for (i = 0; i < 1 + nvar; ++i)
342 		isl_qpolynomial_free(subs[i]);
343 	free(subs);
344 	return isl_stat_ok;
345 error:
346 	isl_cell_free(cell);
347 	return isl_stat_error;
348 }
349 
350 /* Base case of applying bernstein expansion.
351  *
352  * We compute the chamber decomposition of the parametric polytope "bset"
353  * and then perform bernstein expansion on the parametric vertices
354  * that are active on each chamber.
355  */
bernstein_coefficients_base(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct bernstein_data * data,isl_bool * tight)356 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
357 	__isl_take isl_basic_set *bset,
358 	__isl_take isl_qpolynomial *poly, struct bernstein_data *data,
359 	isl_bool *tight)
360 {
361 	isl_size nvar;
362 	isl_space *space;
363 	isl_pw_qpolynomial_fold *pwf;
364 	isl_vertices *vertices;
365 	isl_bool covers;
366 
367 	nvar = isl_basic_set_dim(bset, isl_dim_set);
368 	if (nvar < 0)
369 		bset = isl_basic_set_free(bset);
370 	if (nvar == 0) {
371 		isl_set *dom;
372 		isl_qpolynomial_fold *fold;
373 
374 		fold = isl_qpolynomial_fold_alloc(data->type, poly);
375 		dom = isl_set_from_basic_set(bset);
376 		if (tight)
377 			*tight = isl_bool_true;
378 		pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
379 		return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
380 	}
381 
382 	if (isl_qpolynomial_is_zero(poly)) {
383 		isl_set *dom;
384 		isl_qpolynomial_fold *fold;
385 		fold = isl_qpolynomial_fold_alloc(data->type, poly);
386 		dom = isl_set_from_basic_set(bset);
387 		pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, fold);
388 		if (tight)
389 			*tight = isl_bool_true;
390 		return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
391 	}
392 
393 	space = isl_basic_set_get_space(bset);
394 	space = isl_space_params(space);
395 	space = isl_space_from_domain(space);
396 	space = isl_space_add_dims(space, isl_dim_set, 1);
397 	data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
398 						data->type);
399 	data->pwf_tight = isl_pw_qpolynomial_fold_zero(space, data->type);
400 	data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
401 	vertices = isl_basic_set_compute_vertices(bset);
402 	if (isl_vertices_foreach_disjoint_cell(vertices,
403 					&bernstein_coefficients_cell, data) < 0)
404 		data->pwf = isl_pw_qpolynomial_fold_free(data->pwf);
405 	isl_vertices_free(vertices);
406 	isl_qpolynomial_free(data->poly);
407 
408 	isl_basic_set_free(bset);
409 	isl_qpolynomial_free(poly);
410 
411 	covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
412 	if (covers < 0)
413 		goto error;
414 
415 	if (tight)
416 		*tight = covers;
417 
418 	if (covers) {
419 		isl_pw_qpolynomial_fold_free(data->pwf);
420 		return data->pwf_tight;
421 	}
422 
423 	data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
424 
425 	return data->pwf;
426 error:
427 	isl_pw_qpolynomial_fold_free(data->pwf_tight);
428 	isl_pw_qpolynomial_fold_free(data->pwf);
429 	return NULL;
430 }
431 
432 /* Apply bernstein expansion recursively by working in on len[i]
433  * set variables at a time, with i ranging from n_group - 1 to 0.
434  */
bernstein_coefficients_recursive(__isl_take isl_pw_qpolynomial * pwqp,int n_group,int * len,struct bernstein_data * data,isl_bool * tight)435 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
436 	__isl_take isl_pw_qpolynomial *pwqp,
437 	int n_group, int *len, struct bernstein_data *data, isl_bool *tight)
438 {
439 	int i;
440 	isl_size nparam;
441 	isl_size nvar;
442 	isl_pw_qpolynomial_fold *pwf;
443 
444 	nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
445 	nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);
446 	if (nparam < 0 || nvar < 0)
447 		goto error;
448 
449 	pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
450 					isl_dim_in, 0, nvar - len[n_group - 1]);
451 	pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
452 
453 	for (i = n_group - 2; i >= 0; --i) {
454 		nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
455 		if (nparam < 0)
456 			return isl_pw_qpolynomial_fold_free(pwf);
457 		pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
458 				isl_dim_param, nparam - len[i], len[i]);
459 		if (tight && !*tight)
460 			tight = NULL;
461 		pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
462 	}
463 
464 	return pwf;
465 error:
466 	isl_pw_qpolynomial_free(pwqp);
467 	return NULL;
468 }
469 
bernstein_coefficients_factors(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct bernstein_data * data,isl_bool * tight)470 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
471 	__isl_take isl_basic_set *bset,
472 	__isl_take isl_qpolynomial *poly, struct bernstein_data *data,
473 	isl_bool *tight)
474 {
475 	isl_factorizer *f;
476 	isl_set *set;
477 	isl_pw_qpolynomial *pwqp;
478 	isl_pw_qpolynomial_fold *pwf;
479 
480 	f = isl_basic_set_factorizer(bset);
481 	if (!f)
482 		goto error;
483 	if (f->n_group == 0) {
484 		isl_factorizer_free(f);
485 		return  bernstein_coefficients_base(bset, poly, data, tight);
486 	}
487 
488 	set = isl_set_from_basic_set(bset);
489 	pwqp = isl_pw_qpolynomial_alloc(set, poly);
490 	pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
491 
492 	pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
493 						tight);
494 
495 	isl_factorizer_free(f);
496 
497 	return pwf;
498 error:
499 	isl_basic_set_free(bset);
500 	isl_qpolynomial_free(poly);
501 	return NULL;
502 }
503 
bernstein_coefficients_full_recursive(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct bernstein_data * data,isl_bool * tight)504 static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
505 	__isl_take isl_basic_set *bset,
506 	__isl_take isl_qpolynomial *poly, struct bernstein_data *data,
507 	isl_bool *tight)
508 {
509 	int i;
510 	int *len;
511 	isl_size nvar;
512 	isl_pw_qpolynomial_fold *pwf;
513 	isl_set *set;
514 	isl_pw_qpolynomial *pwqp;
515 
516 	nvar = isl_basic_set_dim(bset, isl_dim_set);
517 	if (nvar < 0 || !poly)
518 		goto error;
519 
520 	len = isl_alloc_array(bset->ctx, int, nvar);
521 	if (nvar && !len)
522 		goto error;
523 
524 	for (i = 0; i < nvar; ++i)
525 		len[i] = 1;
526 
527 	set = isl_set_from_basic_set(bset);
528 	pwqp = isl_pw_qpolynomial_alloc(set, poly);
529 
530 	pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
531 
532 	free(len);
533 
534 	return pwf;
535 error:
536 	isl_basic_set_free(bset);
537 	isl_qpolynomial_free(poly);
538 	return NULL;
539 }
540 
541 /* Compute a bound on the polynomial defined over the parametric polytope
542  * using bernstein expansion and store the result
543  * in bound->pwf and bound->pwf_tight.
544  *
545  * If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
546  * the polytope can be factorized and apply bernstein expansion recursively
547  * on the factors.
548  * If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
549  * bernstein expansion recursively on each dimension.
550  * Otherwise, we apply bernstein expansion on the entire polytope.
551  */
isl_qpolynomial_bound_on_domain_bernstein(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,struct isl_bound * bound)552 isl_stat isl_qpolynomial_bound_on_domain_bernstein(
553 	__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
554 	struct isl_bound *bound)
555 {
556 	struct bernstein_data data;
557 	isl_pw_qpolynomial_fold *pwf;
558 	isl_size nvar;
559 	isl_bool tight = isl_bool_false;
560 	isl_bool *tp = bound->check_tight ? &tight : NULL;
561 
562 	nvar = isl_basic_set_dim(bset, isl_dim_set);
563 	if (nvar < 0 || !poly)
564 		goto error;
565 
566 	data.type = bound->type;
567 	data.check_tight = bound->check_tight;
568 
569 	if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
570 		pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
571 	else if (nvar > 1 &&
572 	    (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
573 		pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
574 	else
575 		pwf = bernstein_coefficients_base(bset, poly, &data, tp);
576 
577 	if (tight)
578 		bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
579 	else
580 		bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
581 
582 	return isl_stat_ok;
583 error:
584 	isl_basic_set_free(bset);
585 	isl_qpolynomial_free(poly);
586 	return isl_stat_error;
587 }
588