• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "modules/audio_coding/neteq/expand.h"
12 
13 #include <assert.h>
14 #include <string.h>  // memset
15 
16 #include <algorithm>  // min, max
17 #include <limits>     // numeric_limits<T>
18 
19 #include "common_audio/signal_processing/include/signal_processing_library.h"
20 #include "modules/audio_coding/neteq/audio_multi_vector.h"
21 #include "modules/audio_coding/neteq/background_noise.h"
22 #include "modules/audio_coding/neteq/cross_correlation.h"
23 #include "modules/audio_coding/neteq/dsp_helper.h"
24 #include "modules/audio_coding/neteq/random_vector.h"
25 #include "modules/audio_coding/neteq/statistics_calculator.h"
26 #include "modules/audio_coding/neteq/sync_buffer.h"
27 #include "rtc_base/numerics/safe_conversions.h"
28 
29 namespace webrtc {
30 
Expand(BackgroundNoise * background_noise,SyncBuffer * sync_buffer,RandomVector * random_vector,StatisticsCalculator * statistics,int fs,size_t num_channels)31 Expand::Expand(BackgroundNoise* background_noise,
32                SyncBuffer* sync_buffer,
33                RandomVector* random_vector,
34                StatisticsCalculator* statistics,
35                int fs,
36                size_t num_channels)
37     : random_vector_(random_vector),
38       sync_buffer_(sync_buffer),
39       first_expand_(true),
40       fs_hz_(fs),
41       num_channels_(num_channels),
42       consecutive_expands_(0),
43       background_noise_(background_noise),
44       statistics_(statistics),
45       overlap_length_(5 * fs / 8000),
46       lag_index_direction_(0),
47       current_lag_index_(0),
48       stop_muting_(false),
49       expand_duration_samples_(0),
50       channel_parameters_(new ChannelParameters[num_channels_]) {
51   assert(fs == 8000 || fs == 16000 || fs == 32000 || fs == 48000);
52   assert(fs <= static_cast<int>(kMaxSampleRate));  // Should not be possible.
53   assert(num_channels_ > 0);
54   memset(expand_lags_, 0, sizeof(expand_lags_));
55   Reset();
56 }
57 
58 Expand::~Expand() = default;
59 
Reset()60 void Expand::Reset() {
61   first_expand_ = true;
62   consecutive_expands_ = 0;
63   max_lag_ = 0;
64   for (size_t ix = 0; ix < num_channels_; ++ix) {
65     channel_parameters_[ix].expand_vector0.Clear();
66     channel_parameters_[ix].expand_vector1.Clear();
67   }
68 }
69 
Process(AudioMultiVector * output)70 int Expand::Process(AudioMultiVector* output) {
71   int16_t random_vector[kMaxSampleRate / 8000 * 120 + 30];
72   int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125];
73   static const int kTempDataSize = 3600;
74   int16_t temp_data[kTempDataSize];  // TODO(hlundin) Remove this.
75   int16_t* voiced_vector_storage = temp_data;
76   int16_t* voiced_vector = &voiced_vector_storage[overlap_length_];
77   static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
78   int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125];
79   int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder;
80   int16_t* noise_vector = unvoiced_array_memory + kNoiseLpcOrder;
81 
82   int fs_mult = fs_hz_ / 8000;
83 
84   if (first_expand_) {
85     // Perform initial setup if this is the first expansion since last reset.
86     AnalyzeSignal(random_vector);
87     first_expand_ = false;
88     expand_duration_samples_ = 0;
89   } else {
90     // This is not the first expansion, parameters are already estimated.
91     // Extract a noise segment.
92     size_t rand_length = max_lag_;
93     // This only applies to SWB where length could be larger than 256.
94     assert(rand_length <= kMaxSampleRate / 8000 * 120 + 30);
95     GenerateRandomVector(2, rand_length, random_vector);
96   }
97 
98   // Generate signal.
99   UpdateLagIndex();
100 
101   // Voiced part.
102   // Generate a weighted vector with the current lag.
103   size_t expansion_vector_length = max_lag_ + overlap_length_;
104   size_t current_lag = expand_lags_[current_lag_index_];
105   // Copy lag+overlap data.
106   size_t expansion_vector_position =
107       expansion_vector_length - current_lag - overlap_length_;
108   size_t temp_length = current_lag + overlap_length_;
109   for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
110     ChannelParameters& parameters = channel_parameters_[channel_ix];
111     if (current_lag_index_ == 0) {
112       // Use only expand_vector0.
113       assert(expansion_vector_position + temp_length <=
114              parameters.expand_vector0.Size());
115       parameters.expand_vector0.CopyTo(temp_length, expansion_vector_position,
116                                        voiced_vector_storage);
117     } else if (current_lag_index_ == 1) {
118       std::unique_ptr<int16_t[]> temp_0(new int16_t[temp_length]);
119       parameters.expand_vector0.CopyTo(temp_length, expansion_vector_position,
120                                        temp_0.get());
121       std::unique_ptr<int16_t[]> temp_1(new int16_t[temp_length]);
122       parameters.expand_vector1.CopyTo(temp_length, expansion_vector_position,
123                                        temp_1.get());
124       // Mix 3/4 of expand_vector0 with 1/4 of expand_vector1.
125       WebRtcSpl_ScaleAndAddVectorsWithRound(temp_0.get(), 3, temp_1.get(), 1, 2,
126                                             voiced_vector_storage, temp_length);
127     } else if (current_lag_index_ == 2) {
128       // Mix 1/2 of expand_vector0 with 1/2 of expand_vector1.
129       assert(expansion_vector_position + temp_length <=
130              parameters.expand_vector0.Size());
131       assert(expansion_vector_position + temp_length <=
132              parameters.expand_vector1.Size());
133 
134       std::unique_ptr<int16_t[]> temp_0(new int16_t[temp_length]);
135       parameters.expand_vector0.CopyTo(temp_length, expansion_vector_position,
136                                        temp_0.get());
137       std::unique_ptr<int16_t[]> temp_1(new int16_t[temp_length]);
138       parameters.expand_vector1.CopyTo(temp_length, expansion_vector_position,
139                                        temp_1.get());
140       WebRtcSpl_ScaleAndAddVectorsWithRound(temp_0.get(), 1, temp_1.get(), 1, 1,
141                                             voiced_vector_storage, temp_length);
142     }
143 
144     // Get tapering window parameters. Values are in Q15.
145     int16_t muting_window, muting_window_increment;
146     int16_t unmuting_window, unmuting_window_increment;
147     if (fs_hz_ == 8000) {
148       muting_window = DspHelper::kMuteFactorStart8kHz;
149       muting_window_increment = DspHelper::kMuteFactorIncrement8kHz;
150       unmuting_window = DspHelper::kUnmuteFactorStart8kHz;
151       unmuting_window_increment = DspHelper::kUnmuteFactorIncrement8kHz;
152     } else if (fs_hz_ == 16000) {
153       muting_window = DspHelper::kMuteFactorStart16kHz;
154       muting_window_increment = DspHelper::kMuteFactorIncrement16kHz;
155       unmuting_window = DspHelper::kUnmuteFactorStart16kHz;
156       unmuting_window_increment = DspHelper::kUnmuteFactorIncrement16kHz;
157     } else if (fs_hz_ == 32000) {
158       muting_window = DspHelper::kMuteFactorStart32kHz;
159       muting_window_increment = DspHelper::kMuteFactorIncrement32kHz;
160       unmuting_window = DspHelper::kUnmuteFactorStart32kHz;
161       unmuting_window_increment = DspHelper::kUnmuteFactorIncrement32kHz;
162     } else {  // fs_ == 48000
163       muting_window = DspHelper::kMuteFactorStart48kHz;
164       muting_window_increment = DspHelper::kMuteFactorIncrement48kHz;
165       unmuting_window = DspHelper::kUnmuteFactorStart48kHz;
166       unmuting_window_increment = DspHelper::kUnmuteFactorIncrement48kHz;
167     }
168 
169     // Smooth the expanded if it has not been muted to a low amplitude and
170     // |current_voice_mix_factor| is larger than 0.5.
171     if ((parameters.mute_factor > 819) &&
172         (parameters.current_voice_mix_factor > 8192)) {
173       size_t start_ix = sync_buffer_->Size() - overlap_length_;
174       for (size_t i = 0; i < overlap_length_; i++) {
175         // Do overlap add between new vector and overlap.
176         (*sync_buffer_)[channel_ix][start_ix + i] =
177             (((*sync_buffer_)[channel_ix][start_ix + i] * muting_window) +
178              (((parameters.mute_factor * voiced_vector_storage[i]) >> 14) *
179               unmuting_window) +
180              16384) >>
181             15;
182         muting_window += muting_window_increment;
183         unmuting_window += unmuting_window_increment;
184       }
185     } else if (parameters.mute_factor == 0) {
186       // The expanded signal will consist of only comfort noise if
187       // mute_factor = 0. Set the output length to 15 ms for best noise
188       // production.
189       // TODO(hlundin): This has been disabled since the length of
190       // parameters.expand_vector0 and parameters.expand_vector1 no longer
191       // match with expand_lags_, causing invalid reads and writes. Is it a good
192       // idea to enable this again, and solve the vector size problem?
193       //      max_lag_ = fs_mult * 120;
194       //      expand_lags_[0] = fs_mult * 120;
195       //      expand_lags_[1] = fs_mult * 120;
196       //      expand_lags_[2] = fs_mult * 120;
197     }
198 
199     // Unvoiced part.
200     // Filter |scaled_random_vector| through |ar_filter_|.
201     memcpy(unvoiced_vector - kUnvoicedLpcOrder, parameters.ar_filter_state,
202            sizeof(int16_t) * kUnvoicedLpcOrder);
203     int32_t add_constant = 0;
204     if (parameters.ar_gain_scale > 0) {
205       add_constant = 1 << (parameters.ar_gain_scale - 1);
206     }
207     WebRtcSpl_AffineTransformVector(scaled_random_vector, random_vector,
208                                     parameters.ar_gain, add_constant,
209                                     parameters.ar_gain_scale, current_lag);
210     WebRtcSpl_FilterARFastQ12(scaled_random_vector, unvoiced_vector,
211                               parameters.ar_filter, kUnvoicedLpcOrder + 1,
212                               current_lag);
213     memcpy(parameters.ar_filter_state,
214            &(unvoiced_vector[current_lag - kUnvoicedLpcOrder]),
215            sizeof(int16_t) * kUnvoicedLpcOrder);
216 
217     // Combine voiced and unvoiced contributions.
218 
219     // Set a suitable cross-fading slope.
220     // For lag =
221     //   <= 31 * fs_mult            => go from 1 to 0 in about 8 ms;
222     //  (>= 31 .. <= 63) * fs_mult  => go from 1 to 0 in about 16 ms;
223     //   >= 64 * fs_mult            => go from 1 to 0 in about 32 ms.
224     // temp_shift = getbits(max_lag_) - 5.
225     int temp_shift =
226         (31 - WebRtcSpl_NormW32(rtc::dchecked_cast<int32_t>(max_lag_))) - 5;
227     int16_t mix_factor_increment = 256 >> temp_shift;
228     if (stop_muting_) {
229       mix_factor_increment = 0;
230     }
231 
232     // Create combined signal by shifting in more and more of unvoiced part.
233     temp_shift = 8 - temp_shift;  // = getbits(mix_factor_increment).
234     size_t temp_length =
235         (parameters.current_voice_mix_factor - parameters.voice_mix_factor) >>
236         temp_shift;
237     temp_length = std::min(temp_length, current_lag);
238     DspHelper::CrossFade(voiced_vector, unvoiced_vector, temp_length,
239                          &parameters.current_voice_mix_factor,
240                          mix_factor_increment, temp_data);
241 
242     // End of cross-fading period was reached before end of expanded signal
243     // path. Mix the rest with a fixed mixing factor.
244     if (temp_length < current_lag) {
245       if (mix_factor_increment != 0) {
246         parameters.current_voice_mix_factor = parameters.voice_mix_factor;
247       }
248       int16_t temp_scale = 16384 - parameters.current_voice_mix_factor;
249       WebRtcSpl_ScaleAndAddVectorsWithRound(
250           voiced_vector + temp_length, parameters.current_voice_mix_factor,
251           unvoiced_vector + temp_length, temp_scale, 14,
252           temp_data + temp_length, current_lag - temp_length);
253     }
254 
255     // Select muting slope depending on how many consecutive expands we have
256     // done.
257     if (consecutive_expands_ == 3) {
258       // Let the mute factor decrease from 1.0 to 0.95 in 6.25 ms.
259       // mute_slope = 0.0010 / fs_mult in Q20.
260       parameters.mute_slope = std::max(parameters.mute_slope, 1049 / fs_mult);
261     }
262     if (consecutive_expands_ == 7) {
263       // Let the mute factor decrease from 1.0 to 0.90 in 6.25 ms.
264       // mute_slope = 0.0020 / fs_mult in Q20.
265       parameters.mute_slope = std::max(parameters.mute_slope, 2097 / fs_mult);
266     }
267 
268     // Mute segment according to slope value.
269     if ((consecutive_expands_ != 0) || !parameters.onset) {
270       // Mute to the previous level, then continue with the muting.
271       WebRtcSpl_AffineTransformVector(
272           temp_data, temp_data, parameters.mute_factor, 8192, 14, current_lag);
273 
274       if (!stop_muting_) {
275         DspHelper::MuteSignal(temp_data, parameters.mute_slope, current_lag);
276 
277         // Shift by 6 to go from Q20 to Q14.
278         // TODO(hlundin): Adding 8192 before shifting 6 steps seems wrong.
279         // Legacy.
280         int16_t gain = static_cast<int16_t>(
281             16384 - (((current_lag * parameters.mute_slope) + 8192) >> 6));
282         gain = ((gain * parameters.mute_factor) + 8192) >> 14;
283 
284         // Guard against getting stuck with very small (but sometimes audible)
285         // gain.
286         if ((consecutive_expands_ > 3) && (gain >= parameters.mute_factor)) {
287           parameters.mute_factor = 0;
288         } else {
289           parameters.mute_factor = gain;
290         }
291       }
292     }
293 
294     // Background noise part.
295     background_noise_->GenerateBackgroundNoise(
296         random_vector, channel_ix, channel_parameters_[channel_ix].mute_slope,
297         TooManyExpands(), current_lag, unvoiced_array_memory);
298 
299     // Add background noise to the combined voiced-unvoiced signal.
300     for (size_t i = 0; i < current_lag; i++) {
301       temp_data[i] = temp_data[i] + noise_vector[i];
302     }
303     if (channel_ix == 0) {
304       output->AssertSize(current_lag);
305     } else {
306       assert(output->Size() == current_lag);
307     }
308     (*output)[channel_ix].OverwriteAt(temp_data, current_lag, 0);
309   }
310 
311   // Increase call number and cap it.
312   consecutive_expands_ = consecutive_expands_ >= kMaxConsecutiveExpands
313                              ? kMaxConsecutiveExpands
314                              : consecutive_expands_ + 1;
315   expand_duration_samples_ += output->Size();
316   // Clamp the duration counter at 2 seconds.
317   expand_duration_samples_ = std::min(expand_duration_samples_,
318                                       rtc::dchecked_cast<size_t>(fs_hz_ * 2));
319   return 0;
320 }
321 
SetParametersForNormalAfterExpand()322 void Expand::SetParametersForNormalAfterExpand() {
323   current_lag_index_ = 0;
324   lag_index_direction_ = 0;
325   stop_muting_ = true;  // Do not mute signal any more.
326   statistics_->LogDelayedPacketOutageEvent(expand_duration_samples_, fs_hz_);
327   statistics_->EndExpandEvent(fs_hz_);
328 }
329 
SetParametersForMergeAfterExpand()330 void Expand::SetParametersForMergeAfterExpand() {
331   current_lag_index_ = -1;  /* out of the 3 possible ones */
332   lag_index_direction_ = 1; /* make sure we get the "optimal" lag */
333   stop_muting_ = true;
334   statistics_->EndExpandEvent(fs_hz_);
335 }
336 
Muted() const337 bool Expand::Muted() const {
338   if (first_expand_ || stop_muting_)
339     return false;
340   RTC_DCHECK(channel_parameters_);
341   for (size_t ch = 0; ch < num_channels_; ++ch) {
342     if (channel_parameters_[ch].mute_factor != 0)
343       return false;
344   }
345   return true;
346 }
347 
overlap_length() const348 size_t Expand::overlap_length() const {
349   return overlap_length_;
350 }
351 
InitializeForAnExpandPeriod()352 void Expand::InitializeForAnExpandPeriod() {
353   lag_index_direction_ = 1;
354   current_lag_index_ = -1;
355   stop_muting_ = false;
356   random_vector_->set_seed_increment(1);
357   consecutive_expands_ = 0;
358   for (size_t ix = 0; ix < num_channels_; ++ix) {
359     channel_parameters_[ix].current_voice_mix_factor = 16384;  // 1.0 in Q14.
360     channel_parameters_[ix].mute_factor = 16384;               // 1.0 in Q14.
361     // Start with 0 gain for background noise.
362     background_noise_->SetMuteFactor(ix, 0);
363   }
364 }
365 
TooManyExpands()366 bool Expand::TooManyExpands() {
367   return consecutive_expands_ >= kMaxConsecutiveExpands;
368 }
369 
AnalyzeSignal(int16_t * random_vector)370 void Expand::AnalyzeSignal(int16_t* random_vector) {
371   int32_t auto_correlation[kUnvoicedLpcOrder + 1];
372   int16_t reflection_coeff[kUnvoicedLpcOrder];
373   int16_t correlation_vector[kMaxSampleRate / 8000 * 102];
374   size_t best_correlation_index[kNumCorrelationCandidates];
375   int16_t best_correlation[kNumCorrelationCandidates];
376   size_t best_distortion_index[kNumCorrelationCandidates];
377   int16_t best_distortion[kNumCorrelationCandidates];
378   int32_t correlation_vector2[(99 * kMaxSampleRate / 8000) + 1];
379   int32_t best_distortion_w32[kNumCorrelationCandidates];
380   static const size_t kNoiseLpcOrder = BackgroundNoise::kMaxLpcOrder;
381   int16_t unvoiced_array_memory[kNoiseLpcOrder + kMaxSampleRate / 8000 * 125];
382   int16_t* unvoiced_vector = unvoiced_array_memory + kUnvoicedLpcOrder;
383 
384   int fs_mult = fs_hz_ / 8000;
385 
386   // Pre-calculate common multiplications with fs_mult.
387   size_t fs_mult_4 = static_cast<size_t>(fs_mult * 4);
388   size_t fs_mult_20 = static_cast<size_t>(fs_mult * 20);
389   size_t fs_mult_120 = static_cast<size_t>(fs_mult * 120);
390   size_t fs_mult_dist_len = fs_mult * kDistortionLength;
391   size_t fs_mult_lpc_analysis_len = fs_mult * kLpcAnalysisLength;
392 
393   const size_t signal_length = static_cast<size_t>(256 * fs_mult);
394 
395   const size_t audio_history_position = sync_buffer_->Size() - signal_length;
396   std::unique_ptr<int16_t[]> audio_history(new int16_t[signal_length]);
397   (*sync_buffer_)[0].CopyTo(signal_length, audio_history_position,
398                             audio_history.get());
399 
400   // Initialize.
401   InitializeForAnExpandPeriod();
402 
403   // Calculate correlation in downsampled domain (4 kHz sample rate).
404   size_t correlation_length = 51;  // TODO(hlundin): Legacy bit-exactness.
405   // If it is decided to break bit-exactness |correlation_length| should be
406   // initialized to the return value of Correlation().
407   Correlation(audio_history.get(), signal_length, correlation_vector);
408 
409   // Find peaks in correlation vector.
410   DspHelper::PeakDetection(correlation_vector, correlation_length,
411                            kNumCorrelationCandidates, fs_mult,
412                            best_correlation_index, best_correlation);
413 
414   // Adjust peak locations; cross-correlation lags start at 2.5 ms
415   // (20 * fs_mult samples).
416   best_correlation_index[0] += fs_mult_20;
417   best_correlation_index[1] += fs_mult_20;
418   best_correlation_index[2] += fs_mult_20;
419 
420   // Calculate distortion around the |kNumCorrelationCandidates| best lags.
421   int distortion_scale = 0;
422   for (size_t i = 0; i < kNumCorrelationCandidates; i++) {
423     size_t min_index =
424         std::max(fs_mult_20, best_correlation_index[i] - fs_mult_4);
425     size_t max_index =
426         std::min(fs_mult_120 - 1, best_correlation_index[i] + fs_mult_4);
427     best_distortion_index[i] = DspHelper::MinDistortion(
428         &(audio_history[signal_length - fs_mult_dist_len]), min_index,
429         max_index, fs_mult_dist_len, &best_distortion_w32[i]);
430     distortion_scale = std::max(16 - WebRtcSpl_NormW32(best_distortion_w32[i]),
431                                 distortion_scale);
432   }
433   // Shift the distortion values to fit in 16 bits.
434   WebRtcSpl_VectorBitShiftW32ToW16(best_distortion, kNumCorrelationCandidates,
435                                    best_distortion_w32, distortion_scale);
436 
437   // Find the maximizing index |i| of the cost function
438   // f[i] = best_correlation[i] / best_distortion[i].
439   int32_t best_ratio = std::numeric_limits<int32_t>::min();
440   size_t best_index = std::numeric_limits<size_t>::max();
441   for (size_t i = 0; i < kNumCorrelationCandidates; ++i) {
442     int32_t ratio;
443     if (best_distortion[i] > 0) {
444       ratio = (best_correlation[i] * (1 << 16)) / best_distortion[i];
445     } else if (best_correlation[i] == 0) {
446       ratio = 0;  // No correlation set result to zero.
447     } else {
448       ratio = std::numeric_limits<int32_t>::max();  // Denominator is zero.
449     }
450     if (ratio > best_ratio) {
451       best_index = i;
452       best_ratio = ratio;
453     }
454   }
455 
456   size_t distortion_lag = best_distortion_index[best_index];
457   size_t correlation_lag = best_correlation_index[best_index];
458   max_lag_ = std::max(distortion_lag, correlation_lag);
459 
460   // Calculate the exact best correlation in the range between
461   // |correlation_lag| and |distortion_lag|.
462   correlation_length = std::max(std::min(distortion_lag + 10, fs_mult_120),
463                                 static_cast<size_t>(60 * fs_mult));
464 
465   size_t start_index = std::min(distortion_lag, correlation_lag);
466   size_t correlation_lags = static_cast<size_t>(
467       WEBRTC_SPL_ABS_W16((distortion_lag - correlation_lag)) + 1);
468   assert(correlation_lags <= static_cast<size_t>(99 * fs_mult + 1));
469 
470   for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
471     ChannelParameters& parameters = channel_parameters_[channel_ix];
472     if (channel_ix > 0) {
473       // When channel_ix == 0, audio_history contains the correct audio. For the
474       // other cases, we will have to copy the correct channel into
475       // audio_history.
476       (*sync_buffer_)[channel_ix].CopyTo(signal_length, audio_history_position,
477                                          audio_history.get());
478     }
479 
480     // Calculate suitable scaling.
481     int16_t signal_max = WebRtcSpl_MaxAbsValueW16(
482         &audio_history[signal_length - correlation_length - start_index -
483                        correlation_lags],
484         correlation_length + start_index + correlation_lags - 1);
485     int correlation_scale =
486         (31 - WebRtcSpl_NormW32(signal_max * signal_max)) +
487         (31 - WebRtcSpl_NormW32(static_cast<int32_t>(correlation_length))) - 31;
488     correlation_scale = std::max(0, correlation_scale);
489 
490     // Calculate the correlation, store in |correlation_vector2|.
491     WebRtcSpl_CrossCorrelation(
492         correlation_vector2,
493         &(audio_history[signal_length - correlation_length]),
494         &(audio_history[signal_length - correlation_length - start_index]),
495         correlation_length, correlation_lags, correlation_scale, -1);
496 
497     // Find maximizing index.
498     best_index = WebRtcSpl_MaxIndexW32(correlation_vector2, correlation_lags);
499     int32_t max_correlation = correlation_vector2[best_index];
500     // Compensate index with start offset.
501     best_index = best_index + start_index;
502 
503     // Calculate energies.
504     int32_t energy1 = WebRtcSpl_DotProductWithScale(
505         &(audio_history[signal_length - correlation_length]),
506         &(audio_history[signal_length - correlation_length]),
507         correlation_length, correlation_scale);
508     int32_t energy2 = WebRtcSpl_DotProductWithScale(
509         &(audio_history[signal_length - correlation_length - best_index]),
510         &(audio_history[signal_length - correlation_length - best_index]),
511         correlation_length, correlation_scale);
512 
513     // Calculate the correlation coefficient between the two portions of the
514     // signal.
515     int32_t corr_coefficient;
516     if ((energy1 > 0) && (energy2 > 0)) {
517       int energy1_scale = std::max(16 - WebRtcSpl_NormW32(energy1), 0);
518       int energy2_scale = std::max(16 - WebRtcSpl_NormW32(energy2), 0);
519       // Make sure total scaling is even (to simplify scale factor after sqrt).
520       if ((energy1_scale + energy2_scale) & 1) {
521         // If sum is odd, add 1 to make it even.
522         energy1_scale += 1;
523       }
524       int32_t scaled_energy1 = energy1 >> energy1_scale;
525       int32_t scaled_energy2 = energy2 >> energy2_scale;
526       int16_t sqrt_energy_product = static_cast<int16_t>(
527           WebRtcSpl_SqrtFloor(scaled_energy1 * scaled_energy2));
528       // Calculate max_correlation / sqrt(energy1 * energy2) in Q14.
529       int cc_shift = 14 - (energy1_scale + energy2_scale) / 2;
530       max_correlation = WEBRTC_SPL_SHIFT_W32(max_correlation, cc_shift);
531       corr_coefficient =
532           WebRtcSpl_DivW32W16(max_correlation, sqrt_energy_product);
533       // Cap at 1.0 in Q14.
534       corr_coefficient = std::min(16384, corr_coefficient);
535     } else {
536       corr_coefficient = 0;
537     }
538 
539     // Extract the two vectors expand_vector0 and expand_vector1 from
540     // |audio_history|.
541     size_t expansion_length = max_lag_ + overlap_length_;
542     const int16_t* vector1 = &(audio_history[signal_length - expansion_length]);
543     const int16_t* vector2 = vector1 - distortion_lag;
544     // Normalize the second vector to the same energy as the first.
545     energy1 = WebRtcSpl_DotProductWithScale(vector1, vector1, expansion_length,
546                                             correlation_scale);
547     energy2 = WebRtcSpl_DotProductWithScale(vector2, vector2, expansion_length,
548                                             correlation_scale);
549     // Confirm that amplitude ratio sqrt(energy1 / energy2) is within 0.5 - 2.0,
550     // i.e., energy1 / energy2 is within 0.25 - 4.
551     int16_t amplitude_ratio;
552     if ((energy1 / 4 < energy2) && (energy1 > energy2 / 4)) {
553       // Energy constraint fulfilled. Use both vectors and scale them
554       // accordingly.
555       int32_t scaled_energy2 = std::max(16 - WebRtcSpl_NormW32(energy2), 0);
556       int32_t scaled_energy1 = scaled_energy2 - 13;
557       // Calculate scaled_energy1 / scaled_energy2 in Q13.
558       int32_t energy_ratio =
559           WebRtcSpl_DivW32W16(WEBRTC_SPL_SHIFT_W32(energy1, -scaled_energy1),
560                               static_cast<int16_t>(energy2 >> scaled_energy2));
561       // Calculate sqrt ratio in Q13 (sqrt of en1/en2 in Q26).
562       amplitude_ratio =
563           static_cast<int16_t>(WebRtcSpl_SqrtFloor(energy_ratio << 13));
564       // Copy the two vectors and give them the same energy.
565       parameters.expand_vector0.Clear();
566       parameters.expand_vector0.PushBack(vector1, expansion_length);
567       parameters.expand_vector1.Clear();
568       if (parameters.expand_vector1.Size() < expansion_length) {
569         parameters.expand_vector1.Extend(expansion_length -
570                                          parameters.expand_vector1.Size());
571       }
572       std::unique_ptr<int16_t[]> temp_1(new int16_t[expansion_length]);
573       WebRtcSpl_AffineTransformVector(
574           temp_1.get(), const_cast<int16_t*>(vector2), amplitude_ratio, 4096,
575           13, expansion_length);
576       parameters.expand_vector1.OverwriteAt(temp_1.get(), expansion_length, 0);
577     } else {
578       // Energy change constraint not fulfilled. Only use last vector.
579       parameters.expand_vector0.Clear();
580       parameters.expand_vector0.PushBack(vector1, expansion_length);
581       // Copy from expand_vector0 to expand_vector1.
582       parameters.expand_vector0.CopyTo(&parameters.expand_vector1);
583       // Set the energy_ratio since it is used by muting slope.
584       if ((energy1 / 4 < energy2) || (energy2 == 0)) {
585         amplitude_ratio = 4096;  // 0.5 in Q13.
586       } else {
587         amplitude_ratio = 16384;  // 2.0 in Q13.
588       }
589     }
590 
591     // Set the 3 lag values.
592     if (distortion_lag == correlation_lag) {
593       expand_lags_[0] = distortion_lag;
594       expand_lags_[1] = distortion_lag;
595       expand_lags_[2] = distortion_lag;
596     } else {
597       // |distortion_lag| and |correlation_lag| are not equal; use different
598       // combinations of the two.
599       // First lag is |distortion_lag| only.
600       expand_lags_[0] = distortion_lag;
601       // Second lag is the average of the two.
602       expand_lags_[1] = (distortion_lag + correlation_lag) / 2;
603       // Third lag is the average again, but rounding towards |correlation_lag|.
604       if (distortion_lag > correlation_lag) {
605         expand_lags_[2] = (distortion_lag + correlation_lag - 1) / 2;
606       } else {
607         expand_lags_[2] = (distortion_lag + correlation_lag + 1) / 2;
608       }
609     }
610 
611     // Calculate the LPC and the gain of the filters.
612 
613     // Calculate kUnvoicedLpcOrder + 1 lags of the auto-correlation function.
614     size_t temp_index =
615         signal_length - fs_mult_lpc_analysis_len - kUnvoicedLpcOrder;
616     // Copy signal to temporary vector to be able to pad with leading zeros.
617     int16_t* temp_signal =
618         new int16_t[fs_mult_lpc_analysis_len + kUnvoicedLpcOrder];
619     memset(temp_signal, 0,
620            sizeof(int16_t) * (fs_mult_lpc_analysis_len + kUnvoicedLpcOrder));
621     memcpy(&temp_signal[kUnvoicedLpcOrder],
622            &audio_history[temp_index + kUnvoicedLpcOrder],
623            sizeof(int16_t) * fs_mult_lpc_analysis_len);
624     CrossCorrelationWithAutoShift(
625         &temp_signal[kUnvoicedLpcOrder], &temp_signal[kUnvoicedLpcOrder],
626         fs_mult_lpc_analysis_len, kUnvoicedLpcOrder + 1, -1, auto_correlation);
627     delete[] temp_signal;
628 
629     // Verify that variance is positive.
630     if (auto_correlation[0] > 0) {
631       // Estimate AR filter parameters using Levinson-Durbin algorithm;
632       // kUnvoicedLpcOrder + 1 filter coefficients.
633       int16_t stability =
634           WebRtcSpl_LevinsonDurbin(auto_correlation, parameters.ar_filter,
635                                    reflection_coeff, kUnvoicedLpcOrder);
636 
637       // Keep filter parameters only if filter is stable.
638       if (stability != 1) {
639         // Set first coefficient to 4096 (1.0 in Q12).
640         parameters.ar_filter[0] = 4096;
641         // Set remaining |kUnvoicedLpcOrder| coefficients to zero.
642         WebRtcSpl_MemSetW16(parameters.ar_filter + 1, 0, kUnvoicedLpcOrder);
643       }
644     }
645 
646     if (channel_ix == 0) {
647       // Extract a noise segment.
648       size_t noise_length;
649       if (distortion_lag < 40) {
650         noise_length = 2 * distortion_lag + 30;
651       } else {
652         noise_length = distortion_lag + 30;
653       }
654       if (noise_length <= RandomVector::kRandomTableSize) {
655         memcpy(random_vector, RandomVector::kRandomTable,
656                sizeof(int16_t) * noise_length);
657       } else {
658         // Only applies to SWB where length could be larger than
659         // |kRandomTableSize|.
660         memcpy(random_vector, RandomVector::kRandomTable,
661                sizeof(int16_t) * RandomVector::kRandomTableSize);
662         assert(noise_length <= kMaxSampleRate / 8000 * 120 + 30);
663         random_vector_->IncreaseSeedIncrement(2);
664         random_vector_->Generate(
665             noise_length - RandomVector::kRandomTableSize,
666             &random_vector[RandomVector::kRandomTableSize]);
667       }
668     }
669 
670     // Set up state vector and calculate scale factor for unvoiced filtering.
671     memcpy(parameters.ar_filter_state,
672            &(audio_history[signal_length - kUnvoicedLpcOrder]),
673            sizeof(int16_t) * kUnvoicedLpcOrder);
674     memcpy(unvoiced_vector - kUnvoicedLpcOrder,
675            &(audio_history[signal_length - 128 - kUnvoicedLpcOrder]),
676            sizeof(int16_t) * kUnvoicedLpcOrder);
677     WebRtcSpl_FilterMAFastQ12(&audio_history[signal_length - 128],
678                               unvoiced_vector, parameters.ar_filter,
679                               kUnvoicedLpcOrder + 1, 128);
680     const int unvoiced_max_abs = [&] {
681       const int16_t max_abs = WebRtcSpl_MaxAbsValueW16(unvoiced_vector, 128);
682       // Since WebRtcSpl_MaxAbsValueW16 returns 2^15 - 1 when the input contains
683       // -2^15, we have to conservatively bump the return value by 1
684       // if it is 2^15 - 1.
685       return max_abs == WEBRTC_SPL_WORD16_MAX ? max_abs + 1 : max_abs;
686     }();
687     // Pick the smallest n such that 2^n > unvoiced_max_abs; then the maximum
688     // value of the dot product is less than 2^7 * 2^(2*n) = 2^(2*n + 7), so to
689     // prevent overflows we want 2n + 7 <= 31, which means we should shift by
690     // 2n + 7 - 31 bits, if this value is greater than zero.
691     int unvoiced_prescale =
692         std::max(0, 2 * WebRtcSpl_GetSizeInBits(unvoiced_max_abs) - 24);
693 
694     int32_t unvoiced_energy = WebRtcSpl_DotProductWithScale(
695         unvoiced_vector, unvoiced_vector, 128, unvoiced_prescale);
696 
697     // Normalize |unvoiced_energy| to 28 or 29 bits to preserve sqrt() accuracy.
698     int16_t unvoiced_scale = WebRtcSpl_NormW32(unvoiced_energy) - 3;
699     // Make sure we do an odd number of shifts since we already have 7 shifts
700     // from dividing with 128 earlier. This will make the total scale factor
701     // even, which is suitable for the sqrt.
702     unvoiced_scale += ((unvoiced_scale & 0x1) ^ 0x1);
703     unvoiced_energy = WEBRTC_SPL_SHIFT_W32(unvoiced_energy, unvoiced_scale);
704     int16_t unvoiced_gain =
705         static_cast<int16_t>(WebRtcSpl_SqrtFloor(unvoiced_energy));
706     parameters.ar_gain_scale =
707         13 + (unvoiced_scale + 7 - unvoiced_prescale) / 2;
708     parameters.ar_gain = unvoiced_gain;
709 
710     // Calculate voice_mix_factor from corr_coefficient.
711     // Let x = corr_coefficient. Then, we compute:
712     // if (x > 0.48)
713     //   voice_mix_factor = (-5179 + 19931x - 16422x^2 + 5776x^3) / 4096;
714     // else
715     //   voice_mix_factor = 0;
716     if (corr_coefficient > 7875) {
717       int16_t x1, x2, x3;
718       // |corr_coefficient| is in Q14.
719       x1 = static_cast<int16_t>(corr_coefficient);
720       x2 = (x1 * x1) >> 14;  // Shift 14 to keep result in Q14.
721       x3 = (x1 * x2) >> 14;
722       static const int kCoefficients[4] = {-5179, 19931, -16422, 5776};
723       int32_t temp_sum = kCoefficients[0] * 16384;
724       temp_sum += kCoefficients[1] * x1;
725       temp_sum += kCoefficients[2] * x2;
726       temp_sum += kCoefficients[3] * x3;
727       parameters.voice_mix_factor =
728           static_cast<int16_t>(std::min(temp_sum / 4096, 16384));
729       parameters.voice_mix_factor =
730           std::max(parameters.voice_mix_factor, static_cast<int16_t>(0));
731     } else {
732       parameters.voice_mix_factor = 0;
733     }
734 
735     // Calculate muting slope. Reuse value from earlier scaling of
736     // |expand_vector0| and |expand_vector1|.
737     int16_t slope = amplitude_ratio;
738     if (slope > 12288) {
739       // slope > 1.5.
740       // Calculate (1 - (1 / slope)) / distortion_lag =
741       // (slope - 1) / (distortion_lag * slope).
742       // |slope| is in Q13, so 1 corresponds to 8192. Shift up to Q25 before
743       // the division.
744       // Shift the denominator from Q13 to Q5 before the division. The result of
745       // the division will then be in Q20.
746       int16_t denom =
747           rtc::saturated_cast<int16_t>((distortion_lag * slope) >> 8);
748       int temp_ratio = WebRtcSpl_DivW32W16((slope - 8192) << 12, denom);
749       if (slope > 14746) {
750         // slope > 1.8.
751         // Divide by 2, with proper rounding.
752         parameters.mute_slope = (temp_ratio + 1) / 2;
753       } else {
754         // Divide by 8, with proper rounding.
755         parameters.mute_slope = (temp_ratio + 4) / 8;
756       }
757       parameters.onset = true;
758     } else {
759       // Calculate (1 - slope) / distortion_lag.
760       // Shift |slope| by 7 to Q20 before the division. The result is in Q20.
761       parameters.mute_slope = WebRtcSpl_DivW32W16(
762           (8192 - slope) * 128, static_cast<int16_t>(distortion_lag));
763       if (parameters.voice_mix_factor <= 13107) {
764         // Make sure the mute factor decreases from 1.0 to 0.9 in no more than
765         // 6.25 ms.
766         // mute_slope >= 0.005 / fs_mult in Q20.
767         parameters.mute_slope = std::max(5243 / fs_mult, parameters.mute_slope);
768       } else if (slope > 8028) {
769         parameters.mute_slope = 0;
770       }
771       parameters.onset = false;
772     }
773   }
774 }
775 
ChannelParameters()776 Expand::ChannelParameters::ChannelParameters()
777     : mute_factor(16384),
778       ar_gain(0),
779       ar_gain_scale(0),
780       voice_mix_factor(0),
781       current_voice_mix_factor(0),
782       onset(false),
783       mute_slope(0) {
784   memset(ar_filter, 0, sizeof(ar_filter));
785   memset(ar_filter_state, 0, sizeof(ar_filter_state));
786 }
787 
Correlation(const int16_t * input,size_t input_length,int16_t * output) const788 void Expand::Correlation(const int16_t* input,
789                          size_t input_length,
790                          int16_t* output) const {
791   // Set parameters depending on sample rate.
792   const int16_t* filter_coefficients;
793   size_t num_coefficients;
794   int16_t downsampling_factor;
795   if (fs_hz_ == 8000) {
796     num_coefficients = 3;
797     downsampling_factor = 2;
798     filter_coefficients = DspHelper::kDownsample8kHzTbl;
799   } else if (fs_hz_ == 16000) {
800     num_coefficients = 5;
801     downsampling_factor = 4;
802     filter_coefficients = DspHelper::kDownsample16kHzTbl;
803   } else if (fs_hz_ == 32000) {
804     num_coefficients = 7;
805     downsampling_factor = 8;
806     filter_coefficients = DspHelper::kDownsample32kHzTbl;
807   } else {  // fs_hz_ == 48000.
808     num_coefficients = 7;
809     downsampling_factor = 12;
810     filter_coefficients = DspHelper::kDownsample48kHzTbl;
811   }
812 
813   // Correlate from lag 10 to lag 60 in downsampled domain.
814   // (Corresponds to 20-120 for narrow-band, 40-240 for wide-band, and so on.)
815   static const size_t kCorrelationStartLag = 10;
816   static const size_t kNumCorrelationLags = 54;
817   static const size_t kCorrelationLength = 60;
818   // Downsample to 4 kHz sample rate.
819   static const size_t kDownsampledLength =
820       kCorrelationStartLag + kNumCorrelationLags + kCorrelationLength;
821   int16_t downsampled_input[kDownsampledLength];
822   static const size_t kFilterDelay = 0;
823   WebRtcSpl_DownsampleFast(
824       input + input_length - kDownsampledLength * downsampling_factor,
825       kDownsampledLength * downsampling_factor, downsampled_input,
826       kDownsampledLength, filter_coefficients, num_coefficients,
827       downsampling_factor, kFilterDelay);
828 
829   // Normalize |downsampled_input| to using all 16 bits.
830   int16_t max_value =
831       WebRtcSpl_MaxAbsValueW16(downsampled_input, kDownsampledLength);
832   int16_t norm_shift = 16 - WebRtcSpl_NormW32(max_value);
833   WebRtcSpl_VectorBitShiftW16(downsampled_input, kDownsampledLength,
834                               downsampled_input, norm_shift);
835 
836   int32_t correlation[kNumCorrelationLags];
837   CrossCorrelationWithAutoShift(
838       &downsampled_input[kDownsampledLength - kCorrelationLength],
839       &downsampled_input[kDownsampledLength - kCorrelationLength -
840                          kCorrelationStartLag],
841       kCorrelationLength, kNumCorrelationLags, -1, correlation);
842 
843   // Normalize and move data from 32-bit to 16-bit vector.
844   int32_t max_correlation =
845       WebRtcSpl_MaxAbsValueW32(correlation, kNumCorrelationLags);
846   int16_t norm_shift2 = static_cast<int16_t>(
847       std::max(18 - WebRtcSpl_NormW32(max_correlation), 0));
848   WebRtcSpl_VectorBitShiftW32ToW16(output, kNumCorrelationLags, correlation,
849                                    norm_shift2);
850 }
851 
UpdateLagIndex()852 void Expand::UpdateLagIndex() {
853   current_lag_index_ = current_lag_index_ + lag_index_direction_;
854   // Change direction if needed.
855   if (current_lag_index_ <= 0) {
856     lag_index_direction_ = 1;
857   }
858   if (current_lag_index_ >= kNumLags - 1) {
859     lag_index_direction_ = -1;
860   }
861 }
862 
Create(BackgroundNoise * background_noise,SyncBuffer * sync_buffer,RandomVector * random_vector,StatisticsCalculator * statistics,int fs,size_t num_channels) const863 Expand* ExpandFactory::Create(BackgroundNoise* background_noise,
864                               SyncBuffer* sync_buffer,
865                               RandomVector* random_vector,
866                               StatisticsCalculator* statistics,
867                               int fs,
868                               size_t num_channels) const {
869   return new Expand(background_noise, sync_buffer, random_vector, statistics,
870                     fs, num_channels);
871 }
872 
GenerateRandomVector(int16_t seed_increment,size_t length,int16_t * random_vector)873 void Expand::GenerateRandomVector(int16_t seed_increment,
874                                   size_t length,
875                                   int16_t* random_vector) {
876   // TODO(turajs): According to hlundin The loop should not be needed. Should be
877   // just as good to generate all of the vector in one call.
878   size_t samples_generated = 0;
879   const size_t kMaxRandSamples = RandomVector::kRandomTableSize;
880   while (samples_generated < length) {
881     size_t rand_length = std::min(length - samples_generated, kMaxRandSamples);
882     random_vector_->IncreaseSeedIncrement(seed_increment);
883     random_vector_->Generate(rand_length, &random_vector[samples_generated]);
884     samples_generated += rand_length;
885   }
886 }
887 
888 }  // namespace webrtc
889