1 /*
2 ** $Id: lgc.c $
3 ** Garbage Collector
4 ** See Copyright Notice in lua.h
5 */
6
7 #define lgc_c
8 #define LUA_CORE
9
10 #include "lprefix.h"
11
12 #include <stdio.h>
13 #include <string.h>
14
15
16 #include "lua.h"
17
18 #include "ldebug.h"
19 #include "ldo.h"
20 #include "lfunc.h"
21 #include "lgc.h"
22 #include "lmem.h"
23 #include "lobject.h"
24 #include "lstate.h"
25 #include "lstring.h"
26 #include "ltable.h"
27 #include "ltm.h"
28
29
30 /*
31 ** Maximum number of elements to sweep in each single step.
32 ** (Large enough to dissipate fixed overheads but small enough
33 ** to allow small steps for the collector.)
34 */
35 #define GCSWEEPMAX 100
36
37 /*
38 ** Maximum number of finalizers to call in each single step.
39 */
40 #define GCFINMAX 10
41
42
43 /*
44 ** Cost of calling one finalizer.
45 */
46 #define GCFINALIZECOST 50
47
48
49 /*
50 ** The equivalent, in bytes, of one unit of "work" (visiting a slot,
51 ** sweeping an object, etc.)
52 */
53 #define WORK2MEM sizeof(TValue)
54
55
56 /*
57 ** macro to adjust 'pause': 'pause' is actually used like
58 ** 'pause / PAUSEADJ' (value chosen by tests)
59 */
60 #define PAUSEADJ 100
61
62
63 /* mask with all color bits */
64 #define maskcolors (bitmask(BLACKBIT) | WHITEBITS)
65
66 /* mask with all GC bits */
67 #define maskgcbits (maskcolors | AGEBITS)
68
69
70 /* macro to erase all color bits then set only the current white bit */
71 #define makewhite(g,x) \
72 (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g)))
73
74 /* make an object gray (neither white nor black) */
75 #define set2gray(x) resetbits(x->marked, maskcolors)
76
77
78 /* make an object black (coming from any color) */
79 #define set2black(x) \
80 (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT)))
81
82
83 #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x)))
84
85 #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n)))
86
87
88 /*
89 ** Protected access to objects in values
90 */
91 #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL)
92
93
94 #define markvalue(g,o) { checkliveness(g->mainthread,o); \
95 if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
96
97 #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); }
98
99 #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
100
101 /*
102 ** mark an object that can be NULL (either because it is really optional,
103 ** or it was stripped as debug info, or inside an uncompleted structure)
104 */
105 #define markobjectN(g,t) { if (t) markobject(g,t); }
106
107 static void reallymarkobject (global_State *g, GCObject *o);
108 static lu_mem atomic (lua_State *L);
109 static void entersweep (lua_State *L);
110
111
112 /*
113 ** {======================================================
114 ** Generic functions
115 ** =======================================================
116 */
117
118
119 /*
120 ** one after last element in a hash array
121 */
122 #define gnodelast(h) gnode(h, cast_sizet(sizenode(h)))
123
124
getgclist(GCObject * o)125 static GCObject **getgclist (GCObject *o) {
126 switch (o->tt) {
127 case LUA_VTABLE: return &gco2t(o)->gclist;
128 case LUA_VLCL: return &gco2lcl(o)->gclist;
129 case LUA_VCCL: return &gco2ccl(o)->gclist;
130 case LUA_VTHREAD: return &gco2th(o)->gclist;
131 case LUA_VPROTO: return &gco2p(o)->gclist;
132 case LUA_VUSERDATA: {
133 Udata *u = gco2u(o);
134 lua_assert(u->nuvalue > 0);
135 return &u->gclist;
136 }
137 default: lua_assert(0); return 0;
138 }
139 }
140
141
142 /*
143 ** Link a collectable object 'o' with a known type into the list 'p'.
144 ** (Must be a macro to access the 'gclist' field in different types.)
145 */
146 #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p))
147
linkgclist_(GCObject * o,GCObject ** pnext,GCObject ** list)148 static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) {
149 lua_assert(!isgray(o)); /* cannot be in a gray list */
150 *pnext = *list;
151 *list = o;
152 set2gray(o); /* now it is */
153 }
154
155
156 /*
157 ** Link a generic collectable object 'o' into the list 'p'.
158 */
159 #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p))
160
161
162
163 /*
164 ** Clear keys for empty entries in tables. If entry is empty
165 ** and its key is not marked, mark its entry as dead. This allows the
166 ** collection of the key, but keeps its entry in the table (its removal
167 ** could break a chain). The main feature of a dead key is that it must
168 ** be different from any other value, to do not disturb searches.
169 ** Other places never manipulate dead keys, because its associated empty
170 ** value is enough to signal that the entry is logically empty.
171 */
clearkey(Node * n)172 static void clearkey (Node *n) {
173 lua_assert(isempty(gval(n)));
174 if (keyiswhite(n))
175 setdeadkey(n); /* unused and unmarked key; remove it */
176 }
177
178
179 /*
180 ** tells whether a key or value can be cleared from a weak
181 ** table. Non-collectable objects are never removed from weak
182 ** tables. Strings behave as 'values', so are never removed too. for
183 ** other objects: if really collected, cannot keep them; for objects
184 ** being finalized, keep them in keys, but not in values
185 */
iscleared(global_State * g,const GCObject * o)186 static int iscleared (global_State *g, const GCObject *o) {
187 if (o == NULL) return 0; /* non-collectable value */
188 else if (novariant(o->tt) == LUA_TSTRING) {
189 markobject(g, o); /* strings are 'values', so are never weak */
190 return 0;
191 }
192 else return iswhite(o);
193 }
194
195
196 /*
197 ** Barrier that moves collector forward, that is, marks the white object
198 ** 'v' being pointed by the black object 'o'. In the generational
199 ** mode, 'v' must also become old, if 'o' is old; however, it cannot
200 ** be changed directly to OLD, because it may still point to non-old
201 ** objects. So, it is marked as OLD0. In the next cycle it will become
202 ** OLD1, and in the next it will finally become OLD (regular old). By
203 ** then, any object it points to will also be old. If called in the
204 ** incremental sweep phase, it clears the black object to white (sweep
205 ** it) to avoid other barrier calls for this same object. (That cannot
206 ** be done is generational mode, as its sweep does not distinguish
207 ** whites from deads.)
208 */
luaC_barrier_(lua_State * L,GCObject * o,GCObject * v)209 void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
210 global_State *g = G(L);
211 lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
212 if (keepinvariant(g)) { /* must keep invariant? */
213 reallymarkobject(g, v); /* restore invariant */
214 if (isold(o)) {
215 lua_assert(!isold(v)); /* white object could not be old */
216 setage(v, G_OLD0); /* restore generational invariant */
217 }
218 }
219 else { /* sweep phase */
220 lua_assert(issweepphase(g));
221 if (g->gckind == KGC_INC) /* incremental mode? */
222 makewhite(g, o); /* mark 'o' as white to avoid other barriers */
223 }
224 }
225
226
227 /*
228 ** barrier that moves collector backward, that is, mark the black object
229 ** pointing to a white object as gray again.
230 */
luaC_barrierback_(lua_State * L,GCObject * o)231 void luaC_barrierback_ (lua_State *L, GCObject *o) {
232 global_State *g = G(L);
233 lua_assert(isblack(o) && !isdead(g, o));
234 lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1));
235 if (getage(o) == G_TOUCHED2) /* already in gray list? */
236 set2gray(o); /* make it gray to become touched1 */
237 else /* link it in 'grayagain' and paint it gray */
238 linkobjgclist(o, g->grayagain);
239 if (isold(o)) /* generational mode? */
240 setage(o, G_TOUCHED1); /* touched in current cycle */
241 }
242
243
luaC_fix(lua_State * L,GCObject * o)244 void luaC_fix (lua_State *L, GCObject *o) {
245 global_State *g = G(L);
246 lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */
247 set2gray(o); /* they will be gray forever */
248 setage(o, G_OLD); /* and old forever */
249 g->allgc = o->next; /* remove object from 'allgc' list */
250 o->next = g->fixedgc; /* link it to 'fixedgc' list */
251 g->fixedgc = o;
252 }
253
254
255 /*
256 ** create a new collectable object (with given type and size) and link
257 ** it to 'allgc' list.
258 */
luaC_newobj(lua_State * L,int tt,size_t sz)259 GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
260 global_State *g = G(L);
261 GCObject *o = cast(GCObject *, luaM_newobject(L, novariant(tt), sz));
262 o->marked = luaC_white(g);
263 o->tt = tt;
264 o->next = g->allgc;
265 g->allgc = o;
266 return o;
267 }
268
269 /* }====================================================== */
270
271
272
273 /*
274 ** {======================================================
275 ** Mark functions
276 ** =======================================================
277 */
278
279
280 /*
281 ** Mark an object. Userdata with no user values, strings, and closed
282 ** upvalues are visited and turned black here. Open upvalues are
283 ** already indirectly linked through their respective threads in the
284 ** 'twups' list, so they don't go to the gray list; nevertheless, they
285 ** are kept gray to avoid barriers, as their values will be revisited
286 ** by the thread or by 'remarkupvals'. Other objects are added to the
287 ** gray list to be visited (and turned black) later. Both userdata and
288 ** upvalues can call this function recursively, but this recursion goes
289 ** for at most two levels: An upvalue cannot refer to another upvalue
290 ** (only closures can), and a userdata's metatable must be a table.
291 */
reallymarkobject(global_State * g,GCObject * o)292 static void reallymarkobject (global_State *g, GCObject *o) {
293 switch (o->tt) {
294 case LUA_VSHRSTR:
295 case LUA_VLNGSTR: {
296 set2black(o); /* nothing to visit */
297 break;
298 }
299 case LUA_VUPVAL: {
300 UpVal *uv = gco2upv(o);
301 if (upisopen(uv))
302 set2gray(uv); /* open upvalues are kept gray */
303 else
304 set2black(o); /* closed upvalues are visited here */
305 markvalue(g, uv->v); /* mark its content */
306 break;
307 }
308 case LUA_VUSERDATA: {
309 Udata *u = gco2u(o);
310 if (u->nuvalue == 0) { /* no user values? */
311 markobjectN(g, u->metatable); /* mark its metatable */
312 set2black(o); /* nothing else to mark */
313 break;
314 }
315 /* else... */
316 } /* FALLTHROUGH */
317 case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE:
318 case LUA_VTHREAD: case LUA_VPROTO: {
319 linkobjgclist(o, g->gray); /* to be visited later */
320 break;
321 }
322 default: lua_assert(0); break;
323 }
324 }
325
326
327 /*
328 ** mark metamethods for basic types
329 */
markmt(global_State * g)330 static void markmt (global_State *g) {
331 int i;
332 for (i=0; i < LUA_NUMTAGS; i++)
333 markobjectN(g, g->mt[i]);
334 }
335
336
337 /*
338 ** mark all objects in list of being-finalized
339 */
markbeingfnz(global_State * g)340 static lu_mem markbeingfnz (global_State *g) {
341 GCObject *o;
342 lu_mem count = 0;
343 for (o = g->tobefnz; o != NULL; o = o->next) {
344 count++;
345 markobject(g, o);
346 }
347 return count;
348 }
349
350
351 /*
352 ** For each non-marked thread, simulates a barrier between each open
353 ** upvalue and its value. (If the thread is collected, the value will be
354 ** assigned to the upvalue, but then it can be too late for the barrier
355 ** to act. The "barrier" does not need to check colors: A non-marked
356 ** thread must be young; upvalues cannot be older than their threads; so
357 ** any visited upvalue must be young too.) Also removes the thread from
358 ** the list, as it was already visited. Removes also threads with no
359 ** upvalues, as they have nothing to be checked. (If the thread gets an
360 ** upvalue later, it will be linked in the list again.)
361 */
remarkupvals(global_State * g)362 static int remarkupvals (global_State *g) {
363 lua_State *thread;
364 lua_State **p = &g->twups;
365 int work = 0; /* estimate of how much work was done here */
366 while ((thread = *p) != NULL) {
367 work++;
368 if (!iswhite(thread) && thread->openupval != NULL)
369 p = &thread->twups; /* keep marked thread with upvalues in the list */
370 else { /* thread is not marked or without upvalues */
371 UpVal *uv;
372 lua_assert(!isold(thread) || thread->openupval == NULL);
373 *p = thread->twups; /* remove thread from the list */
374 thread->twups = thread; /* mark that it is out of list */
375 for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
376 lua_assert(getage(uv) <= getage(thread));
377 work++;
378 if (!iswhite(uv)) { /* upvalue already visited? */
379 lua_assert(upisopen(uv) && isgray(uv));
380 markvalue(g, uv->v); /* mark its value */
381 }
382 }
383 }
384 }
385 return work;
386 }
387
388
cleargraylists(global_State * g)389 static void cleargraylists (global_State *g) {
390 g->gray = g->grayagain = NULL;
391 g->weak = g->allweak = g->ephemeron = NULL;
392 }
393
394
395 /*
396 ** mark root set and reset all gray lists, to start a new collection
397 */
restartcollection(global_State * g)398 static void restartcollection (global_State *g) {
399 cleargraylists(g);
400 markobject(g, g->mainthread);
401 markvalue(g, &g->l_registry);
402 markmt(g);
403 markbeingfnz(g); /* mark any finalizing object left from previous cycle */
404 }
405
406 /* }====================================================== */
407
408
409 /*
410 ** {======================================================
411 ** Traverse functions
412 ** =======================================================
413 */
414
415
416 /*
417 ** Check whether object 'o' should be kept in the 'grayagain' list for
418 ** post-processing by 'correctgraylist'. (It could put all old objects
419 ** in the list and leave all the work to 'correctgraylist', but it is
420 ** more efficient to avoid adding elements that will be removed.) Only
421 ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go
422 ** back to a gray list, but then it must become OLD. (That is what
423 ** 'correctgraylist' does when it finds a TOUCHED2 object.)
424 */
genlink(global_State * g,GCObject * o)425 static void genlink (global_State *g, GCObject *o) {
426 lua_assert(isblack(o));
427 if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */
428 linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */
429 } /* everything else do not need to be linked back */
430 else if (getage(o) == G_TOUCHED2)
431 changeage(o, G_TOUCHED2, G_OLD); /* advance age */
432 }
433
434
435 /*
436 ** Traverse a table with weak values and link it to proper list. During
437 ** propagate phase, keep it in 'grayagain' list, to be revisited in the
438 ** atomic phase. In the atomic phase, if table has any white value,
439 ** put it in 'weak' list, to be cleared.
440 */
traverseweakvalue(global_State * g,Table * h)441 static void traverseweakvalue (global_State *g, Table *h) {
442 Node *n, *limit = gnodelast(h);
443 /* if there is array part, assume it may have white values (it is not
444 worth traversing it now just to check) */
445 int hasclears = (h->alimit > 0);
446 for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
447 if (isempty(gval(n))) /* entry is empty? */
448 clearkey(n); /* clear its key */
449 else {
450 lua_assert(!keyisnil(n));
451 markkey(g, n);
452 if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */
453 hasclears = 1; /* table will have to be cleared */
454 }
455 }
456 if (g->gcstate == GCSatomic && hasclears)
457 linkgclist(h, g->weak); /* has to be cleared later */
458 else
459 linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
460 }
461
462
463 /*
464 ** Traverse an ephemeron table and link it to proper list. Returns true
465 ** iff any object was marked during this traversal (which implies that
466 ** convergence has to continue). During propagation phase, keep table
467 ** in 'grayagain' list, to be visited again in the atomic phase. In
468 ** the atomic phase, if table has any white->white entry, it has to
469 ** be revisited during ephemeron convergence (as that key may turn
470 ** black). Otherwise, if it has any white key, table has to be cleared
471 ** (in the atomic phase). In generational mode, some tables
472 ** must be kept in some gray list for post-processing; this is done
473 ** by 'genlink'.
474 */
traverseephemeron(global_State * g,Table * h,int inv)475 static int traverseephemeron (global_State *g, Table *h, int inv) {
476 int marked = 0; /* true if an object is marked in this traversal */
477 int hasclears = 0; /* true if table has white keys */
478 int hasww = 0; /* true if table has entry "white-key -> white-value" */
479 unsigned int i;
480 unsigned int asize = luaH_realasize(h);
481 unsigned int nsize = sizenode(h);
482 /* traverse array part */
483 for (i = 0; i < asize; i++) {
484 if (valiswhite(&h->array[i])) {
485 marked = 1;
486 reallymarkobject(g, gcvalue(&h->array[i]));
487 }
488 }
489 /* traverse hash part; if 'inv', traverse descending
490 (see 'convergeephemerons') */
491 for (i = 0; i < nsize; i++) {
492 Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i);
493 if (isempty(gval(n))) /* entry is empty? */
494 clearkey(n); /* clear its key */
495 else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */
496 hasclears = 1; /* table must be cleared */
497 if (valiswhite(gval(n))) /* value not marked yet? */
498 hasww = 1; /* white-white entry */
499 }
500 else if (valiswhite(gval(n))) { /* value not marked yet? */
501 marked = 1;
502 reallymarkobject(g, gcvalue(gval(n))); /* mark it now */
503 }
504 }
505 /* link table into proper list */
506 if (g->gcstate == GCSpropagate)
507 linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
508 else if (hasww) /* table has white->white entries? */
509 linkgclist(h, g->ephemeron); /* have to propagate again */
510 else if (hasclears) /* table has white keys? */
511 linkgclist(h, g->allweak); /* may have to clean white keys */
512 else
513 genlink(g, obj2gco(h)); /* check whether collector still needs to see it */
514 return marked;
515 }
516
517
traversestrongtable(global_State * g,Table * h)518 static void traversestrongtable (global_State *g, Table *h) {
519 Node *n, *limit = gnodelast(h);
520 unsigned int i;
521 unsigned int asize = luaH_realasize(h);
522 for (i = 0; i < asize; i++) /* traverse array part */
523 markvalue(g, &h->array[i]);
524 for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
525 if (isempty(gval(n))) /* entry is empty? */
526 clearkey(n); /* clear its key */
527 else {
528 lua_assert(!keyisnil(n));
529 markkey(g, n);
530 markvalue(g, gval(n));
531 }
532 }
533 genlink(g, obj2gco(h));
534 }
535
536
traversetable(global_State * g,Table * h)537 static lu_mem traversetable (global_State *g, Table *h) {
538 const char *weakkey, *weakvalue;
539 const TValue *mode = gfasttm(g, h->metatable, TM_MODE);
540 markobjectN(g, h->metatable);
541 if (mode && ttisstring(mode) && /* is there a weak mode? */
542 (cast_void(weakkey = strchr(svalue(mode), 'k')),
543 cast_void(weakvalue = strchr(svalue(mode), 'v')),
544 (weakkey || weakvalue))) { /* is really weak? */
545 if (!weakkey) /* strong keys? */
546 traverseweakvalue(g, h);
547 else if (!weakvalue) /* strong values? */
548 traverseephemeron(g, h, 0);
549 else /* all weak */
550 linkgclist(h, g->allweak); /* nothing to traverse now */
551 }
552 else /* not weak */
553 traversestrongtable(g, h);
554 return 1 + h->alimit + 2 * allocsizenode(h);
555 }
556
557
traverseudata(global_State * g,Udata * u)558 static int traverseudata (global_State *g, Udata *u) {
559 int i;
560 markobjectN(g, u->metatable); /* mark its metatable */
561 for (i = 0; i < u->nuvalue; i++)
562 markvalue(g, &u->uv[i].uv);
563 genlink(g, obj2gco(u));
564 return 1 + u->nuvalue;
565 }
566
567
568 /*
569 ** Traverse a prototype. (While a prototype is being build, its
570 ** arrays can be larger than needed; the extra slots are filled with
571 ** NULL, so the use of 'markobjectN')
572 */
traverseproto(global_State * g,Proto * f)573 static int traverseproto (global_State *g, Proto *f) {
574 int i;
575 markobjectN(g, f->source);
576 for (i = 0; i < f->sizek; i++) /* mark literals */
577 markvalue(g, &f->k[i]);
578 for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */
579 markobjectN(g, f->upvalues[i].name);
580 for (i = 0; i < f->sizep; i++) /* mark nested protos */
581 markobjectN(g, f->p[i]);
582 for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */
583 markobjectN(g, f->locvars[i].varname);
584 return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars;
585 }
586
587
traverseCclosure(global_State * g,CClosure * cl)588 static int traverseCclosure (global_State *g, CClosure *cl) {
589 int i;
590 for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */
591 markvalue(g, &cl->upvalue[i]);
592 return 1 + cl->nupvalues;
593 }
594
595 /*
596 ** Traverse a Lua closure, marking its prototype and its upvalues.
597 ** (Both can be NULL while closure is being created.)
598 */
traverseLclosure(global_State * g,LClosure * cl)599 static int traverseLclosure (global_State *g, LClosure *cl) {
600 int i;
601 markobjectN(g, cl->p); /* mark its prototype */
602 for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */
603 UpVal *uv = cl->upvals[i];
604 markobjectN(g, uv); /* mark upvalue */
605 }
606 return 1 + cl->nupvalues;
607 }
608
609
610 /*
611 ** Traverse a thread, marking the elements in the stack up to its top
612 ** and cleaning the rest of the stack in the final traversal. That
613 ** ensures that the entire stack have valid (non-dead) objects.
614 ** Threads have no barriers. In gen. mode, old threads must be visited
615 ** at every cycle, because they might point to young objects. In inc.
616 ** mode, the thread can still be modified before the end of the cycle,
617 ** and therefore it must be visited again in the atomic phase. To ensure
618 ** these visits, threads must return to a gray list if they are not new
619 ** (which can only happen in generational mode) or if the traverse is in
620 ** the propagate phase (which can only happen in incremental mode).
621 */
traversethread(global_State * g,lua_State * th)622 static int traversethread (global_State *g, lua_State *th) {
623 UpVal *uv;
624 StkId o = th->stack;
625 if (isold(th) || g->gcstate == GCSpropagate)
626 linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
627 if (o == NULL)
628 return 1; /* stack not completely built yet */
629 lua_assert(g->gcstate == GCSatomic ||
630 th->openupval == NULL || isintwups(th));
631 for (; o < th->top; o++) /* mark live elements in the stack */
632 markvalue(g, s2v(o));
633 for (uv = th->openupval; uv != NULL; uv = uv->u.open.next)
634 markobject(g, uv); /* open upvalues cannot be collected */
635 if (g->gcstate == GCSatomic) { /* final traversal? */
636 StkId lim = th->stack + th->stacksize; /* real end of stack */
637 for (; o < lim; o++) /* clear not-marked stack slice */
638 setnilvalue(s2v(o));
639 /* 'remarkupvals' may have removed thread from 'twups' list */
640 if (!isintwups(th) && th->openupval != NULL) {
641 th->twups = g->twups; /* link it back to the list */
642 g->twups = th;
643 }
644 }
645 else if (!g->gcemergency)
646 luaD_shrinkstack(th); /* do not change stack in emergency cycle */
647 return 1 + th->stacksize;
648 }
649
650
651 /*
652 ** traverse one gray object, turning it to black.
653 */
propagatemark(global_State * g)654 static lu_mem propagatemark (global_State *g) {
655 GCObject *o = g->gray;
656 nw2black(o);
657 g->gray = *getgclist(o); /* remove from 'gray' list */
658 switch (o->tt) {
659 case LUA_VTABLE: return traversetable(g, gco2t(o));
660 case LUA_VUSERDATA: return traverseudata(g, gco2u(o));
661 case LUA_VLCL: return traverseLclosure(g, gco2lcl(o));
662 case LUA_VCCL: return traverseCclosure(g, gco2ccl(o));
663 case LUA_VPROTO: return traverseproto(g, gco2p(o));
664 case LUA_VTHREAD: return traversethread(g, gco2th(o));
665 default: lua_assert(0); return 0;
666 }
667 }
668
669
propagateall(global_State * g)670 static lu_mem propagateall (global_State *g) {
671 lu_mem tot = 0;
672 while (g->gray)
673 tot += propagatemark(g);
674 return tot;
675 }
676
677
678 /*
679 ** Traverse all ephemeron tables propagating marks from keys to values.
680 ** Repeat until it converges, that is, nothing new is marked. 'dir'
681 ** inverts the direction of the traversals, trying to speed up
682 ** convergence on chains in the same table.
683 **
684 */
convergeephemerons(global_State * g)685 static void convergeephemerons (global_State *g) {
686 int changed;
687 int dir = 0;
688 do {
689 GCObject *w;
690 GCObject *next = g->ephemeron; /* get ephemeron list */
691 g->ephemeron = NULL; /* tables may return to this list when traversed */
692 changed = 0;
693 while ((w = next) != NULL) { /* for each ephemeron table */
694 Table *h = gco2t(w);
695 next = h->gclist; /* list is rebuilt during loop */
696 nw2black(h); /* out of the list (for now) */
697 if (traverseephemeron(g, h, dir)) { /* marked some value? */
698 propagateall(g); /* propagate changes */
699 changed = 1; /* will have to revisit all ephemeron tables */
700 }
701 }
702 dir = !dir; /* invert direction next time */
703 } while (changed); /* repeat until no more changes */
704 }
705
706 /* }====================================================== */
707
708
709 /*
710 ** {======================================================
711 ** Sweep Functions
712 ** =======================================================
713 */
714
715
716 /*
717 ** clear entries with unmarked keys from all weaktables in list 'l'
718 */
clearbykeys(global_State * g,GCObject * l)719 static void clearbykeys (global_State *g, GCObject *l) {
720 for (; l; l = gco2t(l)->gclist) {
721 Table *h = gco2t(l);
722 Node *limit = gnodelast(h);
723 Node *n;
724 for (n = gnode(h, 0); n < limit; n++) {
725 if (iscleared(g, gckeyN(n))) /* unmarked key? */
726 setempty(gval(n)); /* remove entry */
727 if (isempty(gval(n))) /* is entry empty? */
728 clearkey(n); /* clear its key */
729 }
730 }
731 }
732
733
734 /*
735 ** clear entries with unmarked values from all weaktables in list 'l' up
736 ** to element 'f'
737 */
clearbyvalues(global_State * g,GCObject * l,GCObject * f)738 static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) {
739 for (; l != f; l = gco2t(l)->gclist) {
740 Table *h = gco2t(l);
741 Node *n, *limit = gnodelast(h);
742 unsigned int i;
743 unsigned int asize = luaH_realasize(h);
744 for (i = 0; i < asize; i++) {
745 TValue *o = &h->array[i];
746 if (iscleared(g, gcvalueN(o))) /* value was collected? */
747 setempty(o); /* remove entry */
748 }
749 for (n = gnode(h, 0); n < limit; n++) {
750 if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */
751 setempty(gval(n)); /* remove entry */
752 if (isempty(gval(n))) /* is entry empty? */
753 clearkey(n); /* clear its key */
754 }
755 }
756 }
757
758
freeupval(lua_State * L,UpVal * uv)759 static void freeupval (lua_State *L, UpVal *uv) {
760 if (upisopen(uv))
761 luaF_unlinkupval(uv);
762 luaM_free(L, uv);
763 }
764
765
freeobj(lua_State * L,GCObject * o)766 static void freeobj (lua_State *L, GCObject *o) {
767 switch (o->tt) {
768 case LUA_VPROTO:
769 luaF_freeproto(L, gco2p(o));
770 break;
771 case LUA_VUPVAL:
772 freeupval(L, gco2upv(o));
773 break;
774 case LUA_VLCL:
775 luaM_freemem(L, o, sizeLclosure(gco2lcl(o)->nupvalues));
776 break;
777 case LUA_VCCL:
778 luaM_freemem(L, o, sizeCclosure(gco2ccl(o)->nupvalues));
779 break;
780 case LUA_VTABLE:
781 luaH_free(L, gco2t(o));
782 break;
783 case LUA_VTHREAD:
784 luaE_freethread(L, gco2th(o));
785 break;
786 case LUA_VUSERDATA: {
787 Udata *u = gco2u(o);
788 luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
789 break;
790 }
791 case LUA_VSHRSTR:
792 luaS_remove(L, gco2ts(o)); /* remove it from hash table */
793 luaM_freemem(L, o, sizelstring(gco2ts(o)->shrlen));
794 break;
795 case LUA_VLNGSTR:
796 luaM_freemem(L, o, sizelstring(gco2ts(o)->u.lnglen));
797 break;
798 default: lua_assert(0);
799 }
800 }
801
802
803 /*
804 ** sweep at most 'countin' elements from a list of GCObjects erasing dead
805 ** objects, where a dead object is one marked with the old (non current)
806 ** white; change all non-dead objects back to white, preparing for next
807 ** collection cycle. Return where to continue the traversal or NULL if
808 ** list is finished. ('*countout' gets the number of elements traversed.)
809 */
sweeplist(lua_State * L,GCObject ** p,int countin,int * countout)810 static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
811 int *countout) {
812 global_State *g = G(L);
813 int ow = otherwhite(g);
814 int i;
815 int white = luaC_white(g); /* current white */
816 for (i = 0; *p != NULL && i < countin; i++) {
817 GCObject *curr = *p;
818 int marked = curr->marked;
819 if (isdeadm(ow, marked)) { /* is 'curr' dead? */
820 *p = curr->next; /* remove 'curr' from list */
821 freeobj(L, curr); /* erase 'curr' */
822 }
823 else { /* change mark to 'white' */
824 curr->marked = cast_byte((marked & ~maskgcbits) | white);
825 p = &curr->next; /* go to next element */
826 }
827 }
828 if (countout)
829 *countout = i; /* number of elements traversed */
830 return (*p == NULL) ? NULL : p;
831 }
832
833
834 /*
835 ** sweep a list until a live object (or end of list)
836 */
sweeptolive(lua_State * L,GCObject ** p)837 static GCObject **sweeptolive (lua_State *L, GCObject **p) {
838 GCObject **old = p;
839 do {
840 p = sweeplist(L, p, 1, NULL);
841 } while (p == old);
842 return p;
843 }
844
845 /* }====================================================== */
846
847
848 /*
849 ** {======================================================
850 ** Finalization
851 ** =======================================================
852 */
853
854 /*
855 ** If possible, shrink string table.
856 */
checkSizes(lua_State * L,global_State * g)857 static void checkSizes (lua_State *L, global_State *g) {
858 if (!g->gcemergency) {
859 if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */
860 l_mem olddebt = g->GCdebt;
861 luaS_resize(L, g->strt.size / 2);
862 g->GCestimate += g->GCdebt - olddebt; /* correct estimate */
863 }
864 }
865 }
866
867
868 /*
869 ** Get the next udata to be finalized from the 'tobefnz' list, and
870 ** link it back into the 'allgc' list.
871 */
udata2finalize(global_State * g)872 static GCObject *udata2finalize (global_State *g) {
873 GCObject *o = g->tobefnz; /* get first element */
874 lua_assert(tofinalize(o));
875 g->tobefnz = o->next; /* remove it from 'tobefnz' list */
876 o->next = g->allgc; /* return it to 'allgc' list */
877 g->allgc = o;
878 resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */
879 if (issweepphase(g))
880 makewhite(g, o); /* "sweep" object */
881 else if (getage(o) == G_OLD1)
882 g->firstold1 = o; /* it is the first OLD1 object in the list */
883 return o;
884 }
885
886
dothecall(lua_State * L,void * ud)887 static void dothecall (lua_State *L, void *ud) {
888 UNUSED(ud);
889 luaD_callnoyield(L, L->top - 2, 0);
890 }
891
892
GCTM(lua_State * L)893 static void GCTM (lua_State *L) {
894 global_State *g = G(L);
895 const TValue *tm;
896 TValue v;
897 lua_assert(!g->gcemergency);
898 setgcovalue(L, &v, udata2finalize(g));
899 tm = luaT_gettmbyobj(L, &v, TM_GC);
900 if (!notm(tm)) { /* is there a finalizer? */
901 int status;
902 lu_byte oldah = L->allowhook;
903 int running = g->gcrunning;
904 L->allowhook = 0; /* stop debug hooks during GC metamethod */
905 g->gcrunning = 0; /* avoid GC steps */
906 setobj2s(L, L->top++, tm); /* push finalizer... */
907 setobj2s(L, L->top++, &v); /* ... and its argument */
908 L->ci->callstatus |= CIST_FIN; /* will run a finalizer */
909 status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top - 2), 0);
910 L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */
911 L->allowhook = oldah; /* restore hooks */
912 g->gcrunning = running; /* restore state */
913 if (unlikely(status != LUA_OK)) { /* error while running __gc? */
914 luaE_warnerror(L, "__gc metamethod");
915 L->top--; /* pops error object */
916 }
917 }
918 }
919
920
921 /*
922 ** Call a few finalizers
923 */
runafewfinalizers(lua_State * L,int n)924 static int runafewfinalizers (lua_State *L, int n) {
925 global_State *g = G(L);
926 int i;
927 for (i = 0; i < n && g->tobefnz; i++)
928 GCTM(L); /* call one finalizer */
929 return i;
930 }
931
932
933 /*
934 ** call all pending finalizers
935 */
callallpendingfinalizers(lua_State * L)936 static void callallpendingfinalizers (lua_State *L) {
937 global_State *g = G(L);
938 while (g->tobefnz)
939 GCTM(L);
940 }
941
942
943 /*
944 ** find last 'next' field in list 'p' list (to add elements in its end)
945 */
findlast(GCObject ** p)946 static GCObject **findlast (GCObject **p) {
947 while (*p != NULL)
948 p = &(*p)->next;
949 return p;
950 }
951
952
953 /*
954 ** Move all unreachable objects (or 'all' objects) that need
955 ** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
956 ** (Note that objects after 'finobjold1' cannot be white, so they
957 ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL,
958 ** so the whole list is traversed.)
959 */
separatetobefnz(global_State * g,int all)960 static void separatetobefnz (global_State *g, int all) {
961 GCObject *curr;
962 GCObject **p = &g->finobj;
963 GCObject **lastnext = findlast(&g->tobefnz);
964 while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */
965 lua_assert(tofinalize(curr));
966 if (!(iswhite(curr) || all)) /* not being collected? */
967 p = &curr->next; /* don't bother with it */
968 else {
969 if (curr == g->finobjsur) /* removing 'finobjsur'? */
970 g->finobjsur = curr->next; /* correct it */
971 *p = curr->next; /* remove 'curr' from 'finobj' list */
972 curr->next = *lastnext; /* link at the end of 'tobefnz' list */
973 *lastnext = curr;
974 lastnext = &curr->next;
975 }
976 }
977 }
978
979
980 /*
981 ** If pointer 'p' points to 'o', move it to the next element.
982 */
checkpointer(GCObject ** p,GCObject * o)983 static void checkpointer (GCObject **p, GCObject *o) {
984 if (o == *p)
985 *p = o->next;
986 }
987
988
989 /*
990 ** Correct pointers to objects inside 'allgc' list when
991 ** object 'o' is being removed from the list.
992 */
correctpointers(global_State * g,GCObject * o)993 static void correctpointers (global_State *g, GCObject *o) {
994 checkpointer(&g->survival, o);
995 checkpointer(&g->old1, o);
996 checkpointer(&g->reallyold, o);
997 checkpointer(&g->firstold1, o);
998 }
999
1000
1001 /*
1002 ** if object 'o' has a finalizer, remove it from 'allgc' list (must
1003 ** search the list to find it) and link it in 'finobj' list.
1004 */
luaC_checkfinalizer(lua_State * L,GCObject * o,Table * mt)1005 void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
1006 global_State *g = G(L);
1007 if (tofinalize(o) || /* obj. is already marked... */
1008 gfasttm(g, mt, TM_GC) == NULL) /* or has no finalizer? */
1009 return; /* nothing to be done */
1010 else { /* move 'o' to 'finobj' list */
1011 GCObject **p;
1012 if (issweepphase(g)) {
1013 makewhite(g, o); /* "sweep" object 'o' */
1014 if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */
1015 g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */
1016 }
1017 else
1018 correctpointers(g, o);
1019 /* search for pointer pointing to 'o' */
1020 for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
1021 *p = o->next; /* remove 'o' from 'allgc' list */
1022 o->next = g->finobj; /* link it in 'finobj' list */
1023 g->finobj = o;
1024 l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */
1025 }
1026 }
1027
1028 /* }====================================================== */
1029
1030
1031 /*
1032 ** {======================================================
1033 ** Generational Collector
1034 ** =======================================================
1035 */
1036
1037 static void setpause (global_State *g);
1038
1039
1040 /*
1041 ** Sweep a list of objects to enter generational mode. Deletes dead
1042 ** objects and turns the non dead to old. All non-dead threads---which
1043 ** are now old---must be in a gray list. Everything else is not in a
1044 ** gray list. Open upvalues are also kept gray.
1045 */
sweep2old(lua_State * L,GCObject ** p)1046 static void sweep2old (lua_State *L, GCObject **p) {
1047 GCObject *curr;
1048 global_State *g = G(L);
1049 while ((curr = *p) != NULL) {
1050 if (iswhite(curr)) { /* is 'curr' dead? */
1051 lua_assert(isdead(g, curr));
1052 *p = curr->next; /* remove 'curr' from list */
1053 freeobj(L, curr); /* erase 'curr' */
1054 }
1055 else { /* all surviving objects become old */
1056 setage(curr, G_OLD);
1057 if (curr->tt == LUA_VTHREAD) { /* threads must be watched */
1058 lua_State *th = gco2th(curr);
1059 linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
1060 }
1061 else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr)))
1062 set2gray(curr); /* open upvalues are always gray */
1063 else /* everything else is black */
1064 nw2black(curr);
1065 p = &curr->next; /* go to next element */
1066 }
1067 }
1068 }
1069
1070
1071 /*
1072 ** Sweep for generational mode. Delete dead objects. (Because the
1073 ** collection is not incremental, there are no "new white" objects
1074 ** during the sweep. So, any white object must be dead.) For
1075 ** non-dead objects, advance their ages and clear the color of
1076 ** new objects. (Old objects keep their colors.)
1077 ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced
1078 ** here, because these old-generation objects are usually not swept
1079 ** here. They will all be advanced in 'correctgraylist'. That function
1080 ** will also remove objects turned white here from any gray list.
1081 */
sweepgen(lua_State * L,global_State * g,GCObject ** p,GCObject * limit,GCObject ** pfirstold1)1082 static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
1083 GCObject *limit, GCObject **pfirstold1) {
1084 static const lu_byte nextage[] = {
1085 G_SURVIVAL, /* from G_NEW */
1086 G_OLD1, /* from G_SURVIVAL */
1087 G_OLD1, /* from G_OLD0 */
1088 G_OLD, /* from G_OLD1 */
1089 G_OLD, /* from G_OLD (do not change) */
1090 G_TOUCHED1, /* from G_TOUCHED1 (do not change) */
1091 G_TOUCHED2 /* from G_TOUCHED2 (do not change) */
1092 };
1093 int white = luaC_white(g);
1094 GCObject *curr;
1095 while ((curr = *p) != limit) {
1096 if (iswhite(curr)) { /* is 'curr' dead? */
1097 lua_assert(!isold(curr) && isdead(g, curr));
1098 *p = curr->next; /* remove 'curr' from list */
1099 freeobj(L, curr); /* erase 'curr' */
1100 }
1101 else { /* correct mark and age */
1102 if (getage(curr) == G_NEW) { /* new objects go back to white */
1103 int marked = curr->marked & ~maskgcbits; /* erase GC bits */
1104 curr->marked = cast_byte(marked | G_SURVIVAL | white);
1105 }
1106 else { /* all other objects will be old, and so keep their color */
1107 setage(curr, nextage[getage(curr)]);
1108 if (getage(curr) == G_OLD1 && *pfirstold1 == NULL)
1109 *pfirstold1 = curr; /* first OLD1 object in the list */
1110 }
1111 p = &curr->next; /* go to next element */
1112 }
1113 }
1114 return p;
1115 }
1116
1117
1118 /*
1119 ** Traverse a list making all its elements white and clearing their
1120 ** age. In incremental mode, all objects are 'new' all the time,
1121 ** except for fixed strings (which are always old).
1122 */
whitelist(global_State * g,GCObject * p)1123 static void whitelist (global_State *g, GCObject *p) {
1124 int white = luaC_white(g);
1125 for (; p != NULL; p = p->next)
1126 p->marked = cast_byte((p->marked & ~maskgcbits) | white);
1127 }
1128
1129
1130 /*
1131 ** Correct a list of gray objects. Return pointer to where rest of the
1132 ** list should be linked.
1133 ** Because this correction is done after sweeping, young objects might
1134 ** be turned white and still be in the list. They are only removed.
1135 ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list;
1136 ** Non-white threads also remain on the list; 'TOUCHED2' objects become
1137 ** regular old; they and anything else are removed from the list.
1138 */
correctgraylist(GCObject ** p)1139 static GCObject **correctgraylist (GCObject **p) {
1140 GCObject *curr;
1141 while ((curr = *p) != NULL) {
1142 GCObject **next = getgclist(curr);
1143 if (iswhite(curr))
1144 goto remove; /* remove all white objects */
1145 else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */
1146 lua_assert(isgray(curr));
1147 nw2black(curr); /* make it black, for next barrier */
1148 changeage(curr, G_TOUCHED1, G_TOUCHED2);
1149 goto remain; /* keep it in the list and go to next element */
1150 }
1151 else if (curr->tt == LUA_VTHREAD) {
1152 lua_assert(isgray(curr));
1153 goto remain; /* keep non-white threads on the list */
1154 }
1155 else { /* everything else is removed */
1156 lua_assert(isold(curr)); /* young objects should be white here */
1157 if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */
1158 changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */
1159 nw2black(curr); /* make object black (to be removed) */
1160 goto remove;
1161 }
1162 remove: *p = *next; continue;
1163 remain: p = next; continue;
1164 }
1165 return p;
1166 }
1167
1168
1169 /*
1170 ** Correct all gray lists, coalescing them into 'grayagain'.
1171 */
correctgraylists(global_State * g)1172 static void correctgraylists (global_State *g) {
1173 GCObject **list = correctgraylist(&g->grayagain);
1174 *list = g->weak; g->weak = NULL;
1175 list = correctgraylist(list);
1176 *list = g->allweak; g->allweak = NULL;
1177 list = correctgraylist(list);
1178 *list = g->ephemeron; g->ephemeron = NULL;
1179 correctgraylist(list);
1180 }
1181
1182
1183 /*
1184 ** Mark black 'OLD1' objects when starting a new young collection.
1185 ** Gray objects are already in some gray list, and so will be visited
1186 ** in the atomic step.
1187 */
markold(global_State * g,GCObject * from,GCObject * to)1188 static void markold (global_State *g, GCObject *from, GCObject *to) {
1189 GCObject *p;
1190 for (p = from; p != to; p = p->next) {
1191 if (getage(p) == G_OLD1) {
1192 lua_assert(!iswhite(p));
1193 changeage(p, G_OLD1, G_OLD); /* now they are old */
1194 if (isblack(p))
1195 reallymarkobject(g, p);
1196 }
1197 }
1198 }
1199
1200
1201 /*
1202 ** Finish a young-generation collection.
1203 */
finishgencycle(lua_State * L,global_State * g)1204 static void finishgencycle (lua_State *L, global_State *g) {
1205 correctgraylists(g);
1206 checkSizes(L, g);
1207 g->gcstate = GCSpropagate; /* skip restart */
1208 if (!g->gcemergency)
1209 callallpendingfinalizers(L);
1210 }
1211
1212
1213 /*
1214 ** Does a young collection. First, mark 'OLD1' objects. Then does the
1215 ** atomic step. Then, sweep all lists and advance pointers. Finally,
1216 ** finish the collection.
1217 */
youngcollection(lua_State * L,global_State * g)1218 static void youngcollection (lua_State *L, global_State *g) {
1219 GCObject **psurvival; /* to point to first non-dead survival object */
1220 GCObject *dummy; /* dummy out parameter to 'sweepgen' */
1221 lua_assert(g->gcstate == GCSpropagate);
1222 if (g->firstold1) { /* are there regular OLD1 objects? */
1223 markold(g, g->firstold1, g->reallyold); /* mark them */
1224 g->firstold1 = NULL; /* no more OLD1 objects (for now) */
1225 }
1226 markold(g, g->finobj, g->finobjrold);
1227 markold(g, g->tobefnz, NULL);
1228 atomic(L);
1229
1230 /* sweep nursery and get a pointer to its last live element */
1231 g->gcstate = GCSswpallgc;
1232 psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1);
1233 /* sweep 'survival' */
1234 sweepgen(L, g, psurvival, g->old1, &g->firstold1);
1235 g->reallyold = g->old1;
1236 g->old1 = *psurvival; /* 'survival' survivals are old now */
1237 g->survival = g->allgc; /* all news are survivals */
1238
1239 /* repeat for 'finobj' lists */
1240 dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */
1241 psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy);
1242 /* sweep 'survival' */
1243 sweepgen(L, g, psurvival, g->finobjold1, &dummy);
1244 g->finobjrold = g->finobjold1;
1245 g->finobjold1 = *psurvival; /* 'survival' survivals are old now */
1246 g->finobjsur = g->finobj; /* all news are survivals */
1247
1248 sweepgen(L, g, &g->tobefnz, NULL, &dummy);
1249 finishgencycle(L, g);
1250 }
1251
1252
1253 /*
1254 ** Clears all gray lists, sweeps objects, and prepare sublists to enter
1255 ** generational mode. The sweeps remove dead objects and turn all
1256 ** surviving objects to old. Threads go back to 'grayagain'; everything
1257 ** else is turned black (not in any gray list).
1258 */
atomic2gen(lua_State * L,global_State * g)1259 static void atomic2gen (lua_State *L, global_State *g) {
1260 cleargraylists(g);
1261 /* sweep all elements making them old */
1262 g->gcstate = GCSswpallgc;
1263 sweep2old(L, &g->allgc);
1264 /* everything alive now is old */
1265 g->reallyold = g->old1 = g->survival = g->allgc;
1266 g->firstold1 = NULL; /* there are no OLD1 objects anywhere */
1267
1268 /* repeat for 'finobj' lists */
1269 sweep2old(L, &g->finobj);
1270 g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj;
1271
1272 sweep2old(L, &g->tobefnz);
1273
1274 g->gckind = KGC_GEN;
1275 g->lastatomic = 0;
1276 g->GCestimate = gettotalbytes(g); /* base for memory control */
1277 finishgencycle(L, g);
1278 }
1279
1280
1281 /*
1282 ** Enter generational mode. Must go until the end of an atomic cycle
1283 ** to ensure that all objects are correctly marked and weak tables
1284 ** are cleared. Then, turn all objects into old and finishes the
1285 ** collection.
1286 */
entergen(lua_State * L,global_State * g)1287 static lu_mem entergen (lua_State *L, global_State *g) {
1288 lu_mem numobjs;
1289 luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */
1290 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
1291 numobjs = atomic(L); /* propagates all and then do the atomic stuff */
1292 atomic2gen(L, g);
1293 return numobjs;
1294 }
1295
1296
1297 /*
1298 ** Enter incremental mode. Turn all objects white, make all
1299 ** intermediate lists point to NULL (to avoid invalid pointers),
1300 ** and go to the pause state.
1301 */
enterinc(global_State * g)1302 static void enterinc (global_State *g) {
1303 whitelist(g, g->allgc);
1304 g->reallyold = g->old1 = g->survival = NULL;
1305 whitelist(g, g->finobj);
1306 whitelist(g, g->tobefnz);
1307 g->finobjrold = g->finobjold1 = g->finobjsur = NULL;
1308 g->gcstate = GCSpause;
1309 g->gckind = KGC_INC;
1310 g->lastatomic = 0;
1311 }
1312
1313
1314 /*
1315 ** Change collector mode to 'newmode'.
1316 */
luaC_changemode(lua_State * L,int newmode)1317 void luaC_changemode (lua_State *L, int newmode) {
1318 global_State *g = G(L);
1319 if (newmode != g->gckind) {
1320 if (newmode == KGC_GEN) /* entering generational mode? */
1321 entergen(L, g);
1322 else
1323 enterinc(g); /* entering incremental mode */
1324 }
1325 g->lastatomic = 0;
1326 }
1327
1328
1329 /*
1330 ** Does a full collection in generational mode.
1331 */
fullgen(lua_State * L,global_State * g)1332 static lu_mem fullgen (lua_State *L, global_State *g) {
1333 enterinc(g);
1334 return entergen(L, g);
1335 }
1336
1337
1338 /*
1339 ** Set debt for the next minor collection, which will happen when
1340 ** memory grows 'genminormul'%.
1341 */
setminordebt(global_State * g)1342 static void setminordebt (global_State *g) {
1343 luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul));
1344 }
1345
1346
1347 /*
1348 ** Does a major collection after last collection was a "bad collection".
1349 **
1350 ** When the program is building a big structure, it allocates lots of
1351 ** memory but generates very little garbage. In those scenarios,
1352 ** the generational mode just wastes time doing small collections, and
1353 ** major collections are frequently what we call a "bad collection", a
1354 ** collection that frees too few objects. To avoid the cost of switching
1355 ** between generational mode and the incremental mode needed for full
1356 ** (major) collections, the collector tries to stay in incremental mode
1357 ** after a bad collection, and to switch back to generational mode only
1358 ** after a "good" collection (one that traverses less than 9/8 objects
1359 ** of the previous one).
1360 ** The collector must choose whether to stay in incremental mode or to
1361 ** switch back to generational mode before sweeping. At this point, it
1362 ** does not know the real memory in use, so it cannot use memory to
1363 ** decide whether to return to generational mode. Instead, it uses the
1364 ** number of objects traversed (returned by 'atomic') as a proxy. The
1365 ** field 'g->lastatomic' keeps this count from the last collection.
1366 ** ('g->lastatomic != 0' also means that the last collection was bad.)
1367 */
stepgenfull(lua_State * L,global_State * g)1368 static void stepgenfull (lua_State *L, global_State *g) {
1369 lu_mem newatomic; /* count of traversed objects */
1370 lu_mem lastatomic = g->lastatomic; /* count from last collection */
1371 if (g->gckind == KGC_GEN) /* still in generational mode? */
1372 enterinc(g); /* enter incremental mode */
1373 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
1374 newatomic = atomic(L); /* mark everybody */
1375 if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */
1376 atomic2gen(L, g); /* return to generational mode */
1377 setminordebt(g);
1378 }
1379 else { /* another bad collection; stay in incremental mode */
1380 g->GCestimate = gettotalbytes(g); /* first estimate */;
1381 entersweep(L);
1382 luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */
1383 setpause(g);
1384 g->lastatomic = newatomic;
1385 }
1386 }
1387
1388
1389 /*
1390 ** Does a generational "step".
1391 ** Usually, this means doing a minor collection and setting the debt to
1392 ** make another collection when memory grows 'genminormul'% larger.
1393 **
1394 ** However, there are exceptions. If memory grows 'genmajormul'%
1395 ** larger than it was at the end of the last major collection (kept
1396 ** in 'g->GCestimate'), the function does a major collection. At the
1397 ** end, it checks whether the major collection was able to free a
1398 ** decent amount of memory (at least half the growth in memory since
1399 ** previous major collection). If so, the collector keeps its state,
1400 ** and the next collection will probably be minor again. Otherwise,
1401 ** we have what we call a "bad collection". In that case, set the field
1402 ** 'g->lastatomic' to signal that fact, so that the next collection will
1403 ** go to 'stepgenfull'.
1404 **
1405 ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
1406 ** in that case, do a minor collection.
1407 */
genstep(lua_State * L,global_State * g)1408 static void genstep (lua_State *L, global_State *g) {
1409 if (g->lastatomic != 0) /* last collection was a bad one? */
1410 stepgenfull(L, g); /* do a full step */
1411 else {
1412 lu_mem majorbase = g->GCestimate; /* memory after last major collection */
1413 lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul);
1414 if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) {
1415 lu_mem numobjs = fullgen(L, g); /* do a major collection */
1416 if (gettotalbytes(g) < majorbase + (majorinc / 2)) {
1417 /* collected at least half of memory growth since last major
1418 collection; keep doing minor collections */
1419 setminordebt(g);
1420 }
1421 else { /* bad collection */
1422 g->lastatomic = numobjs; /* signal that last collection was bad */
1423 setpause(g); /* do a long wait for next (major) collection */
1424 }
1425 }
1426 else { /* regular case; do a minor collection */
1427 youngcollection(L, g);
1428 setminordebt(g);
1429 g->GCestimate = majorbase; /* preserve base value */
1430 }
1431 }
1432 lua_assert(isdecGCmodegen(g));
1433 }
1434
1435 /* }====================================================== */
1436
1437
1438 /*
1439 ** {======================================================
1440 ** GC control
1441 ** =======================================================
1442 */
1443
1444
1445 /*
1446 ** Set the "time" to wait before starting a new GC cycle; cycle will
1447 ** start when memory use hits the threshold of ('estimate' * pause /
1448 ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
1449 ** because Lua cannot even start with less than PAUSEADJ bytes).
1450 */
setpause(global_State * g)1451 static void setpause (global_State *g) {
1452 l_mem threshold, debt;
1453 int pause = getgcparam(g->gcpause);
1454 l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */
1455 lua_assert(estimate > 0);
1456 threshold = (pause < MAX_LMEM / estimate) /* overflow? */
1457 ? estimate * pause /* no overflow */
1458 : MAX_LMEM; /* overflow; truncate to maximum */
1459 debt = gettotalbytes(g) - threshold;
1460 if (debt > 0) debt = 0;
1461 luaE_setdebt(g, debt);
1462 }
1463
1464
1465 /*
1466 ** Enter first sweep phase.
1467 ** The call to 'sweeptolive' makes the pointer point to an object
1468 ** inside the list (instead of to the header), so that the real sweep do
1469 ** not need to skip objects created between "now" and the start of the
1470 ** real sweep.
1471 */
entersweep(lua_State * L)1472 static void entersweep (lua_State *L) {
1473 global_State *g = G(L);
1474 g->gcstate = GCSswpallgc;
1475 lua_assert(g->sweepgc == NULL);
1476 g->sweepgc = sweeptolive(L, &g->allgc);
1477 }
1478
1479
1480 /*
1481 ** Delete all objects in list 'p' until (but not including) object
1482 ** 'limit'.
1483 */
deletelist(lua_State * L,GCObject * p,GCObject * limit)1484 static void deletelist (lua_State *L, GCObject *p, GCObject *limit) {
1485 while (p != limit) {
1486 GCObject *next = p->next;
1487 freeobj(L, p);
1488 p = next;
1489 }
1490 }
1491
1492
1493 /*
1494 ** Call all finalizers of the objects in the given Lua state, and
1495 ** then free all objects, except for the main thread.
1496 */
luaC_freeallobjects(lua_State * L)1497 void luaC_freeallobjects (lua_State *L) {
1498 global_State *g = G(L);
1499 luaC_changemode(L, KGC_INC);
1500 separatetobefnz(g, 1); /* separate all objects with finalizers */
1501 lua_assert(g->finobj == NULL);
1502 callallpendingfinalizers(L);
1503 deletelist(L, g->allgc, obj2gco(g->mainthread));
1504 deletelist(L, g->finobj, NULL);
1505 deletelist(L, g->fixedgc, NULL); /* collect fixed objects */
1506 lua_assert(g->strt.nuse == 0);
1507 }
1508
1509
atomic(lua_State * L)1510 static lu_mem atomic (lua_State *L) {
1511 global_State *g = G(L);
1512 lu_mem work = 0;
1513 GCObject *origweak, *origall;
1514 GCObject *grayagain = g->grayagain; /* save original list */
1515 g->grayagain = NULL;
1516 lua_assert(g->ephemeron == NULL && g->weak == NULL);
1517 lua_assert(!iswhite(g->mainthread));
1518 g->gcstate = GCSatomic;
1519 markobject(g, L); /* mark running thread */
1520 /* registry and global metatables may be changed by API */
1521 markvalue(g, &g->l_registry);
1522 markmt(g); /* mark global metatables */
1523 work += propagateall(g); /* empties 'gray' list */
1524 /* remark occasional upvalues of (maybe) dead threads */
1525 work += remarkupvals(g);
1526 work += propagateall(g); /* propagate changes */
1527 g->gray = grayagain;
1528 work += propagateall(g); /* traverse 'grayagain' list */
1529 convergeephemerons(g);
1530 /* at this point, all strongly accessible objects are marked. */
1531 /* Clear values from weak tables, before checking finalizers */
1532 clearbyvalues(g, g->weak, NULL);
1533 clearbyvalues(g, g->allweak, NULL);
1534 origweak = g->weak; origall = g->allweak;
1535 separatetobefnz(g, 0); /* separate objects to be finalized */
1536 work += markbeingfnz(g); /* mark objects that will be finalized */
1537 work += propagateall(g); /* remark, to propagate 'resurrection' */
1538 convergeephemerons(g);
1539 /* at this point, all resurrected objects are marked. */
1540 /* remove dead objects from weak tables */
1541 clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */
1542 clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */
1543 /* clear values from resurrected weak tables */
1544 clearbyvalues(g, g->weak, origweak);
1545 clearbyvalues(g, g->allweak, origall);
1546 luaS_clearcache(g);
1547 g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */
1548 lua_assert(g->gray == NULL);
1549 return work; /* estimate of slots marked by 'atomic' */
1550 }
1551
1552
sweepstep(lua_State * L,global_State * g,int nextstate,GCObject ** nextlist)1553 static int sweepstep (lua_State *L, global_State *g,
1554 int nextstate, GCObject **nextlist) {
1555 if (g->sweepgc) {
1556 l_mem olddebt = g->GCdebt;
1557 int count;
1558 g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count);
1559 g->GCestimate += g->GCdebt - olddebt; /* update estimate */
1560 return count;
1561 }
1562 else { /* enter next state */
1563 g->gcstate = nextstate;
1564 g->sweepgc = nextlist;
1565 return 0; /* no work done */
1566 }
1567 }
1568
1569
singlestep(lua_State * L)1570 static lu_mem singlestep (lua_State *L) {
1571 global_State *g = G(L);
1572 switch (g->gcstate) {
1573 case GCSpause: {
1574 restartcollection(g);
1575 g->gcstate = GCSpropagate;
1576 return 1;
1577 }
1578 case GCSpropagate: {
1579 if (g->gray == NULL) { /* no more gray objects? */
1580 g->gcstate = GCSenteratomic; /* finish propagate phase */
1581 return 0;
1582 }
1583 else
1584 return propagatemark(g); /* traverse one gray object */
1585 }
1586 case GCSenteratomic: {
1587 lu_mem work = atomic(L); /* work is what was traversed by 'atomic' */
1588 entersweep(L);
1589 g->GCestimate = gettotalbytes(g); /* first estimate */;
1590 return work;
1591 }
1592 case GCSswpallgc: { /* sweep "regular" objects */
1593 return sweepstep(L, g, GCSswpfinobj, &g->finobj);
1594 }
1595 case GCSswpfinobj: { /* sweep objects with finalizers */
1596 return sweepstep(L, g, GCSswptobefnz, &g->tobefnz);
1597 }
1598 case GCSswptobefnz: { /* sweep objects to be finalized */
1599 return sweepstep(L, g, GCSswpend, NULL);
1600 }
1601 case GCSswpend: { /* finish sweeps */
1602 checkSizes(L, g);
1603 g->gcstate = GCScallfin;
1604 return 0;
1605 }
1606 case GCScallfin: { /* call remaining finalizers */
1607 if (g->tobefnz && !g->gcemergency) {
1608 int n = runafewfinalizers(L, GCFINMAX);
1609 return n * GCFINALIZECOST;
1610 }
1611 else { /* emergency mode or no more finalizers */
1612 g->gcstate = GCSpause; /* finish collection */
1613 return 0;
1614 }
1615 }
1616 default: lua_assert(0); return 0;
1617 }
1618 }
1619
1620
1621 /*
1622 ** advances the garbage collector until it reaches a state allowed
1623 ** by 'statemask'
1624 */
luaC_runtilstate(lua_State * L,int statesmask)1625 void luaC_runtilstate (lua_State *L, int statesmask) {
1626 global_State *g = G(L);
1627 while (!testbit(statesmask, g->gcstate))
1628 singlestep(L);
1629 }
1630
1631
1632 /*
1633 ** Performs a basic incremental step. The debt and step size are
1634 ** converted from bytes to "units of work"; then the function loops
1635 ** running single steps until adding that many units of work or
1636 ** finishing a cycle (pause state). Finally, it sets the debt that
1637 ** controls when next step will be performed.
1638 */
incstep(lua_State * L,global_State * g)1639 static void incstep (lua_State *L, global_State *g) {
1640 int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */
1641 l_mem debt = (g->GCdebt / WORK2MEM) * stepmul;
1642 l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem))
1643 ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul
1644 : MAX_LMEM; /* overflow; keep maximum value */
1645 do { /* repeat until pause or enough "credit" (negative debt) */
1646 lu_mem work = singlestep(L); /* perform one single step */
1647 debt -= work;
1648 } while (debt > -stepsize && g->gcstate != GCSpause);
1649 if (g->gcstate == GCSpause)
1650 setpause(g); /* pause until next cycle */
1651 else {
1652 debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */
1653 luaE_setdebt(g, debt);
1654 }
1655 }
1656
1657 /*
1658 ** performs a basic GC step if collector is running
1659 */
luaC_step(lua_State * L)1660 void luaC_step (lua_State *L) {
1661 global_State *g = G(L);
1662 lua_assert(!g->gcemergency);
1663 if (g->gcrunning) { /* running? */
1664 if(isdecGCmodegen(g))
1665 genstep(L, g);
1666 else
1667 incstep(L, g);
1668 }
1669 }
1670
1671
1672 /*
1673 ** Perform a full collection in incremental mode.
1674 ** Before running the collection, check 'keepinvariant'; if it is true,
1675 ** there may be some objects marked as black, so the collector has
1676 ** to sweep all objects to turn them back to white (as white has not
1677 ** changed, nothing will be collected).
1678 */
fullinc(lua_State * L,global_State * g)1679 static void fullinc (lua_State *L, global_State *g) {
1680 if (keepinvariant(g)) /* black objects? */
1681 entersweep(L); /* sweep everything to turn them back to white */
1682 /* finish any pending sweep phase to start a new cycle */
1683 luaC_runtilstate(L, bitmask(GCSpause));
1684 luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */
1685 /* estimate must be correct after a full GC cycle */
1686 lua_assert(g->GCestimate == gettotalbytes(g));
1687 luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */
1688 setpause(g);
1689 }
1690
1691
1692 /*
1693 ** Performs a full GC cycle; if 'isemergency', set a flag to avoid
1694 ** some operations which could change the interpreter state in some
1695 ** unexpected ways (running finalizers and shrinking some structures).
1696 */
luaC_fullgc(lua_State * L,int isemergency)1697 void luaC_fullgc (lua_State *L, int isemergency) {
1698 global_State *g = G(L);
1699 lua_assert(!g->gcemergency);
1700 g->gcemergency = isemergency; /* set flag */
1701 if (g->gckind == KGC_INC)
1702 fullinc(L, g);
1703 else
1704 fullgen(L, g);
1705 g->gcemergency = 0;
1706 }
1707
1708 /* }====================================================== */
1709
1710
1711