• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/ADT/Bitfield.h - Get and Set bits in an integer ---*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements methods to test, set and extract typed bits from packed
11 /// unsigned integers.
12 ///
13 /// Why not C++ bitfields?
14 /// ----------------------
15 /// C++ bitfields do not offer control over the bit layout nor consistent
16 /// behavior when it comes to out of range values.
17 /// For instance, the layout is implementation defined and adjacent bits may be
18 /// packed together but are not required to. This is problematic when storage is
19 /// sparse and data must be stored in a particular integer type.
20 ///
21 /// The methods provided in this file ensure precise control over the
22 /// layout/storage as well as protection against out of range values.
23 ///
24 /// Usage example
25 /// -------------
26 /// \code{.cpp}
27 ///  uint8_t Storage = 0;
28 ///
29 ///  // Store and retrieve a single bit as bool.
30 ///  using Bool = Bitfield::Element<bool, 0, 1>;
31 ///  Bitfield::set<Bool>(Storage, true);
32 ///  EXPECT_EQ(Storage, 0b00000001);
33 ///  //                          ^
34 ///  EXPECT_EQ(Bitfield::get<Bool>(Storage), true);
35 ///
36 ///  // Store and retrieve a 2 bit typed enum.
37 ///  // Note: enum underlying type must be unsigned.
38 ///  enum class SuitEnum : uint8_t { CLUBS, DIAMONDS, HEARTS, SPADES };
39 ///  // Note: enum maximum value needs to be passed in as last parameter.
40 ///  using Suit = Bitfield::Element<SuitEnum, 1, 2, SuitEnum::SPADES>;
41 ///  Bitfield::set<Suit>(Storage, SuitEnum::HEARTS);
42 ///  EXPECT_EQ(Storage, 0b00000101);
43 ///  //                        ^^
44 ///  EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::HEARTS);
45 ///
46 ///  // Store and retrieve a 5 bit value as unsigned.
47 ///  using Value = Bitfield::Element<unsigned, 3, 5>;
48 ///  Bitfield::set<Value>(Storage, 10);
49 ///  EXPECT_EQ(Storage, 0b01010101);
50 ///  //                   ^^^^^
51 ///  EXPECT_EQ(Bitfield::get<Value>(Storage), 10U);
52 ///
53 ///  // Interpret the same 5 bit value as signed.
54 ///  using SignedValue = Bitfield::Element<int, 3, 5>;
55 ///  Bitfield::set<SignedValue>(Storage, -2);
56 ///  EXPECT_EQ(Storage, 0b11110101);
57 ///  //                   ^^^^^
58 ///  EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -2);
59 ///
60 ///  // Ability to efficiently test if a field is non zero.
61 ///  EXPECT_TRUE(Bitfield::test<Value>(Storage));
62 ///
63 ///  // Alter Storage changes value.
64 ///  Storage = 0;
65 ///  EXPECT_EQ(Bitfield::get<Bool>(Storage), false);
66 ///  EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::CLUBS);
67 ///  EXPECT_EQ(Bitfield::get<Value>(Storage), 0U);
68 ///  EXPECT_EQ(Bitfield::get<SignedValue>(Storage), 0);
69 ///
70 ///  Storage = 255;
71 ///  EXPECT_EQ(Bitfield::get<Bool>(Storage), true);
72 ///  EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::SPADES);
73 ///  EXPECT_EQ(Bitfield::get<Value>(Storage), 31U);
74 ///  EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -1);
75 /// \endcode
76 ///
77 //===----------------------------------------------------------------------===//
78 
79 #ifndef LLVM_ADT_BITFIELDS_H
80 #define LLVM_ADT_BITFIELDS_H
81 
82 #include <cassert>
83 #include <climits> // CHAR_BIT
84 #include <cstddef> // size_t
85 #include <cstdint> // uintXX_t
86 #include <limits>  // numeric_limits
87 #include <type_traits>
88 
89 namespace llvm {
90 
91 namespace bitfields_details {
92 
93 /// A struct defining useful bit patterns for n-bits integer types.
94 template <typename T, unsigned Bits> struct BitPatterns {
95   /// Bit patterns are forged using the equivalent `Unsigned` type because of
96   /// undefined operations over signed types (e.g. Bitwise shift operators).
97   /// Moreover same size casting from unsigned to signed is well defined but not
98   /// the other way around.
99   using Unsigned = typename std::make_unsigned<T>::type;
100   static_assert(sizeof(Unsigned) == sizeof(T), "Types must have same size");
101 
102   static constexpr unsigned TypeBits = sizeof(Unsigned) * CHAR_BIT;
103   static_assert(TypeBits >= Bits, "n-bit must fit in T");
104 
105   /// e.g. with TypeBits == 8 and Bits == 6.
106   static constexpr Unsigned AllZeros = Unsigned(0);                  // 00000000
107   static constexpr Unsigned AllOnes = ~Unsigned(0);                  // 11111111
108   static constexpr Unsigned Umin = AllZeros;                         // 00000000
109   static constexpr Unsigned Umax = AllOnes >> (TypeBits - Bits);     // 00111111
110   static constexpr Unsigned SignBitMask = Unsigned(1) << (Bits - 1); // 00100000
111   static constexpr Unsigned Smax = Umax >> 1U;                       // 00011111
112   static constexpr Unsigned Smin = ~Smax;                            // 11100000
113   static constexpr Unsigned SignExtend = Unsigned(Smin << 1U);       // 11000000
114 };
115 
116 /// `Compressor` is used to manipulate the bits of a (possibly signed) integer
117 /// type so it can be packed and unpacked into a `bits` sized integer,
118 /// `Compressor` is specialized on signed-ness so no runtime cost is incurred.
119 /// The `pack` method also checks that the passed in `UserValue` is valid.
120 template <typename T, unsigned Bits, bool = std::is_unsigned<T>::value>
121 struct Compressor {
122   static_assert(std::is_unsigned<T>::value, "T is unsigned");
123   using BP = BitPatterns<T, Bits>;
124 
packCompressor125   static T pack(T UserValue, T UserMaxValue) {
126     assert(UserValue <= UserMaxValue && "value is too big");
127     assert(UserValue <= BP::Umax && "value is too big");
128     return UserValue;
129   }
130 
unpackCompressor131   static T unpack(T StorageValue) { return StorageValue; }
132 };
133 
134 template <typename T, unsigned Bits> struct Compressor<T, Bits, false> {
135   static_assert(std::is_signed<T>::value, "T is signed");
136   using BP = BitPatterns<T, Bits>;
137 
138   static T pack(T UserValue, T UserMaxValue) {
139     assert(UserValue <= UserMaxValue && "value is too big");
140     assert(UserValue <= T(BP::Smax) && "value is too big");
141     assert(UserValue >= T(BP::Smin) && "value is too small");
142     if (UserValue < 0)
143       UserValue &= ~BP::SignExtend;
144     return UserValue;
145   }
146 
147   static T unpack(T StorageValue) {
148     if (StorageValue >= T(BP::SignBitMask))
149       StorageValue |= BP::SignExtend;
150     return StorageValue;
151   }
152 };
153 
154 /// Impl is where Bifield description and Storage are put together to interact
155 /// with values.
156 template <typename Bitfield, typename StorageType> struct Impl {
157   static_assert(std::is_unsigned<StorageType>::value,
158                 "Storage must be unsigned");
159   using IntegerType = typename Bitfield::IntegerType;
160   using C = Compressor<IntegerType, Bitfield::Bits>;
161   using BP = BitPatterns<StorageType, Bitfield::Bits>;
162 
163   static constexpr size_t StorageBits = sizeof(StorageType) * CHAR_BIT;
164   static_assert(Bitfield::FirstBit <= StorageBits, "Data must fit in mask");
165   static_assert(Bitfield::LastBit <= StorageBits, "Data must fit in mask");
166   static constexpr StorageType Mask = BP::Umax << Bitfield::Shift;
167 
168   /// Checks `UserValue` is within bounds and packs it between `FirstBit` and
169   /// `LastBit` of `Packed` leaving the rest unchanged.
170   static void update(StorageType &Packed, IntegerType UserValue) {
171     const StorageType StorageValue = C::pack(UserValue, Bitfield::UserMaxValue);
172     Packed &= ~Mask;
173     Packed |= StorageValue << Bitfield::Shift;
174   }
175 
176   /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as
177   /// an`IntegerType`.
178   static IntegerType extract(StorageType Packed) {
179     const StorageType StorageValue = (Packed & Mask) >> Bitfield::Shift;
180     return C::unpack(StorageValue);
181   }
182 
183   /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as
184   /// an`IntegerType`.
185   static StorageType test(StorageType Packed) { return Packed & Mask; }
186 };
187 
188 /// `Bitfield` deals with the following type:
189 /// - unsigned enums
190 /// - signed and unsigned integer
191 /// - `bool`
192 /// Internally though we only manipulate integer with well defined and
193 /// consistent semantics, this excludes typed enums and `bool` that are replaced
194 /// with their unsigned counterparts. The correct type is restored in the public
195 /// API.
196 template <typename T, bool = std::is_enum<T>::value>
197 struct ResolveUnderlyingType {
198   using type = typename std::underlying_type<T>::type;
199 };
200 template <typename T> struct ResolveUnderlyingType<T, false> {
201   using type = T;
202 };
203 template <> struct ResolveUnderlyingType<bool, false> {
204   /// In case sizeof(bool) != 1, replace `void` by an additionnal
205   /// std::conditional.
206   using type = std::conditional<sizeof(bool) == 1, uint8_t, void>::type;
207 };
208 
209 } // namespace bitfields_details
210 
211 /// Holds functions to get, set or test bitfields.
212 struct Bitfield {
213   /// Describes an element of a Bitfield. This type is then used with the
214   /// Bitfield static member functions.
215   /// \tparam T         The type of the field once in unpacked form.
216   /// \tparam Offset    The position of the first bit.
217   /// \tparam Size      The size of the field.
218   /// \tparam MaxValue  For enums the maximum enum allowed.
219   template <typename T, unsigned Offset, unsigned Size,
220             T MaxValue = std::is_enum<T>::value
221                              ? T(0) // coupled with static_assert below
222                              : std::numeric_limits<T>::max()>
223   struct Element {
224     using Type = T;
225     using IntegerType =
226         typename bitfields_details::ResolveUnderlyingType<T>::type;
227     static constexpr unsigned Shift = Offset;
228     static constexpr unsigned Bits = Size;
229     static constexpr unsigned FirstBit = Offset;
230     static constexpr unsigned LastBit = Shift + Bits - 1;
231     static constexpr unsigned NextBit = Shift + Bits;
232 
233   private:
234     template <typename, typename> friend struct bitfields_details::Impl;
235 
236     static_assert(Bits > 0, "Bits must be non zero");
237     static constexpr size_t TypeBits = sizeof(IntegerType) * CHAR_BIT;
238     static_assert(Bits <= TypeBits, "Bits may not be greater than T size");
239     static_assert(!std::is_enum<T>::value || MaxValue != T(0),
240                   "Enum Bitfields must provide a MaxValue");
241     static_assert(!std::is_enum<T>::value ||
242                       std::is_unsigned<IntegerType>::value,
243                   "Enum must be unsigned");
244     static_assert(std::is_integral<IntegerType>::value &&
245                       std::numeric_limits<IntegerType>::is_integer,
246                   "IntegerType must be an integer type");
247 
248     static constexpr IntegerType UserMaxValue =
249         static_cast<IntegerType>(MaxValue);
250   };
251 
252   /// Unpacks the field from the `Packed` value.
253   template <typename Bitfield, typename StorageType>
254   static typename Bitfield::Type get(StorageType Packed) {
255     using I = bitfields_details::Impl<Bitfield, StorageType>;
256     return static_cast<typename Bitfield::Type>(I::extract(Packed));
257   }
258 
259   /// Return a non-zero value if the field is non-zero.
260   /// It is more efficient than `getField`.
261   template <typename Bitfield, typename StorageType>
262   static StorageType test(StorageType Packed) {
263     using I = bitfields_details::Impl<Bitfield, StorageType>;
264     return I::test(Packed);
265   }
266 
267   /// Sets the typed value in the provided `Packed` value.
268   /// The method will asserts if the provided value is too big to fit in.
269   template <typename Bitfield, typename StorageType>
270   static void set(StorageType &Packed, typename Bitfield::Type Value) {
271     using I = bitfields_details::Impl<Bitfield, StorageType>;
272     I::update(Packed, static_cast<typename Bitfield::IntegerType>(Value));
273   }
274 
275   /// Returns whether the two bitfields share common bits.
276   template <typename A, typename B> static constexpr bool isOverlapping() {
277     return A::LastBit >= B::FirstBit && B::LastBit >= A::FirstBit;
278   }
279 
280   template <typename A> static constexpr bool areContiguous() { return true; }
281   template <typename A, typename B, typename... Others>
282   static constexpr bool areContiguous() {
283     return A::NextBit == B::FirstBit && areContiguous<B, Others...>();
284   }
285 };
286 
287 } // namespace llvm
288 
289 #endif // LLVM_ADT_BITFIELDS_H
290