• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- AffineStructures.h - MLIR Affine Structures Class --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Structures for affine/polyhedral analysis of ML functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef MLIR_ANALYSIS_AFFINE_STRUCTURES_H
14 #define MLIR_ANALYSIS_AFFINE_STRUCTURES_H
15 
16 #include "mlir/IR/AffineExpr.h"
17 #include "mlir/IR/OpDefinition.h"
18 #include "mlir/Support/LogicalResult.h"
19 
20 namespace mlir {
21 
22 class AffineCondition;
23 class AffineForOp;
24 class AffineIfOp;
25 class AffineMap;
26 class AffineValueMap;
27 class IntegerSet;
28 class MLIRContext;
29 class Value;
30 class MemRefType;
31 struct MutableAffineMap;
32 
33 /// A flat list of affine equalities and inequalities in the form.
34 /// Inequality: c_0*x_0 + c_1*x_1 + .... + c_{n-1}*x_{n-1} >= 0
35 /// Equality: c_0*x_0 + c_1*x_1 + .... + c_{n-1}*x_{n-1} == 0
36 ///
37 /// FlatAffineConstraints stores coefficients in a contiguous buffer (one buffer
38 /// for equalities and one for inequalities). The size of each buffer is
39 /// numReservedCols * number of inequalities (or equalities). The reserved size
40 /// is numReservedCols * numReservedInequalities (or numReservedEqualities). A
41 /// coefficient (r, c) lives at the location numReservedCols * r + c in the
42 /// buffer. The extra space between getNumCols() and numReservedCols exists to
43 /// prevent frequent movement of data when adding columns, especially at the
44 /// end.
45 ///
46 /// The identifiers x_0, x_1, ... appear in the order: dimensional identifiers,
47 /// symbolic identifiers, and local identifiers.  The local identifiers
48 /// correspond to local/internal variables created when converting from
49 /// AffineExpr's containing mod's and div's; they are thus needed to increase
50 /// representational power. Each local identifier is always (by construction) a
51 /// floordiv of a pure add/mul affine function of dimensional, symbolic, and
52 /// other local identifiers, in a non-mutually recursive way. Hence, every local
53 /// identifier can ultimately always be recovered as an affine function of
54 /// dimensional and symbolic identifiers (involving floordiv's); note however
55 /// that some floordiv combinations are converted to mod's by AffineExpr
56 /// construction.
57 ///
58 class FlatAffineConstraints {
59 public:
60   enum IdKind { Dimension, Symbol, Local };
61 
62   /// Constructs a constraint system reserving memory for the specified number
63   /// of constraints and identifiers..
64   FlatAffineConstraints(unsigned numReservedInequalities,
65                         unsigned numReservedEqualities,
66                         unsigned numReservedCols, unsigned numDims = 0,
67                         unsigned numSymbols = 0, unsigned numLocals = 0,
68                         ArrayRef<Optional<Value>> idArgs = {})
numReservedCols(numReservedCols)69       : numReservedCols(numReservedCols), numDims(numDims),
70         numSymbols(numSymbols) {
71     assert(numReservedCols >= numDims + numSymbols + 1);
72     assert(idArgs.empty() || idArgs.size() == numDims + numSymbols + numLocals);
73     equalities.reserve(numReservedCols * numReservedEqualities);
74     inequalities.reserve(numReservedCols * numReservedInequalities);
75     numIds = numDims + numSymbols + numLocals;
76     ids.reserve(numReservedCols);
77     if (idArgs.empty())
78       ids.resize(numIds, None);
79     else
80       ids.append(idArgs.begin(), idArgs.end());
81   }
82 
83   /// Constructs a constraint system with the specified number of
84   /// dimensions and symbols.
85   FlatAffineConstraints(unsigned numDims = 0, unsigned numSymbols = 0,
86                         unsigned numLocals = 0,
87                         ArrayRef<Optional<Value>> idArgs = {})
88       : numReservedCols(numDims + numSymbols + numLocals + 1), numDims(numDims),
89         numSymbols(numSymbols) {
90     assert(numReservedCols >= numDims + numSymbols + 1);
91     assert(idArgs.empty() || idArgs.size() == numDims + numSymbols + numLocals);
92     numIds = numDims + numSymbols + numLocals;
93     ids.reserve(numIds);
94     if (idArgs.empty())
95       ids.resize(numIds, None);
96     else
97       ids.append(idArgs.begin(), idArgs.end());
98   }
99 
100   /// Return a system with no constraints, i.e., one which is satisfied by all
101   /// points.
102   static FlatAffineConstraints getUniverse(unsigned numDims = 0,
103                                            unsigned numSymbols = 0) {
104     return FlatAffineConstraints(numDims, numSymbols);
105   }
106 
107   /// Create a flat affine constraint system from an AffineValueMap or a list of
108   /// these. The constructed system will only include equalities.
109   explicit FlatAffineConstraints(const AffineValueMap &avm);
110   explicit FlatAffineConstraints(ArrayRef<const AffineValueMap *> avmRef);
111 
112   /// Creates an affine constraint system from an IntegerSet.
113   explicit FlatAffineConstraints(IntegerSet set);
114 
115   FlatAffineConstraints(const FlatAffineConstraints &other);
116 
117   FlatAffineConstraints(ArrayRef<const AffineValueMap *> avmRef,
118                         IntegerSet set);
119 
120   FlatAffineConstraints(const MutableAffineMap &map);
121 
~FlatAffineConstraints()122   ~FlatAffineConstraints() {}
123 
124   // Clears any existing data and reserves memory for the specified constraints.
125   void reset(unsigned numReservedInequalities, unsigned numReservedEqualities,
126              unsigned numReservedCols, unsigned numDims, unsigned numSymbols,
127              unsigned numLocals = 0, ArrayRef<Value> idArgs = {});
128 
129   void reset(unsigned numDims = 0, unsigned numSymbols = 0,
130              unsigned numLocals = 0, ArrayRef<Value> idArgs = {});
131 
132   /// Appends constraints from 'other' into this. This is equivalent to an
133   /// intersection with no simplification of any sort attempted.
134   void append(const FlatAffineConstraints &other);
135 
136   /// Checks for emptiness by performing variable elimination on all
137   /// identifiers, running the GCD test on each equality constraint, and
138   /// checking for invalid constraints. Returns true if the GCD test fails for
139   /// any equality, or if any invalid constraints are discovered on any row.
140   /// Returns false otherwise.
141   bool isEmpty() const;
142 
143   /// Runs the GCD test on all equality constraints. Returns 'true' if this test
144   /// fails on any equality. Returns 'false' otherwise.
145   /// This test can be used to disprove the existence of a solution. If it
146   /// returns true, no integer solution to the equality constraints can exist.
147   bool isEmptyByGCDTest() const;
148 
149   /// Runs the GCD test heuristic. If it proves inconclusive, falls back to
150   /// generalized basis reduction if the set is bounded.
151   ///
152   /// Returns true if the set of constraints is found to have no solution,
153   /// false if a solution exists or all tests were inconclusive.
154   bool isIntegerEmpty() const;
155 
156   /// Find a sample point satisfying the constraints. This uses a branch and
157   /// bound algorithm with generalized basis reduction, which always works if
158   /// the set is bounded. This should not be called for unbounded sets.
159   ///
160   /// Returns such a point if one exists, or an empty Optional otherwise.
161   Optional<SmallVector<int64_t, 8>> findIntegerSample() const;
162 
163   /// Returns true if the given point satisfies the constraints, or false
164   /// otherwise.
165   bool containsPoint(ArrayRef<int64_t> point) const;
166 
167   // Clones this object.
168   std::unique_ptr<FlatAffineConstraints> clone() const;
169 
170   /// Returns the value at the specified equality row and column.
atEq(unsigned i,unsigned j)171   inline int64_t atEq(unsigned i, unsigned j) const {
172     return equalities[i * numReservedCols + j];
173   }
atEq(unsigned i,unsigned j)174   inline int64_t &atEq(unsigned i, unsigned j) {
175     return equalities[i * numReservedCols + j];
176   }
177 
atIneq(unsigned i,unsigned j)178   inline int64_t atIneq(unsigned i, unsigned j) const {
179     return inequalities[i * numReservedCols + j];
180   }
181 
atIneq(unsigned i,unsigned j)182   inline int64_t &atIneq(unsigned i, unsigned j) {
183     return inequalities[i * numReservedCols + j];
184   }
185 
186   /// Returns the number of columns in the constraint system.
getNumCols()187   inline unsigned getNumCols() const { return numIds + 1; }
188 
getNumEqualities()189   inline unsigned getNumEqualities() const {
190     assert(equalities.size() % numReservedCols == 0 &&
191            "inconsistent equality buffer size");
192     return equalities.size() / numReservedCols;
193   }
194 
getNumInequalities()195   inline unsigned getNumInequalities() const {
196     assert(inequalities.size() % numReservedCols == 0 &&
197            "inconsistent inequality buffer size");
198     return inequalities.size() / numReservedCols;
199   }
200 
getNumReservedEqualities()201   inline unsigned getNumReservedEqualities() const {
202     return equalities.capacity() / numReservedCols;
203   }
204 
getNumReservedInequalities()205   inline unsigned getNumReservedInequalities() const {
206     return inequalities.capacity() / numReservedCols;
207   }
208 
getEquality(unsigned idx)209   inline ArrayRef<int64_t> getEquality(unsigned idx) const {
210     return ArrayRef<int64_t>(&equalities[idx * numReservedCols], getNumCols());
211   }
212 
getInequality(unsigned idx)213   inline ArrayRef<int64_t> getInequality(unsigned idx) const {
214     return ArrayRef<int64_t>(&inequalities[idx * numReservedCols],
215                              getNumCols());
216   }
217 
218   /// Adds constraints (lower and upper bounds) for the specified 'affine.for'
219   /// operation's Value using IR information stored in its bound maps. The
220   /// right identifier is first looked up using forOp's Value. Asserts if the
221   /// Value corresponding to the 'affine.for' operation isn't found in the
222   /// constraint system. Returns failure for the yet unimplemented/unsupported
223   /// cases.  Any new identifiers that are found in the bound operands of the
224   /// 'affine.for' operation are added as trailing identifiers (either
225   /// dimensional or symbolic depending on whether the operand is a valid
226   /// symbol).
227   //  TODO: add support for non-unit strides.
228   LogicalResult addAffineForOpDomain(AffineForOp forOp);
229 
230   /// Adds constraints imposed by the `affine.if` operation. These constraints
231   /// are collected from the IntegerSet attached to the given `affine.if`
232   /// instance argument (`ifOp`). It is asserted that:
233   /// 1) The IntegerSet of the given `affine.if` instance should not contain
234   /// semi-affine expressions,
235   /// 2) The columns of the constraint system created from `ifOp` should match
236   /// the columns in the current one regarding numbers and values.
237   void addAffineIfOpDomain(AffineIfOp ifOp);
238 
239   /// Adds a lower or an upper bound for the identifier at the specified
240   /// position with constraints being drawn from the specified bound map and
241   /// operands. If `eq` is true, add a single equality equal to the bound map's
242   /// first result expr.
243   LogicalResult addLowerOrUpperBound(unsigned pos, AffineMap boundMap,
244                                      ValueRange operands, bool eq,
245                                      bool lower = true);
246 
247   /// Returns the bound for the identifier at `pos` from the inequality at
248   /// `ineqPos` as a 1-d affine value map (affine map + operands). The returned
249   /// affine value map can either be a lower bound or an upper bound depending
250   /// on the sign of atIneq(ineqPos, pos). Asserts if the row at `ineqPos` does
251   /// not involve the `pos`th identifier.
252   void getIneqAsAffineValueMap(unsigned pos, unsigned ineqPos,
253                                AffineValueMap &vmap,
254                                MLIRContext *context) const;
255 
256   /// Returns the constraint system as an integer set. Returns a null integer
257   /// set if the system has no constraints, or if an integer set couldn't be
258   /// constructed as a result of a local variable's explicit representation not
259   /// being known and such a local variable appearing in any of the constraints.
260   IntegerSet getAsIntegerSet(MLIRContext *context) const;
261 
262   /// Computes the lower and upper bounds of the first 'num' dimensional
263   /// identifiers (starting at 'offset') as an affine map of the remaining
264   /// identifiers (dimensional and symbolic). This method is able to detect
265   /// identifiers as floordiv's and mod's of affine expressions of other
266   /// identifiers with respect to (positive) constants. Sets bound map to a
267   /// null AffineMap if such a bound can't be found (or yet unimplemented).
268   void getSliceBounds(unsigned offset, unsigned num, MLIRContext *context,
269                       SmallVectorImpl<AffineMap> *lbMaps,
270                       SmallVectorImpl<AffineMap> *ubMaps);
271 
272   /// Adds slice lower bounds represented by lower bounds in 'lbMaps' and upper
273   /// bounds in 'ubMaps' to each identifier in the constraint system which has
274   /// a value in 'values'. Note that both lower/upper bounds share the same
275   /// operand list 'operands'.
276   /// This function assumes 'values.size' == 'lbMaps.size' == 'ubMaps.size'.
277   /// Note that both lower/upper bounds use operands from 'operands'.
278   LogicalResult addSliceBounds(ArrayRef<Value> values,
279                                ArrayRef<AffineMap> lbMaps,
280                                ArrayRef<AffineMap> ubMaps,
281                                ArrayRef<Value> operands);
282 
283   // Adds an inequality (>= 0) from the coefficients specified in inEq.
284   void addInequality(ArrayRef<int64_t> inEq);
285   // Adds an equality from the coefficients specified in eq.
286   void addEquality(ArrayRef<int64_t> eq);
287 
288   /// Adds a constant lower bound constraint for the specified identifier.
289   void addConstantLowerBound(unsigned pos, int64_t lb);
290   /// Adds a constant upper bound constraint for the specified identifier.
291   void addConstantUpperBound(unsigned pos, int64_t ub);
292 
293   /// Adds a new local identifier as the floordiv of an affine function of other
294   /// identifiers, the coefficients of which are provided in 'dividend' and with
295   /// respect to a positive constant 'divisor'. Two constraints are added to the
296   /// system to capture equivalence with the floordiv:
297   /// q = dividend floordiv c    <=>   c*q <= dividend <= c*q + c - 1.
298   void addLocalFloorDiv(ArrayRef<int64_t> dividend, int64_t divisor);
299 
300   /// Adds a constant lower bound constraint for the specified expression.
301   void addConstantLowerBound(ArrayRef<int64_t> expr, int64_t lb);
302   /// Adds a constant upper bound constraint for the specified expression.
303   void addConstantUpperBound(ArrayRef<int64_t> expr, int64_t ub);
304 
305   /// Sets the identifier at the specified position to a constant.
306   void setIdToConstant(unsigned pos, int64_t val);
307 
308   /// Sets the identifier corresponding to the specified Value id to a
309   /// constant. Asserts if the 'id' is not found.
310   void setIdToConstant(Value id, int64_t val);
311 
312   /// Looks up the position of the identifier with the specified Value. Returns
313   /// true if found (false otherwise). `pos' is set to the (column) position of
314   /// the identifier.
315   bool findId(Value id, unsigned *pos) const;
316 
317   /// Returns true if an identifier with the specified Value exists, false
318   /// otherwise.
319   bool containsId(Value id) const;
320 
321   /// Swap the posA^th identifier with the posB^th identifier.
322   void swapId(unsigned posA, unsigned posB);
323 
324   // Add identifiers of the specified kind - specified positions are relative to
325   // the kind of identifier. The coefficient column corresponding to the added
326   // identifier is initialized to zero. 'id' is the Value corresponding to the
327   // identifier that can optionally be provided.
328   void addDimId(unsigned pos, Value id = nullptr);
329   void addSymbolId(unsigned pos, Value id = nullptr);
330   void addLocalId(unsigned pos);
331   void addId(IdKind kind, unsigned pos, Value id = nullptr);
332 
333   /// Add the specified values as a dim or symbol id depending on its nature, if
334   /// it already doesn't exist in the system. `id' has to be either a terminal
335   /// symbol or a loop IV, i.e., it cannot be the result affine.apply of any
336   /// symbols or loop IVs. The identifier is added to the end of the existing
337   /// dims or symbols. Additional information on the identifier is extracted
338   /// from the IR and added to the constraint system.
339   void addInductionVarOrTerminalSymbol(Value id);
340 
341   /// Composes the affine value map with this FlatAffineConstrains, adding the
342   /// results of the map as dimensions at the front [0, vMap->getNumResults())
343   /// and with the dimensions set to the equalities specified by the value map.
344   /// Returns failure if the composition fails (when vMap is a semi-affine map).
345   /// The vMap's operand Value's are used to look up the right positions in
346   /// the FlatAffineConstraints with which to associate. The dimensional and
347   /// symbolic operands of vMap should match 1:1 (in the same order) with those
348   /// of this constraint system, but the latter could have additional trailing
349   /// operands.
350   LogicalResult composeMap(const AffineValueMap *vMap);
351 
352   /// Composes an affine map whose dimensions match one to one to the
353   /// dimensions of this FlatAffineConstraints. The results of the map 'other'
354   /// are added as the leading dimensions of this constraint system. Returns
355   /// failure if 'other' is a semi-affine map.
356   LogicalResult composeMatchingMap(AffineMap other);
357 
358   /// Projects out (aka eliminates) 'num' identifiers starting at position
359   /// 'pos'. The resulting constraint system is the shadow along the dimensions
360   /// that still exist. This method may not always be integer exact.
361   // TODO: deal with integer exactness when necessary - can return a value to
362   // mark exactness for example.
363   void projectOut(unsigned pos, unsigned num);
projectOut(unsigned pos)364   inline void projectOut(unsigned pos) { return projectOut(pos, 1); }
365 
366   /// Projects out the identifier that is associate with Value .
367   void projectOut(Value id);
368 
369   /// Removes the specified identifier from the system.
370   void removeId(unsigned pos);
371 
372   void removeEquality(unsigned pos);
373   void removeInequality(unsigned pos);
374 
375   /// Changes the partition between dimensions and symbols. Depending on the new
376   /// symbol count, either a chunk of trailing dimensional identifiers becomes
377   /// symbols, or some of the leading symbols become dimensions.
378   void setDimSymbolSeparation(unsigned newSymbolCount);
379 
380   /// Changes all symbol identifiers which are loop IVs to dim identifiers.
381   void convertLoopIVSymbolsToDims();
382 
383   /// Sets the specified identifier to a constant and removes it.
384   void setAndEliminate(unsigned pos, int64_t constVal);
385 
386   /// Tries to fold the specified identifier to a constant using a trivial
387   /// equality detection; if successful, the constant is substituted for the
388   /// identifier everywhere in the constraint system and then removed from the
389   /// system.
390   LogicalResult constantFoldId(unsigned pos);
391 
392   /// This method calls constantFoldId for the specified range of identifiers,
393   /// 'num' identifiers starting at position 'pos'.
394   void constantFoldIdRange(unsigned pos, unsigned num);
395 
396   /// Updates the constraints to be the smallest bounding (enclosing) box that
397   /// contains the points of 'this' set and that of 'other', with the symbols
398   /// being treated specially. For each of the dimensions, the min of the lower
399   /// bounds (symbolic) and the max of the upper bounds (symbolic) is computed
400   /// to determine such a bounding box. `other' is expected to have the same
401   /// dimensional identifiers as this constraint system (in the same order).
402   ///
403   /// Eg: if 'this' is {0 <= d0 <= 127}, 'other' is {16 <= d0 <= 192}, the
404   ///      output is {0 <= d0 <= 192}.
405   /// 2) 'this' = {s0 + 5 <= d0 <= s0 + 20}, 'other' is {s0 + 1 <= d0 <= s0 +
406   ///     9}, output = {s0 + 1 <= d0 <= s0 + 20}.
407   /// 3) 'this' = {0 <= d0 <= 5, 1 <= d1 <= 9}, 'other' = {2 <= d0 <= 6, 5 <= d1
408   ///     <= 15}, output = {0 <= d0 <= 6, 1 <= d1 <= 15}.
409   LogicalResult unionBoundingBox(const FlatAffineConstraints &other);
410 
411   /// Returns 'true' if this constraint system and 'other' are in the same
412   /// space, i.e., if they are associated with the same set of identifiers,
413   /// appearing in the same order. Returns 'false' otherwise.
414   bool areIdsAlignedWithOther(const FlatAffineConstraints &other);
415 
416   /// Merge and align the identifiers of 'this' and 'other' starting at
417   /// 'offset', so that both constraint systems get the union of the contained
418   /// identifiers that is dimension-wise and symbol-wise unique; both
419   /// constraint systems are updated so that they have the union of all
420   /// identifiers, with this's original identifiers appearing first followed by
421   /// any of other's identifiers that didn't appear in 'this'. Local
422   /// identifiers of each system are by design separate/local and are placed
423   /// one after other (this's followed by other's).
424   //  Eg: Input: 'this'  has ((%i %j) [%M %N])
425   //             'other' has (%k, %j) [%P, %N, %M])
426   //      Output: both 'this', 'other' have (%i, %j, %k) [%M, %N, %P]
427   //
428   void mergeAndAlignIdsWithOther(unsigned offset, FlatAffineConstraints *other);
429 
getNumConstraints()430   unsigned getNumConstraints() const {
431     return getNumInequalities() + getNumEqualities();
432   }
getNumIds()433   inline unsigned getNumIds() const { return numIds; }
getNumDimIds()434   inline unsigned getNumDimIds() const { return numDims; }
getNumSymbolIds()435   inline unsigned getNumSymbolIds() const { return numSymbols; }
getNumDimAndSymbolIds()436   inline unsigned getNumDimAndSymbolIds() const { return numDims + numSymbols; }
getNumLocalIds()437   inline unsigned getNumLocalIds() const {
438     return numIds - numDims - numSymbols;
439   }
440 
getIds()441   inline ArrayRef<Optional<Value>> getIds() const {
442     return {ids.data(), ids.size()};
443   }
getIds()444   inline MutableArrayRef<Optional<Value>> getIds() {
445     return {ids.data(), ids.size()};
446   }
447 
448   /// Returns the optional Value corresponding to the pos^th identifier.
getId(unsigned pos)449   inline Optional<Value> getId(unsigned pos) const { return ids[pos]; }
getId(unsigned pos)450   inline Optional<Value> &getId(unsigned pos) { return ids[pos]; }
451 
452   /// Returns the Value associated with the pos^th identifier. Asserts if
453   /// no Value identifier was associated.
getIdValue(unsigned pos)454   inline Value getIdValue(unsigned pos) const {
455     assert(ids[pos].hasValue() && "identifier's Value not set");
456     return ids[pos].getValue();
457   }
458 
459   /// Returns the Values associated with identifiers in range [start, end).
460   /// Asserts if no Value was associated with one of these identifiers.
getIdValues(unsigned start,unsigned end,SmallVectorImpl<Value> * values)461   void getIdValues(unsigned start, unsigned end,
462                    SmallVectorImpl<Value> *values) const {
463     assert((start < numIds || start == end) && "invalid start position");
464     assert(end <= numIds && "invalid end position");
465     values->clear();
466     values->reserve(end - start);
467     for (unsigned i = start; i < end; i++) {
468       values->push_back(getIdValue(i));
469     }
470   }
getAllIdValues(SmallVectorImpl<Value> * values)471   inline void getAllIdValues(SmallVectorImpl<Value> *values) const {
472     getIdValues(0, numIds, values);
473   }
474 
475   /// Sets Value associated with the pos^th identifier.
setIdValue(unsigned pos,Value val)476   inline void setIdValue(unsigned pos, Value val) {
477     assert(pos < numIds && "invalid id position");
478     ids[pos] = val;
479   }
480   /// Sets Values associated with identifiers in the range [start, end).
setIdValues(unsigned start,unsigned end,ArrayRef<Value> values)481   void setIdValues(unsigned start, unsigned end, ArrayRef<Value> values) {
482     assert((start < numIds || end == start) && "invalid start position");
483     assert(end <= numIds && "invalid end position");
484     assert(values.size() == end - start);
485     for (unsigned i = start; i < end; ++i)
486       ids[i] = values[i - start];
487   }
488 
489   /// Clears this list of constraints and copies other into it.
490   void clearAndCopyFrom(const FlatAffineConstraints &other);
491 
492   /// Returns the smallest known constant bound for the extent of the specified
493   /// identifier (pos^th), i.e., the smallest known constant that is greater
494   /// than or equal to 'exclusive upper bound' - 'lower bound' of the
495   /// identifier. Returns None if it's not a constant. This method employs
496   /// trivial (low complexity / cost) checks and detection. Symbolic identifiers
497   /// are treated specially, i.e., it looks for constant differences between
498   /// affine expressions involving only the symbolic identifiers. `lb` and
499   /// `ub` (along with the `boundFloorDivisor`) are set to represent the lower
500   /// and upper bound associated with the constant difference: `lb`, `ub` have
501   /// the coefficients, and boundFloorDivisor, their divisor. `minLbPos` and
502   /// `minUbPos` if non-null are set to the position of the constant lower bound
503   /// and upper bound respectively (to the same if they are from an equality).
504   /// Ex: if the lower bound is [(s0 + s2 - 1) floordiv 32] for a system with
505   /// three symbolic identifiers, *lb = [1, 0, 1], lbDivisor = 32. See comments
506   /// at function definition for examples.
507   Optional<int64_t> getConstantBoundOnDimSize(
508       unsigned pos, SmallVectorImpl<int64_t> *lb = nullptr,
509       int64_t *boundFloorDivisor = nullptr,
510       SmallVectorImpl<int64_t> *ub = nullptr, unsigned *minLbPos = nullptr,
511       unsigned *minUbPos = nullptr) const;
512 
513   /// Returns the constant lower bound for the pos^th identifier if there is
514   /// one; None otherwise.
515   Optional<int64_t> getConstantLowerBound(unsigned pos) const;
516 
517   /// Returns the constant upper bound for the pos^th identifier if there is
518   /// one; None otherwise.
519   Optional<int64_t> getConstantUpperBound(unsigned pos) const;
520 
521   /// Gets the lower and upper bound of the `offset` + `pos`th identifier
522   /// treating [0, offset) U [offset + num, symStartPos) as dimensions and
523   /// [symStartPos, getNumDimAndSymbolIds) as symbols, and `pos` lies in
524   /// [0, num). The multi-dimensional maps in the returned pair represent the
525   /// max and min of potentially multiple affine expressions. The upper bound is
526   /// exclusive. `localExprs` holds pre-computed AffineExpr's for all local
527   /// identifiers in the system.
528   std::pair<AffineMap, AffineMap>
529   getLowerAndUpperBound(unsigned pos, unsigned offset, unsigned num,
530                         unsigned symStartPos, ArrayRef<AffineExpr> localExprs,
531                         MLIRContext *context) const;
532 
533   /// Gather positions of all lower and upper bounds of the identifier at `pos`,
534   /// and optionally any equalities on it. In addition, the bounds are to be
535   /// independent of identifiers in position range [`offset`, `offset` + `num`).
536   void
537   getLowerAndUpperBoundIndices(unsigned pos,
538                                SmallVectorImpl<unsigned> *lbIndices,
539                                SmallVectorImpl<unsigned> *ubIndices,
540                                SmallVectorImpl<unsigned> *eqIndices = nullptr,
541                                unsigned offset = 0, unsigned num = 0) const;
542 
543   /// Removes constraints that are independent of (i.e., do not have a
544   /// coefficient for) for identifiers in the range [pos, pos + num).
545   void removeIndependentConstraints(unsigned pos, unsigned num);
546 
547   /// Returns true if the set can be trivially detected as being
548   /// hyper-rectangular on the specified contiguous set of identifiers.
549   bool isHyperRectangular(unsigned pos, unsigned num) const;
550 
551   /// Removes duplicate constraints, trivially true constraints, and constraints
552   /// that can be detected as redundant as a result of differing only in their
553   /// constant term part. A constraint of the form <non-negative constant> >= 0
554   /// is considered trivially true. This method is a linear time method on the
555   /// constraints, does a single scan, and updates in place. It also normalizes
556   /// constraints by their GCD and performs GCD tightening on inequalities.
557   void removeTrivialRedundancy();
558 
559   /// A more expensive check to detect redundant inequalities thatn
560   /// removeTrivialRedundancy.
561   void removeRedundantInequalities();
562 
563   /// Removes redundant constraints using Simplex. Although the algorithm can
564   /// theoretically take exponential time in the worst case (rare), it is known
565   /// to perform much better in the average case. If V is the number of vertices
566   /// in the polytope and C is the number of constraints, the algorithm takes
567   /// O(VC) time.
568   void removeRedundantConstraints();
569 
570   // Removes all equalities and inequalities.
571   void clearConstraints();
572 
573   void print(raw_ostream &os) const;
574   void dump() const;
575 
576 private:
577   /// Returns false if the fields corresponding to various identifier counts, or
578   /// equality/inequality buffer sizes aren't consistent; true otherwise. This
579   /// is meant to be used within an assert internally.
580   bool hasConsistentState() const;
581 
582   /// Checks all rows of equality/inequality constraints for trivial
583   /// contradictions (for example: 1 == 0, 0 >= 1), which may have surfaced
584   /// after elimination. Returns 'true' if an invalid constraint is found;
585   /// 'false'otherwise.
586   bool hasInvalidConstraint() const;
587 
588   /// Returns the constant lower bound bound if isLower is true, and the upper
589   /// bound if isLower is false.
590   template <bool isLower>
591   Optional<int64_t> computeConstantLowerOrUpperBound(unsigned pos);
592 
593   // Eliminates a single identifier at 'position' from equality and inequality
594   // constraints. Returns 'success' if the identifier was eliminated, and
595   // 'failure' otherwise.
gaussianEliminateId(unsigned position)596   inline LogicalResult gaussianEliminateId(unsigned position) {
597     return success(gaussianEliminateIds(position, position + 1) == 1);
598   }
599 
600   // Eliminates identifiers from equality and inequality constraints
601   // in column range [posStart, posLimit).
602   // Returns the number of variables eliminated.
603   unsigned gaussianEliminateIds(unsigned posStart, unsigned posLimit);
604 
605   /// Eliminates identifier at the specified position using Fourier-Motzkin
606   /// variable elimination, but uses Gaussian elimination if there is an
607   /// equality involving that identifier. If the result of the elimination is
608   /// integer exact, *isResultIntegerExact is set to true. If 'darkShadow' is
609   /// set to true, a potential under approximation (subset) of the rational
610   /// shadow / exact integer shadow is computed.
611   // See implementation comments for more details.
612   void FourierMotzkinEliminate(unsigned pos, bool darkShadow = false,
613                                bool *isResultIntegerExact = nullptr);
614 
615   /// Tightens inequalities given that we are dealing with integer spaces. This
616   /// is similar to the GCD test but applied to inequalities. The constant term
617   /// can be reduced to the preceding multiple of the GCD of the coefficients,
618   /// i.e.,
619   ///  64*i - 100 >= 0  =>  64*i - 128 >= 0 (since 'i' is an integer). This is a
620   /// fast method (linear in the number of coefficients).
621   void GCDTightenInequalities();
622 
623   /// Normalized each constraints by the GCD of its coefficients.
624   void normalizeConstraintsByGCD();
625 
626   /// Removes identifiers in the column range [idStart, idLimit), and copies any
627   /// remaining valid data into place, updates member variables, and resizes
628   /// arrays as needed.
629   void removeIdRange(unsigned idStart, unsigned idLimit);
630 
631   /// Coefficients of affine equalities (in == 0 form).
632   SmallVector<int64_t, 64> equalities;
633 
634   /// Coefficients of affine inequalities (in >= 0 form).
635   SmallVector<int64_t, 64> inequalities;
636 
637   /// Number of columns reserved. Actual ones in used are returned by
638   /// getNumCols().
639   unsigned numReservedCols;
640 
641   /// Total number of identifiers.
642   unsigned numIds;
643 
644   /// Number of identifiers corresponding to real dimensions.
645   unsigned numDims;
646 
647   /// Number of identifiers corresponding to symbols (unknown but constant for
648   /// analysis).
649   unsigned numSymbols;
650 
651   /// Values corresponding to the (column) identifiers of this constraint
652   /// system appearing in the order the identifiers correspond to columns.
653   /// Temporary ones or those that aren't associated to any Value are set to
654   /// None.
655   SmallVector<Optional<Value>, 8> ids;
656 
657   /// A parameter that controls detection of an unrealistic number of
658   /// constraints. If the number of constraints is this many times the number of
659   /// variables, we consider such a system out of line with the intended use
660   /// case of FlatAffineConstraints.
661   // The rationale for 32 is that in the typical simplest of cases, an
662   // identifier is expected to have one lower bound and one upper bound
663   // constraint. With a level of tiling or a connection to another identifier
664   // through a div or mod, an extra pair of bounds gets added. As a limit, we
665   // don't expect an identifier to have more than 32 lower/upper/equality
666   // constraints. This is conservatively set low and can be raised if needed.
667   constexpr static unsigned kExplosionFactor = 32;
668 };
669 
670 /// Flattens 'expr' into 'flattenedExpr', which contains the coefficients of the
671 /// dimensions, symbols, and additional variables that represent floor divisions
672 /// of dimensions, symbols, and in turn other floor divisions.  Returns failure
673 /// if 'expr' could not be flattened (i.e., semi-affine is not yet handled).
674 /// 'cst' contains constraints that connect newly introduced local identifiers
675 /// to existing dimensional and symbolic identifiers. See documentation for
676 /// AffineExprFlattener on how mod's and div's are flattened.
677 LogicalResult getFlattenedAffineExpr(AffineExpr expr, unsigned numDims,
678                                      unsigned numSymbols,
679                                      SmallVectorImpl<int64_t> *flattenedExpr,
680                                      FlatAffineConstraints *cst = nullptr);
681 
682 /// Flattens the result expressions of the map to their corresponding flattened
683 /// forms and set in 'flattenedExprs'. Returns failure if any expression in the
684 /// map could not be flattened (i.e., semi-affine is not yet handled). 'cst'
685 /// contains constraints that connect newly introduced local identifiers to
686 /// existing dimensional and / symbolic identifiers. See documentation for
687 /// AffineExprFlattener on how mod's and div's are flattened. For all affine
688 /// expressions that share the same operands (like those of an affine map), this
689 /// method should be used instead of repeatedly calling getFlattenedAffineExpr
690 /// since local variables added to deal with div's and mod's will be reused
691 /// across expressions.
692 LogicalResult
693 getFlattenedAffineExprs(AffineMap map,
694                         std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
695                         FlatAffineConstraints *cst = nullptr);
696 LogicalResult
697 getFlattenedAffineExprs(IntegerSet set,
698                         std::vector<SmallVector<int64_t, 8>> *flattenedExprs,
699                         FlatAffineConstraints *cst = nullptr);
700 
701 } // end namespace mlir.
702 
703 #endif // MLIR_ANALYSIS_AFFINE_STRUCTURES_H
704