• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jquant2.c
3  *
4  * This file was part of the Independent JPEG Group's software:
5  * Copyright (C) 1991-1996, Thomas G. Lane.
6  * libjpeg-turbo Modifications:
7  * Copyright (C) 2009, 2014-2015, 2020, D. R. Commander.
8  * For conditions of distribution and use, see the accompanying README.ijg
9  * file.
10  *
11  * This file contains 2-pass color quantization (color mapping) routines.
12  * These routines provide selection of a custom color map for an image,
13  * followed by mapping of the image to that color map, with optional
14  * Floyd-Steinberg dithering.
15  * It is also possible to use just the second pass to map to an arbitrary
16  * externally-given color map.
17  *
18  * Note: ordered dithering is not supported, since there isn't any fast
19  * way to compute intercolor distances; it's unclear that ordered dither's
20  * fundamental assumptions even hold with an irregularly spaced color map.
21  */
22 
23 #define JPEG_INTERNALS
24 #include "jinclude.h"
25 #include "jpeglib.h"
26 
27 #ifdef QUANT_2PASS_SUPPORTED
28 
29 
30 /*
31  * This module implements the well-known Heckbert paradigm for color
32  * quantization.  Most of the ideas used here can be traced back to
33  * Heckbert's seminal paper
34  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
35  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
36  *
37  * In the first pass over the image, we accumulate a histogram showing the
38  * usage count of each possible color.  To keep the histogram to a reasonable
39  * size, we reduce the precision of the input; typical practice is to retain
40  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
41  * in the same histogram cell.
42  *
43  * Next, the color-selection step begins with a box representing the whole
44  * color space, and repeatedly splits the "largest" remaining box until we
45  * have as many boxes as desired colors.  Then the mean color in each
46  * remaining box becomes one of the possible output colors.
47  *
48  * The second pass over the image maps each input pixel to the closest output
49  * color (optionally after applying a Floyd-Steinberg dithering correction).
50  * This mapping is logically trivial, but making it go fast enough requires
51  * considerable care.
52  *
53  * Heckbert-style quantizers vary a good deal in their policies for choosing
54  * the "largest" box and deciding where to cut it.  The particular policies
55  * used here have proved out well in experimental comparisons, but better ones
56  * may yet be found.
57  *
58  * In earlier versions of the IJG code, this module quantized in YCbCr color
59  * space, processing the raw upsampled data without a color conversion step.
60  * This allowed the color conversion math to be done only once per colormap
61  * entry, not once per pixel.  However, that optimization precluded other
62  * useful optimizations (such as merging color conversion with upsampling)
63  * and it also interfered with desired capabilities such as quantizing to an
64  * externally-supplied colormap.  We have therefore abandoned that approach.
65  * The present code works in the post-conversion color space, typically RGB.
66  *
67  * To improve the visual quality of the results, we actually work in scaled
68  * RGB space, giving G distances more weight than R, and R in turn more than
69  * B.  To do everything in integer math, we must use integer scale factors.
70  * The 2/3/1 scale factors used here correspond loosely to the relative
71  * weights of the colors in the NTSC grayscale equation.
72  * If you want to use this code to quantize a non-RGB color space, you'll
73  * probably need to change these scale factors.
74  */
75 
76 #define R_SCALE  2              /* scale R distances by this much */
77 #define G_SCALE  3              /* scale G distances by this much */
78 #define B_SCALE  1              /* and B by this much */
79 
80 static const int c_scales[3] = { R_SCALE, G_SCALE, B_SCALE };
81 #define C0_SCALE  c_scales[rgb_red[cinfo->out_color_space]]
82 #define C1_SCALE  c_scales[rgb_green[cinfo->out_color_space]]
83 #define C2_SCALE  c_scales[rgb_blue[cinfo->out_color_space]]
84 
85 /*
86  * First we have the histogram data structure and routines for creating it.
87  *
88  * The number of bits of precision can be adjusted by changing these symbols.
89  * We recommend keeping 6 bits for G and 5 each for R and B.
90  * If you have plenty of memory and cycles, 6 bits all around gives marginally
91  * better results; if you are short of memory, 5 bits all around will save
92  * some space but degrade the results.
93  * To maintain a fully accurate histogram, we'd need to allocate a "long"
94  * (preferably unsigned long) for each cell.  In practice this is overkill;
95  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
96  * and clamping those that do overflow to the maximum value will give close-
97  * enough results.  This reduces the recommended histogram size from 256Kb
98  * to 128Kb, which is a useful savings on PC-class machines.
99  * (In the second pass the histogram space is re-used for pixel mapping data;
100  * in that capacity, each cell must be able to store zero to the number of
101  * desired colors.  16 bits/cell is plenty for that too.)
102  * Since the JPEG code is intended to run in small memory model on 80x86
103  * machines, we can't just allocate the histogram in one chunk.  Instead
104  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
105  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
106  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.
107  */
108 
109 #define MAXNUMCOLORS  (MAXJSAMPLE + 1) /* maximum size of colormap */
110 
111 /* These will do the right thing for either R,G,B or B,G,R color order,
112  * but you may not like the results for other color orders.
113  */
114 #define HIST_C0_BITS  5         /* bits of precision in R/B histogram */
115 #define HIST_C1_BITS  6         /* bits of precision in G histogram */
116 #define HIST_C2_BITS  5         /* bits of precision in B/R histogram */
117 
118 /* Number of elements along histogram axes. */
119 #define HIST_C0_ELEMS  (1 << HIST_C0_BITS)
120 #define HIST_C1_ELEMS  (1 << HIST_C1_BITS)
121 #define HIST_C2_ELEMS  (1 << HIST_C2_BITS)
122 
123 /* These are the amounts to shift an input value to get a histogram index. */
124 #define C0_SHIFT  (BITS_IN_JSAMPLE - HIST_C0_BITS)
125 #define C1_SHIFT  (BITS_IN_JSAMPLE - HIST_C1_BITS)
126 #define C2_SHIFT  (BITS_IN_JSAMPLE - HIST_C2_BITS)
127 
128 
129 typedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
130 
131 typedef histcell *histptr;      /* for pointers to histogram cells */
132 
133 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
134 typedef hist1d *hist2d;         /* type for the 2nd-level pointers */
135 typedef hist2d *hist3d;         /* type for top-level pointer */
136 
137 
138 /* Declarations for Floyd-Steinberg dithering.
139  *
140  * Errors are accumulated into the array fserrors[], at a resolution of
141  * 1/16th of a pixel count.  The error at a given pixel is propagated
142  * to its not-yet-processed neighbors using the standard F-S fractions,
143  *              ...     (here)  7/16
144  *              3/16    5/16    1/16
145  * We work left-to-right on even rows, right-to-left on odd rows.
146  *
147  * We can get away with a single array (holding one row's worth of errors)
148  * by using it to store the current row's errors at pixel columns not yet
149  * processed, but the next row's errors at columns already processed.  We
150  * need only a few extra variables to hold the errors immediately around the
151  * current column.  (If we are lucky, those variables are in registers, but
152  * even if not, they're probably cheaper to access than array elements are.)
153  *
154  * The fserrors[] array has (#columns + 2) entries; the extra entry at
155  * each end saves us from special-casing the first and last pixels.
156  * Each entry is three values long, one value for each color component.
157  */
158 
159 #if BITS_IN_JSAMPLE == 8
160 typedef INT16 FSERROR;          /* 16 bits should be enough */
161 typedef int LOCFSERROR;         /* use 'int' for calculation temps */
162 #else
163 typedef JLONG FSERROR;          /* may need more than 16 bits */
164 typedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
165 #endif
166 
167 typedef FSERROR *FSERRPTR;      /* pointer to error array */
168 
169 
170 /* Private subobject */
171 
172 typedef struct {
173   struct jpeg_color_quantizer pub; /* public fields */
174 
175   /* Space for the eventually created colormap is stashed here */
176   JSAMPARRAY sv_colormap;       /* colormap allocated at init time */
177   int desired;                  /* desired # of colors = size of colormap */
178 
179   /* Variables for accumulating image statistics */
180   hist3d histogram;             /* pointer to the histogram */
181 
182   boolean needs_zeroed;         /* TRUE if next pass must zero histogram */
183 
184   /* Variables for Floyd-Steinberg dithering */
185   FSERRPTR fserrors;            /* accumulated errors */
186   boolean on_odd_row;           /* flag to remember which row we are on */
187   int *error_limiter;           /* table for clamping the applied error */
188 } my_cquantizer;
189 
190 typedef my_cquantizer *my_cquantize_ptr;
191 
192 
193 /*
194  * Prescan some rows of pixels.
195  * In this module the prescan simply updates the histogram, which has been
196  * initialized to zeroes by start_pass.
197  * An output_buf parameter is required by the method signature, but no data
198  * is actually output (in fact the buffer controller is probably passing a
199  * NULL pointer).
200  */
201 
202 METHODDEF(void)
prescan_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)203 prescan_quantize(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
204                  JSAMPARRAY output_buf, int num_rows)
205 {
206   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
207   register JSAMPROW ptr;
208   register histptr histp;
209   register hist3d histogram = cquantize->histogram;
210   int row;
211   JDIMENSION col;
212   JDIMENSION width = cinfo->output_width;
213 
214   for (row = 0; row < num_rows; row++) {
215     ptr = input_buf[row];
216     for (col = width; col > 0; col--) {
217       /* get pixel value and index into the histogram */
218       histp = &histogram[ptr[0] >> C0_SHIFT]
219                         [ptr[1] >> C1_SHIFT]
220                         [ptr[2] >> C2_SHIFT];
221       /* increment, check for overflow and undo increment if so. */
222       if (++(*histp) <= 0)
223         (*histp)--;
224       ptr += 3;
225     }
226   }
227 }
228 
229 
230 /*
231  * Next we have the really interesting routines: selection of a colormap
232  * given the completed histogram.
233  * These routines work with a list of "boxes", each representing a rectangular
234  * subset of the input color space (to histogram precision).
235  */
236 
237 typedef struct {
238   /* The bounds of the box (inclusive); expressed as histogram indexes */
239   int c0min, c0max;
240   int c1min, c1max;
241   int c2min, c2max;
242   /* The volume (actually 2-norm) of the box */
243   JLONG volume;
244   /* The number of nonzero histogram cells within this box */
245   long colorcount;
246 } box;
247 
248 typedef box *boxptr;
249 
250 
251 LOCAL(boxptr)
find_biggest_color_pop(boxptr boxlist,int numboxes)252 find_biggest_color_pop(boxptr boxlist, int numboxes)
253 /* Find the splittable box with the largest color population */
254 /* Returns NULL if no splittable boxes remain */
255 {
256   register boxptr boxp;
257   register int i;
258   register long maxc = 0;
259   boxptr which = NULL;
260 
261   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
262     if (boxp->colorcount > maxc && boxp->volume > 0) {
263       which = boxp;
264       maxc = boxp->colorcount;
265     }
266   }
267   return which;
268 }
269 
270 
271 LOCAL(boxptr)
find_biggest_volume(boxptr boxlist,int numboxes)272 find_biggest_volume(boxptr boxlist, int numboxes)
273 /* Find the splittable box with the largest (scaled) volume */
274 /* Returns NULL if no splittable boxes remain */
275 {
276   register boxptr boxp;
277   register int i;
278   register JLONG maxv = 0;
279   boxptr which = NULL;
280 
281   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
282     if (boxp->volume > maxv) {
283       which = boxp;
284       maxv = boxp->volume;
285     }
286   }
287   return which;
288 }
289 
290 
291 LOCAL(void)
update_box(j_decompress_ptr cinfo,boxptr boxp)292 update_box(j_decompress_ptr cinfo, boxptr boxp)
293 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
294 /* and recompute its volume and population */
295 {
296   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
297   hist3d histogram = cquantize->histogram;
298   histptr histp;
299   int c0, c1, c2;
300   int c0min, c0max, c1min, c1max, c2min, c2max;
301   JLONG dist0, dist1, dist2;
302   long ccount;
303 
304   c0min = boxp->c0min;  c0max = boxp->c0max;
305   c1min = boxp->c1min;  c1max = boxp->c1max;
306   c2min = boxp->c2min;  c2max = boxp->c2max;
307 
308   if (c0max > c0min)
309     for (c0 = c0min; c0 <= c0max; c0++)
310       for (c1 = c1min; c1 <= c1max; c1++) {
311         histp = &histogram[c0][c1][c2min];
312         for (c2 = c2min; c2 <= c2max; c2++)
313           if (*histp++ != 0) {
314             boxp->c0min = c0min = c0;
315             goto have_c0min;
316           }
317       }
318 have_c0min:
319   if (c0max > c0min)
320     for (c0 = c0max; c0 >= c0min; c0--)
321       for (c1 = c1min; c1 <= c1max; c1++) {
322         histp = &histogram[c0][c1][c2min];
323         for (c2 = c2min; c2 <= c2max; c2++)
324           if (*histp++ != 0) {
325             boxp->c0max = c0max = c0;
326             goto have_c0max;
327           }
328       }
329 have_c0max:
330   if (c1max > c1min)
331     for (c1 = c1min; c1 <= c1max; c1++)
332       for (c0 = c0min; c0 <= c0max; c0++) {
333         histp = &histogram[c0][c1][c2min];
334         for (c2 = c2min; c2 <= c2max; c2++)
335           if (*histp++ != 0) {
336             boxp->c1min = c1min = c1;
337             goto have_c1min;
338           }
339       }
340 have_c1min:
341   if (c1max > c1min)
342     for (c1 = c1max; c1 >= c1min; c1--)
343       for (c0 = c0min; c0 <= c0max; c0++) {
344         histp = &histogram[c0][c1][c2min];
345         for (c2 = c2min; c2 <= c2max; c2++)
346           if (*histp++ != 0) {
347             boxp->c1max = c1max = c1;
348             goto have_c1max;
349           }
350       }
351 have_c1max:
352   if (c2max > c2min)
353     for (c2 = c2min; c2 <= c2max; c2++)
354       for (c0 = c0min; c0 <= c0max; c0++) {
355         histp = &histogram[c0][c1min][c2];
356         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
357           if (*histp != 0) {
358             boxp->c2min = c2min = c2;
359             goto have_c2min;
360           }
361       }
362 have_c2min:
363   if (c2max > c2min)
364     for (c2 = c2max; c2 >= c2min; c2--)
365       for (c0 = c0min; c0 <= c0max; c0++) {
366         histp = &histogram[c0][c1min][c2];
367         for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
368           if (*histp != 0) {
369             boxp->c2max = c2max = c2;
370             goto have_c2max;
371           }
372       }
373 have_c2max:
374 
375   /* Update box volume.
376    * We use 2-norm rather than real volume here; this biases the method
377    * against making long narrow boxes, and it has the side benefit that
378    * a box is splittable iff norm > 0.
379    * Since the differences are expressed in histogram-cell units,
380    * we have to shift back to JSAMPLE units to get consistent distances;
381    * after which, we scale according to the selected distance scale factors.
382    */
383   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
384   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
385   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
386   boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
387 
388   /* Now scan remaining volume of box and compute population */
389   ccount = 0;
390   for (c0 = c0min; c0 <= c0max; c0++)
391     for (c1 = c1min; c1 <= c1max; c1++) {
392       histp = &histogram[c0][c1][c2min];
393       for (c2 = c2min; c2 <= c2max; c2++, histp++)
394         if (*histp != 0) {
395           ccount++;
396         }
397     }
398   boxp->colorcount = ccount;
399 }
400 
401 
402 LOCAL(int)
median_cut(j_decompress_ptr cinfo,boxptr boxlist,int numboxes,int desired_colors)403 median_cut(j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
404            int desired_colors)
405 /* Repeatedly select and split the largest box until we have enough boxes */
406 {
407   int n, lb;
408   int c0, c1, c2, cmax;
409   register boxptr b1, b2;
410 
411   while (numboxes < desired_colors) {
412     /* Select box to split.
413      * Current algorithm: by population for first half, then by volume.
414      */
415     if (numboxes * 2 <= desired_colors) {
416       b1 = find_biggest_color_pop(boxlist, numboxes);
417     } else {
418       b1 = find_biggest_volume(boxlist, numboxes);
419     }
420     if (b1 == NULL)             /* no splittable boxes left! */
421       break;
422     b2 = &boxlist[numboxes];    /* where new box will go */
423     /* Copy the color bounds to the new box. */
424     b2->c0max = b1->c0max;  b2->c1max = b1->c1max;  b2->c2max = b1->c2max;
425     b2->c0min = b1->c0min;  b2->c1min = b1->c1min;  b2->c2min = b1->c2min;
426     /* Choose which axis to split the box on.
427      * Current algorithm: longest scaled axis.
428      * See notes in update_box about scaling distances.
429      */
430     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
431     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
432     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
433     /* We want to break any ties in favor of green, then red, blue last.
434      * This code does the right thing for R,G,B or B,G,R color orders only.
435      */
436     if (rgb_red[cinfo->out_color_space] == 0) {
437       cmax = c1;  n = 1;
438       if (c0 > cmax) { cmax = c0;  n = 0; }
439       if (c2 > cmax) { n = 2; }
440     } else {
441       cmax = c1;  n = 1;
442       if (c2 > cmax) { cmax = c2;  n = 2; }
443       if (c0 > cmax) { n = 0; }
444     }
445     /* Choose split point along selected axis, and update box bounds.
446      * Current algorithm: split at halfway point.
447      * (Since the box has been shrunk to minimum volume,
448      * any split will produce two nonempty subboxes.)
449      * Note that lb value is max for lower box, so must be < old max.
450      */
451     switch (n) {
452     case 0:
453       lb = (b1->c0max + b1->c0min) / 2;
454       b1->c0max = lb;
455       b2->c0min = lb + 1;
456       break;
457     case 1:
458       lb = (b1->c1max + b1->c1min) / 2;
459       b1->c1max = lb;
460       b2->c1min = lb + 1;
461       break;
462     case 2:
463       lb = (b1->c2max + b1->c2min) / 2;
464       b1->c2max = lb;
465       b2->c2min = lb + 1;
466       break;
467     }
468     /* Update stats for boxes */
469     update_box(cinfo, b1);
470     update_box(cinfo, b2);
471     numboxes++;
472   }
473   return numboxes;
474 }
475 
476 
477 LOCAL(void)
compute_color(j_decompress_ptr cinfo,boxptr boxp,int icolor)478 compute_color(j_decompress_ptr cinfo, boxptr boxp, int icolor)
479 /* Compute representative color for a box, put it in colormap[icolor] */
480 {
481   /* Current algorithm: mean weighted by pixels (not colors) */
482   /* Note it is important to get the rounding correct! */
483   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
484   hist3d histogram = cquantize->histogram;
485   histptr histp;
486   int c0, c1, c2;
487   int c0min, c0max, c1min, c1max, c2min, c2max;
488   long count;
489   long total = 0;
490   long c0total = 0;
491   long c1total = 0;
492   long c2total = 0;
493 
494   c0min = boxp->c0min;  c0max = boxp->c0max;
495   c1min = boxp->c1min;  c1max = boxp->c1max;
496   c2min = boxp->c2min;  c2max = boxp->c2max;
497 
498   for (c0 = c0min; c0 <= c0max; c0++)
499     for (c1 = c1min; c1 <= c1max; c1++) {
500       histp = &histogram[c0][c1][c2min];
501       for (c2 = c2min; c2 <= c2max; c2++) {
502         if ((count = *histp++) != 0) {
503           total += count;
504           c0total += ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count;
505           c1total += ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count;
506           c2total += ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count;
507         }
508       }
509     }
510 
511   cinfo->colormap[0][icolor] = (JSAMPLE)((c0total + (total >> 1)) / total);
512   cinfo->colormap[1][icolor] = (JSAMPLE)((c1total + (total >> 1)) / total);
513   cinfo->colormap[2][icolor] = (JSAMPLE)((c2total + (total >> 1)) / total);
514 }
515 
516 
517 LOCAL(void)
select_colors(j_decompress_ptr cinfo,int desired_colors)518 select_colors(j_decompress_ptr cinfo, int desired_colors)
519 /* Master routine for color selection */
520 {
521   boxptr boxlist;
522   int numboxes;
523   int i;
524 
525   /* Allocate workspace for box list */
526   boxlist = (boxptr)(*cinfo->mem->alloc_small)
527     ((j_common_ptr)cinfo, JPOOL_IMAGE, desired_colors * sizeof(box));
528   /* Initialize one box containing whole space */
529   numboxes = 1;
530   boxlist[0].c0min = 0;
531   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
532   boxlist[0].c1min = 0;
533   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
534   boxlist[0].c2min = 0;
535   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
536   /* Shrink it to actually-used volume and set its statistics */
537   update_box(cinfo, &boxlist[0]);
538   /* Perform median-cut to produce final box list */
539   numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
540   /* Compute the representative color for each box, fill colormap */
541   for (i = 0; i < numboxes; i++)
542     compute_color(cinfo, &boxlist[i], i);
543   cinfo->actual_number_of_colors = numboxes;
544   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
545 }
546 
547 
548 /*
549  * These routines are concerned with the time-critical task of mapping input
550  * colors to the nearest color in the selected colormap.
551  *
552  * We re-use the histogram space as an "inverse color map", essentially a
553  * cache for the results of nearest-color searches.  All colors within a
554  * histogram cell will be mapped to the same colormap entry, namely the one
555  * closest to the cell's center.  This may not be quite the closest entry to
556  * the actual input color, but it's almost as good.  A zero in the cache
557  * indicates we haven't found the nearest color for that cell yet; the array
558  * is cleared to zeroes before starting the mapping pass.  When we find the
559  * nearest color for a cell, its colormap index plus one is recorded in the
560  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
561  * when they need to use an unfilled entry in the cache.
562  *
563  * Our method of efficiently finding nearest colors is based on the "locally
564  * sorted search" idea described by Heckbert and on the incremental distance
565  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
566  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
567  * the distances from a given colormap entry to each cell of the histogram can
568  * be computed quickly using an incremental method: the differences between
569  * distances to adjacent cells themselves differ by a constant.  This allows a
570  * fairly fast implementation of the "brute force" approach of computing the
571  * distance from every colormap entry to every histogram cell.  Unfortunately,
572  * it needs a work array to hold the best-distance-so-far for each histogram
573  * cell (because the inner loop has to be over cells, not colormap entries).
574  * The work array elements have to be JLONGs, so the work array would need
575  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
576  *
577  * To get around these problems, we apply Thomas' method to compute the
578  * nearest colors for only the cells within a small subbox of the histogram.
579  * The work array need be only as big as the subbox, so the memory usage
580  * problem is solved.  Furthermore, we need not fill subboxes that are never
581  * referenced in pass2; many images use only part of the color gamut, so a
582  * fair amount of work is saved.  An additional advantage of this
583  * approach is that we can apply Heckbert's locality criterion to quickly
584  * eliminate colormap entries that are far away from the subbox; typically
585  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
586  * and we need not compute their distances to individual cells in the subbox.
587  * The speed of this approach is heavily influenced by the subbox size: too
588  * small means too much overhead, too big loses because Heckbert's criterion
589  * can't eliminate as many colormap entries.  Empirically the best subbox
590  * size seems to be about 1/512th of the histogram (1/8th in each direction).
591  *
592  * Thomas' article also describes a refined method which is asymptotically
593  * faster than the brute-force method, but it is also far more complex and
594  * cannot efficiently be applied to small subboxes.  It is therefore not
595  * useful for programs intended to be portable to DOS machines.  On machines
596  * with plenty of memory, filling the whole histogram in one shot with Thomas'
597  * refined method might be faster than the present code --- but then again,
598  * it might not be any faster, and it's certainly more complicated.
599  */
600 
601 
602 /* log2(histogram cells in update box) for each axis; this can be adjusted */
603 #define BOX_C0_LOG  (HIST_C0_BITS - 3)
604 #define BOX_C1_LOG  (HIST_C1_BITS - 3)
605 #define BOX_C2_LOG  (HIST_C2_BITS - 3)
606 
607 #define BOX_C0_ELEMS  (1 << BOX_C0_LOG) /* # of hist cells in update box */
608 #define BOX_C1_ELEMS  (1 << BOX_C1_LOG)
609 #define BOX_C2_ELEMS  (1 << BOX_C2_LOG)
610 
611 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
612 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
613 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
614 
615 
616 /*
617  * The next three routines implement inverse colormap filling.  They could
618  * all be folded into one big routine, but splitting them up this way saves
619  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
620  * and may allow some compilers to produce better code by registerizing more
621  * inner-loop variables.
622  */
623 
624 LOCAL(int)
find_nearby_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,JSAMPLE colorlist[])625 find_nearby_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
626                    JSAMPLE colorlist[])
627 /* Locate the colormap entries close enough to an update box to be candidates
628  * for the nearest entry to some cell(s) in the update box.  The update box
629  * is specified by the center coordinates of its first cell.  The number of
630  * candidate colormap entries is returned, and their colormap indexes are
631  * placed in colorlist[].
632  * This routine uses Heckbert's "locally sorted search" criterion to select
633  * the colors that need further consideration.
634  */
635 {
636   int numcolors = cinfo->actual_number_of_colors;
637   int maxc0, maxc1, maxc2;
638   int centerc0, centerc1, centerc2;
639   int i, x, ncolors;
640   JLONG minmaxdist, min_dist, max_dist, tdist;
641   JLONG mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
642 
643   /* Compute true coordinates of update box's upper corner and center.
644    * Actually we compute the coordinates of the center of the upper-corner
645    * histogram cell, which are the upper bounds of the volume we care about.
646    * Note that since ">>" rounds down, the "center" values may be closer to
647    * min than to max; hence comparisons to them must be "<=", not "<".
648    */
649   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
650   centerc0 = (minc0 + maxc0) >> 1;
651   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
652   centerc1 = (minc1 + maxc1) >> 1;
653   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
654   centerc2 = (minc2 + maxc2) >> 1;
655 
656   /* For each color in colormap, find:
657    *  1. its minimum squared-distance to any point in the update box
658    *     (zero if color is within update box);
659    *  2. its maximum squared-distance to any point in the update box.
660    * Both of these can be found by considering only the corners of the box.
661    * We save the minimum distance for each color in mindist[];
662    * only the smallest maximum distance is of interest.
663    */
664   minmaxdist = 0x7FFFFFFFL;
665 
666   for (i = 0; i < numcolors; i++) {
667     /* We compute the squared-c0-distance term, then add in the other two. */
668     x = cinfo->colormap[0][i];
669     if (x < minc0) {
670       tdist = (x - minc0) * C0_SCALE;
671       min_dist = tdist * tdist;
672       tdist = (x - maxc0) * C0_SCALE;
673       max_dist = tdist * tdist;
674     } else if (x > maxc0) {
675       tdist = (x - maxc0) * C0_SCALE;
676       min_dist = tdist * tdist;
677       tdist = (x - minc0) * C0_SCALE;
678       max_dist = tdist * tdist;
679     } else {
680       /* within cell range so no contribution to min_dist */
681       min_dist = 0;
682       if (x <= centerc0) {
683         tdist = (x - maxc0) * C0_SCALE;
684         max_dist = tdist * tdist;
685       } else {
686         tdist = (x - minc0) * C0_SCALE;
687         max_dist = tdist * tdist;
688       }
689     }
690 
691     x = cinfo->colormap[1][i];
692     if (x < minc1) {
693       tdist = (x - minc1) * C1_SCALE;
694       min_dist += tdist * tdist;
695       tdist = (x - maxc1) * C1_SCALE;
696       max_dist += tdist * tdist;
697     } else if (x > maxc1) {
698       tdist = (x - maxc1) * C1_SCALE;
699       min_dist += tdist * tdist;
700       tdist = (x - minc1) * C1_SCALE;
701       max_dist += tdist * tdist;
702     } else {
703       /* within cell range so no contribution to min_dist */
704       if (x <= centerc1) {
705         tdist = (x - maxc1) * C1_SCALE;
706         max_dist += tdist * tdist;
707       } else {
708         tdist = (x - minc1) * C1_SCALE;
709         max_dist += tdist * tdist;
710       }
711     }
712 
713     x = cinfo->colormap[2][i];
714     if (x < minc2) {
715       tdist = (x - minc2) * C2_SCALE;
716       min_dist += tdist * tdist;
717       tdist = (x - maxc2) * C2_SCALE;
718       max_dist += tdist * tdist;
719     } else if (x > maxc2) {
720       tdist = (x - maxc2) * C2_SCALE;
721       min_dist += tdist * tdist;
722       tdist = (x - minc2) * C2_SCALE;
723       max_dist += tdist * tdist;
724     } else {
725       /* within cell range so no contribution to min_dist */
726       if (x <= centerc2) {
727         tdist = (x - maxc2) * C2_SCALE;
728         max_dist += tdist * tdist;
729       } else {
730         tdist = (x - minc2) * C2_SCALE;
731         max_dist += tdist * tdist;
732       }
733     }
734 
735     mindist[i] = min_dist;      /* save away the results */
736     if (max_dist < minmaxdist)
737       minmaxdist = max_dist;
738   }
739 
740   /* Now we know that no cell in the update box is more than minmaxdist
741    * away from some colormap entry.  Therefore, only colors that are
742    * within minmaxdist of some part of the box need be considered.
743    */
744   ncolors = 0;
745   for (i = 0; i < numcolors; i++) {
746     if (mindist[i] <= minmaxdist)
747       colorlist[ncolors++] = (JSAMPLE)i;
748   }
749   return ncolors;
750 }
751 
752 
753 LOCAL(void)
find_best_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,int numcolors,JSAMPLE colorlist[],JSAMPLE bestcolor[])754 find_best_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
755                  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
756 /* Find the closest colormap entry for each cell in the update box,
757  * given the list of candidate colors prepared by find_nearby_colors.
758  * Return the indexes of the closest entries in the bestcolor[] array.
759  * This routine uses Thomas' incremental distance calculation method to
760  * find the distance from a colormap entry to successive cells in the box.
761  */
762 {
763   int ic0, ic1, ic2;
764   int i, icolor;
765   register JLONG *bptr;         /* pointer into bestdist[] array */
766   JSAMPLE *cptr;                /* pointer into bestcolor[] array */
767   JLONG dist0, dist1;           /* initial distance values */
768   register JLONG dist2;         /* current distance in inner loop */
769   JLONG xx0, xx1;               /* distance increments */
770   register JLONG xx2;
771   JLONG inc0, inc1, inc2;       /* initial values for increments */
772   /* This array holds the distance to the nearest-so-far color for each cell */
773   JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
774 
775   /* Initialize best-distance for each cell of the update box */
776   bptr = bestdist;
777   for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--)
778     *bptr++ = 0x7FFFFFFFL;
779 
780   /* For each color selected by find_nearby_colors,
781    * compute its distance to the center of each cell in the box.
782    * If that's less than best-so-far, update best distance and color number.
783    */
784 
785   /* Nominal steps between cell centers ("x" in Thomas article) */
786 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
787 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
788 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
789 
790   for (i = 0; i < numcolors; i++) {
791     icolor = colorlist[i];
792     /* Compute (square of) distance from minc0/c1/c2 to this color */
793     inc0 = (minc0 - cinfo->colormap[0][icolor]) * C0_SCALE;
794     dist0 = inc0 * inc0;
795     inc1 = (minc1 - cinfo->colormap[1][icolor]) * C1_SCALE;
796     dist0 += inc1 * inc1;
797     inc2 = (minc2 - cinfo->colormap[2][icolor]) * C2_SCALE;
798     dist0 += inc2 * inc2;
799     /* Form the initial difference increments */
800     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
801     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
802     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
803     /* Now loop over all cells in box, updating distance per Thomas method */
804     bptr = bestdist;
805     cptr = bestcolor;
806     xx0 = inc0;
807     for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--) {
808       dist1 = dist0;
809       xx1 = inc1;
810       for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--) {
811         dist2 = dist1;
812         xx2 = inc2;
813         for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--) {
814           if (dist2 < *bptr) {
815             *bptr = dist2;
816             *cptr = (JSAMPLE)icolor;
817           }
818           dist2 += xx2;
819           xx2 += 2 * STEP_C2 * STEP_C2;
820           bptr++;
821           cptr++;
822         }
823         dist1 += xx1;
824         xx1 += 2 * STEP_C1 * STEP_C1;
825       }
826       dist0 += xx0;
827       xx0 += 2 * STEP_C0 * STEP_C0;
828     }
829   }
830 }
831 
832 
833 LOCAL(void)
fill_inverse_cmap(j_decompress_ptr cinfo,int c0,int c1,int c2)834 fill_inverse_cmap(j_decompress_ptr cinfo, int c0, int c1, int c2)
835 /* Fill the inverse-colormap entries in the update box that contains */
836 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
837 /* we can fill as many others as we wish.) */
838 {
839   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
840   hist3d histogram = cquantize->histogram;
841   int minc0, minc1, minc2;      /* lower left corner of update box */
842   int ic0, ic1, ic2;
843   register JSAMPLE *cptr;       /* pointer into bestcolor[] array */
844   register histptr cachep;      /* pointer into main cache array */
845   /* This array lists the candidate colormap indexes. */
846   JSAMPLE colorlist[MAXNUMCOLORS];
847   int numcolors;                /* number of candidate colors */
848   /* This array holds the actually closest colormap index for each cell. */
849   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
850 
851   /* Convert cell coordinates to update box ID */
852   c0 >>= BOX_C0_LOG;
853   c1 >>= BOX_C1_LOG;
854   c2 >>= BOX_C2_LOG;
855 
856   /* Compute true coordinates of update box's origin corner.
857    * Actually we compute the coordinates of the center of the corner
858    * histogram cell, which are the lower bounds of the volume we care about.
859    */
860   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
861   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
862   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
863 
864   /* Determine which colormap entries are close enough to be candidates
865    * for the nearest entry to some cell in the update box.
866    */
867   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
868 
869   /* Determine the actually nearest colors. */
870   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
871                    bestcolor);
872 
873   /* Save the best color numbers (plus 1) in the main cache array */
874   c0 <<= BOX_C0_LOG;            /* convert ID back to base cell indexes */
875   c1 <<= BOX_C1_LOG;
876   c2 <<= BOX_C2_LOG;
877   cptr = bestcolor;
878   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
879     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
880       cachep = &histogram[c0 + ic0][c1 + ic1][c2];
881       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
882         *cachep++ = (histcell)((*cptr++) + 1);
883       }
884     }
885   }
886 }
887 
888 
889 /*
890  * Map some rows of pixels to the output colormapped representation.
891  */
892 
893 METHODDEF(void)
pass2_no_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)894 pass2_no_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
895                 JSAMPARRAY output_buf, int num_rows)
896 /* This version performs no dithering */
897 {
898   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
899   hist3d histogram = cquantize->histogram;
900   register JSAMPROW inptr, outptr;
901   register histptr cachep;
902   register int c0, c1, c2;
903   int row;
904   JDIMENSION col;
905   JDIMENSION width = cinfo->output_width;
906 
907   for (row = 0; row < num_rows; row++) {
908     inptr = input_buf[row];
909     outptr = output_buf[row];
910     for (col = width; col > 0; col--) {
911       /* get pixel value and index into the cache */
912       c0 = (*inptr++) >> C0_SHIFT;
913       c1 = (*inptr++) >> C1_SHIFT;
914       c2 = (*inptr++) >> C2_SHIFT;
915       cachep = &histogram[c0][c1][c2];
916       /* If we have not seen this color before, find nearest colormap entry */
917       /* and update the cache */
918       if (*cachep == 0)
919         fill_inverse_cmap(cinfo, c0, c1, c2);
920       /* Now emit the colormap index for this cell */
921       *outptr++ = (JSAMPLE)(*cachep - 1);
922     }
923   }
924 }
925 
926 
927 METHODDEF(void)
pass2_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)928 pass2_fs_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
929                 JSAMPARRAY output_buf, int num_rows)
930 /* This version performs Floyd-Steinberg dithering */
931 {
932   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
933   hist3d histogram = cquantize->histogram;
934   register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
935   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
936   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
937   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
938   JSAMPROW inptr;               /* => current input pixel */
939   JSAMPROW outptr;              /* => current output pixel */
940   histptr cachep;
941   int dir;                      /* +1 or -1 depending on direction */
942   int dir3;                     /* 3*dir, for advancing inptr & errorptr */
943   int row;
944   JDIMENSION col;
945   JDIMENSION width = cinfo->output_width;
946   JSAMPLE *range_limit = cinfo->sample_range_limit;
947   int *error_limit = cquantize->error_limiter;
948   JSAMPROW colormap0 = cinfo->colormap[0];
949   JSAMPROW colormap1 = cinfo->colormap[1];
950   JSAMPROW colormap2 = cinfo->colormap[2];
951   SHIFT_TEMPS
952 
953   for (row = 0; row < num_rows; row++) {
954     inptr = input_buf[row];
955     outptr = output_buf[row];
956     if (cquantize->on_odd_row) {
957       /* work right to left in this row */
958       inptr += (width - 1) * 3; /* so point to rightmost pixel */
959       outptr += width - 1;
960       dir = -1;
961       dir3 = -3;
962       errorptr = cquantize->fserrors + (width + 1) * 3; /* => entry after last column */
963       cquantize->on_odd_row = FALSE; /* flip for next time */
964     } else {
965       /* work left to right in this row */
966       dir = 1;
967       dir3 = 3;
968       errorptr = cquantize->fserrors; /* => entry before first real column */
969       cquantize->on_odd_row = TRUE; /* flip for next time */
970     }
971     /* Preset error values: no error propagated to first pixel from left */
972     cur0 = cur1 = cur2 = 0;
973     /* and no error propagated to row below yet */
974     belowerr0 = belowerr1 = belowerr2 = 0;
975     bpreverr0 = bpreverr1 = bpreverr2 = 0;
976 
977     for (col = width; col > 0; col--) {
978       /* curN holds the error propagated from the previous pixel on the
979        * current line.  Add the error propagated from the previous line
980        * to form the complete error correction term for this pixel, and
981        * round the error term (which is expressed * 16) to an integer.
982        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
983        * for either sign of the error value.
984        * Note: errorptr points to *previous* column's array entry.
985        */
986       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3 + 0] + 8, 4);
987       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3 + 1] + 8, 4);
988       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3 + 2] + 8, 4);
989       /* Limit the error using transfer function set by init_error_limit.
990        * See comments with init_error_limit for rationale.
991        */
992       cur0 = error_limit[cur0];
993       cur1 = error_limit[cur1];
994       cur2 = error_limit[cur2];
995       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
996        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
997        * this sets the required size of the range_limit array.
998        */
999       cur0 += inptr[0];
1000       cur1 += inptr[1];
1001       cur2 += inptr[2];
1002       cur0 = range_limit[cur0];
1003       cur1 = range_limit[cur1];
1004       cur2 = range_limit[cur2];
1005       /* Index into the cache with adjusted pixel value */
1006       cachep =
1007         &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
1008       /* If we have not seen this color before, find nearest colormap */
1009       /* entry and update the cache */
1010       if (*cachep == 0)
1011         fill_inverse_cmap(cinfo, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT,
1012                           cur2 >> C2_SHIFT);
1013       /* Now emit the colormap index for this cell */
1014       {
1015         register int pixcode = *cachep - 1;
1016         *outptr = (JSAMPLE)pixcode;
1017         /* Compute representation error for this pixel */
1018         cur0 -= colormap0[pixcode];
1019         cur1 -= colormap1[pixcode];
1020         cur2 -= colormap2[pixcode];
1021       }
1022       /* Compute error fractions to be propagated to adjacent pixels.
1023        * Add these into the running sums, and simultaneously shift the
1024        * next-line error sums left by 1 column.
1025        */
1026       {
1027         register LOCFSERROR bnexterr;
1028 
1029         bnexterr = cur0;        /* Process component 0 */
1030         errorptr[0] = (FSERROR)(bpreverr0 + cur0 * 3);
1031         bpreverr0 = belowerr0 + cur0 * 5;
1032         belowerr0 = bnexterr;
1033         cur0 *= 7;
1034         bnexterr = cur1;        /* Process component 1 */
1035         errorptr[1] = (FSERROR)(bpreverr1 + cur1 * 3);
1036         bpreverr1 = belowerr1 + cur1 * 5;
1037         belowerr1 = bnexterr;
1038         cur1 *= 7;
1039         bnexterr = cur2;        /* Process component 2 */
1040         errorptr[2] = (FSERROR)(bpreverr2 + cur2 * 3);
1041         bpreverr2 = belowerr2 + cur2 * 5;
1042         belowerr2 = bnexterr;
1043         cur2 *= 7;
1044       }
1045       /* At this point curN contains the 7/16 error value to be propagated
1046        * to the next pixel on the current line, and all the errors for the
1047        * next line have been shifted over.  We are therefore ready to move on.
1048        */
1049       inptr += dir3;            /* Advance pixel pointers to next column */
1050       outptr += dir;
1051       errorptr += dir3;         /* advance errorptr to current column */
1052     }
1053     /* Post-loop cleanup: we must unload the final error values into the
1054      * final fserrors[] entry.  Note we need not unload belowerrN because
1055      * it is for the dummy column before or after the actual array.
1056      */
1057     errorptr[0] = (FSERROR)bpreverr0; /* unload prev errs into array */
1058     errorptr[1] = (FSERROR)bpreverr1;
1059     errorptr[2] = (FSERROR)bpreverr2;
1060   }
1061 }
1062 
1063 
1064 /*
1065  * Initialize the error-limiting transfer function (lookup table).
1066  * The raw F-S error computation can potentially compute error values of up to
1067  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1068  * much less, otherwise obviously wrong pixels will be created.  (Typical
1069  * effects include weird fringes at color-area boundaries, isolated bright
1070  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1071  * is to ensure that the "corners" of the color cube are allocated as output
1072  * colors; then repeated errors in the same direction cannot cause cascading
1073  * error buildup.  However, that only prevents the error from getting
1074  * completely out of hand; Aaron Giles reports that error limiting improves
1075  * the results even with corner colors allocated.
1076  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1077  * well, but the smoother transfer function used below is even better.  Thanks
1078  * to Aaron Giles for this idea.
1079  */
1080 
1081 LOCAL(void)
init_error_limit(j_decompress_ptr cinfo)1082 init_error_limit(j_decompress_ptr cinfo)
1083 /* Allocate and fill in the error_limiter table */
1084 {
1085   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1086   int *table;
1087   int in, out;
1088 
1089   table = (int *)(*cinfo->mem->alloc_small)
1090     ((j_common_ptr)cinfo, JPOOL_IMAGE, (MAXJSAMPLE * 2 + 1) * sizeof(int));
1091   table += MAXJSAMPLE;          /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1092   cquantize->error_limiter = table;
1093 
1094 #define STEPSIZE  ((MAXJSAMPLE + 1) / 16)
1095   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1096   out = 0;
1097   for (in = 0; in < STEPSIZE; in++, out++) {
1098     table[in] = out;  table[-in] = -out;
1099   }
1100   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1101   for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1) {
1102     table[in] = out;  table[-in] = -out;
1103   }
1104   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1105   for (; in <= MAXJSAMPLE; in++) {
1106     table[in] = out;  table[-in] = -out;
1107   }
1108 #undef STEPSIZE
1109 }
1110 
1111 
1112 /*
1113  * Finish up at the end of each pass.
1114  */
1115 
1116 METHODDEF(void)
finish_pass1(j_decompress_ptr cinfo)1117 finish_pass1(j_decompress_ptr cinfo)
1118 {
1119   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1120 
1121   /* Select the representative colors and fill in cinfo->colormap */
1122   cinfo->colormap = cquantize->sv_colormap;
1123   select_colors(cinfo, cquantize->desired);
1124   /* Force next pass to zero the color index table */
1125   cquantize->needs_zeroed = TRUE;
1126 }
1127 
1128 
1129 METHODDEF(void)
finish_pass2(j_decompress_ptr cinfo)1130 finish_pass2(j_decompress_ptr cinfo)
1131 {
1132   /* no work */
1133 }
1134 
1135 
1136 /*
1137  * Initialize for each processing pass.
1138  */
1139 
1140 METHODDEF(void)
start_pass_2_quant(j_decompress_ptr cinfo,boolean is_pre_scan)1141 start_pass_2_quant(j_decompress_ptr cinfo, boolean is_pre_scan)
1142 {
1143   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1144   hist3d histogram = cquantize->histogram;
1145   int i;
1146 
1147   /* Only F-S dithering or no dithering is supported. */
1148   /* If user asks for ordered dither, give them F-S. */
1149   if (cinfo->dither_mode != JDITHER_NONE)
1150     cinfo->dither_mode = JDITHER_FS;
1151 
1152   if (is_pre_scan) {
1153     /* Set up method pointers */
1154     cquantize->pub.color_quantize = prescan_quantize;
1155     cquantize->pub.finish_pass = finish_pass1;
1156     cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1157   } else {
1158     /* Set up method pointers */
1159     if (cinfo->dither_mode == JDITHER_FS)
1160       cquantize->pub.color_quantize = pass2_fs_dither;
1161     else
1162       cquantize->pub.color_quantize = pass2_no_dither;
1163     cquantize->pub.finish_pass = finish_pass2;
1164 
1165     /* Make sure color count is acceptable */
1166     i = cinfo->actual_number_of_colors;
1167     if (i < 1)
1168       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1169     if (i > MAXNUMCOLORS)
1170       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1171 
1172     if (cinfo->dither_mode == JDITHER_FS) {
1173       size_t arraysize =
1174         (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR)));
1175       /* Allocate Floyd-Steinberg workspace if we didn't already. */
1176       if (cquantize->fserrors == NULL)
1177         cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large)
1178           ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize);
1179       /* Initialize the propagated errors to zero. */
1180       jzero_far((void *)cquantize->fserrors, arraysize);
1181       /* Make the error-limit table if we didn't already. */
1182       if (cquantize->error_limiter == NULL)
1183         init_error_limit(cinfo);
1184       cquantize->on_odd_row = FALSE;
1185     }
1186 
1187   }
1188   /* Zero the histogram or inverse color map, if necessary */
1189   if (cquantize->needs_zeroed) {
1190     for (i = 0; i < HIST_C0_ELEMS; i++) {
1191       jzero_far((void *)histogram[i],
1192                 HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));
1193     }
1194     cquantize->needs_zeroed = FALSE;
1195   }
1196 }
1197 
1198 
1199 /*
1200  * Switch to a new external colormap between output passes.
1201  */
1202 
1203 METHODDEF(void)
new_color_map_2_quant(j_decompress_ptr cinfo)1204 new_color_map_2_quant(j_decompress_ptr cinfo)
1205 {
1206   my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1207 
1208   /* Reset the inverse color map */
1209   cquantize->needs_zeroed = TRUE;
1210 }
1211 
1212 
1213 /*
1214  * Module initialization routine for 2-pass color quantization.
1215  */
1216 
1217 GLOBAL(void)
jinit_2pass_quantizer(j_decompress_ptr cinfo)1218 jinit_2pass_quantizer(j_decompress_ptr cinfo)
1219 {
1220   my_cquantize_ptr cquantize;
1221   int i;
1222 
1223   cquantize = (my_cquantize_ptr)
1224     (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
1225                                 sizeof(my_cquantizer));
1226   cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize;
1227   cquantize->pub.start_pass = start_pass_2_quant;
1228   cquantize->pub.new_color_map = new_color_map_2_quant;
1229   cquantize->fserrors = NULL;   /* flag optional arrays not allocated */
1230   cquantize->error_limiter = NULL;
1231 
1232   /* Make sure jdmaster didn't give me a case I can't handle */
1233   if (cinfo->out_color_components != 3)
1234     ERREXIT(cinfo, JERR_NOTIMPL);
1235 
1236   /* Allocate the histogram/inverse colormap storage */
1237   cquantize->histogram = (hist3d)(*cinfo->mem->alloc_small)
1238     ((j_common_ptr)cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d));
1239   for (i = 0; i < HIST_C0_ELEMS; i++) {
1240     cquantize->histogram[i] = (hist2d)(*cinfo->mem->alloc_large)
1241       ((j_common_ptr)cinfo, JPOOL_IMAGE,
1242        HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));
1243   }
1244   cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1245 
1246   /* Allocate storage for the completed colormap, if required.
1247    * We do this now since it may affect the memory manager's space
1248    * calculations.
1249    */
1250   if (cinfo->enable_2pass_quant) {
1251     /* Make sure color count is acceptable */
1252     int desired = cinfo->desired_number_of_colors;
1253     /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1254     if (desired < 8)
1255       ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1256     /* Make sure colormap indexes can be represented by JSAMPLEs */
1257     if (desired > MAXNUMCOLORS)
1258       ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1259     cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1260       ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)desired, (JDIMENSION)3);
1261     cquantize->desired = desired;
1262   } else
1263     cquantize->sv_colormap = NULL;
1264 
1265   /* Only F-S dithering or no dithering is supported. */
1266   /* If user asks for ordered dither, give them F-S. */
1267   if (cinfo->dither_mode != JDITHER_NONE)
1268     cinfo->dither_mode = JDITHER_FS;
1269 
1270   /* Allocate Floyd-Steinberg workspace if necessary.
1271    * This isn't really needed until pass 2, but again it may affect the memory
1272    * manager's space calculations.  Although we will cope with a later change
1273    * in dither_mode, we do not promise to honor max_memory_to_use if
1274    * dither_mode changes.
1275    */
1276   if (cinfo->dither_mode == JDITHER_FS) {
1277     cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large)
1278       ((j_common_ptr)cinfo, JPOOL_IMAGE,
1279        (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
1280     /* Might as well create the error-limiting table too. */
1281     init_error_limit(cinfo);
1282   }
1283 }
1284 
1285 #endif /* QUANT_2PASS_SUPPORTED */
1286