• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c)1995,97 Mark Olesen <olesen@me.QueensU.CA>
3  *    Queen's Univ at Kingston (Canada)
4  *
5  * Permission to use, copy, modify, and distribute this software for
6  * any purpose without fee is hereby granted, provided that this
7  * entire notice is included in all copies of any software which is
8  * or includes a copy or modification of this software and in all
9  * copies of the supporting documentation for such software.
10  *
11  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
12  * IMPLIED WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR QUEEN'S
13  * UNIVERSITY AT KINGSTON MAKES ANY REPRESENTATION OR WARRANTY OF ANY
14  * KIND CONCERNING THE MERCHANTABILITY OF THIS SOFTWARE OR ITS
15  * FITNESS FOR ANY PARTICULAR PURPOSE.
16  *
17  * All of which is to say that you can do what you like with this
18  * source code provided you don't try to sell it as your own and you
19  * include an unaltered copy of this message (including the
20  * copyright).
21  *
22  * It is also implicitly understood that bug fixes and improvements
23  * should make their way back to the general Internet community so
24  * that everyone benefits.
25  *
26  * Changes:
27  *   Trivial type modifications by the WebRTC authors.
28  */
29 
30 
31 /*
32  * File:
33  * WebRtcIsac_Fftn.c
34  *
35  * Public:
36  * WebRtcIsac_Fftn / fftnf ();
37  *
38  * Private:
39  * WebRtcIsac_Fftradix / fftradixf ();
40  *
41  * Descript:
42  * multivariate complex Fourier transform, computed in place
43  * using mixed-radix Fast Fourier Transform algorithm.
44  *
45  * Fortran code by:
46  * RC Singleton, Stanford Research Institute, Sept. 1968
47  *
48  * translated by f2c (version 19950721).
49  *
50  * int WebRtcIsac_Fftn (int ndim, const int dims[], REAL Re[], REAL Im[],
51  *     int iSign, double scaling);
52  *
53  * NDIM = the total number dimensions
54  * DIMS = a vector of array sizes
55  * if NDIM is zero then DIMS must be zero-terminated
56  *
57  * RE and IM hold the real and imaginary components of the data, and return
58  * the resulting real and imaginary Fourier coefficients.  Multidimensional
59  * data *must* be allocated contiguously.  There is no limit on the number
60  * of dimensions.
61  *
62  * ISIGN = the sign of the complex exponential (ie, forward or inverse FFT)
63  * the magnitude of ISIGN (normally 1) is used to determine the
64  * correct indexing increment (see below).
65  *
66  * SCALING = normalizing constant by which the final result is *divided*
67  * if SCALING == -1, normalize by total dimension of the transform
68  * if SCALING <  -1, normalize by the square-root of the total dimension
69  *
70  * example:
71  * tri-variate transform with Re[n1][n2][n3], Im[n1][n2][n3]
72  *
73  * int dims[3] = {n1,n2,n3}
74  * WebRtcIsac_Fftn (3, dims, Re, Im, 1, scaling);
75  *
76  *-----------------------------------------------------------------------*
77  * int WebRtcIsac_Fftradix (REAL Re[], REAL Im[], size_t nTotal, size_t nPass,
78  *   size_t nSpan, int iSign, size_t max_factors,
79  *   size_t max_perm);
80  *
81  * RE, IM - see above documentation
82  *
83  * Although there is no limit on the number of dimensions, WebRtcIsac_Fftradix() must
84  * be called once for each dimension, but the calls may be in any order.
85  *
86  * NTOTAL = the total number of complex data values
87  * NPASS  = the dimension of the current variable
88  * NSPAN/NPASS = the spacing of consecutive data values while indexing the
89  * current variable
90  * ISIGN - see above documentation
91  *
92  * example:
93  * tri-variate transform with Re[n1][n2][n3], Im[n1][n2][n3]
94  *
95  * WebRtcIsac_Fftradix (Re, Im, n1*n2*n3, n1,       n1, 1, maxf, maxp);
96  * WebRtcIsac_Fftradix (Re, Im, n1*n2*n3, n2,    n1*n2, 1, maxf, maxp);
97  * WebRtcIsac_Fftradix (Re, Im, n1*n2*n3, n3, n1*n2*n3, 1, maxf, maxp);
98  *
99  * single-variate transform,
100  *    NTOTAL = N = NSPAN = (number of complex data values),
101  *
102  * WebRtcIsac_Fftradix (Re, Im, n, n, n, 1, maxf, maxp);
103  *
104  * The data can also be stored in a single array with alternating real and
105  * imaginary parts, the magnitude of ISIGN is changed to 2 to give correct
106  * indexing increment, and data [0] and data [1] used to pass the initial
107  * addresses for the sequences of real and imaginary values,
108  *
109  * example:
110  * REAL data [2*NTOTAL];
111  * WebRtcIsac_Fftradix ( &data[0], &data[1], NTOTAL, nPass, nSpan, 2, maxf, maxp);
112  *
113  * for temporary allocation:
114  *
115  * MAX_FACTORS >= the maximum prime factor of NPASS
116  * MAX_PERM >= the number of prime factors of NPASS.  In addition,
117  * if the square-free portion K of NPASS has two or more prime
118  * factors, then MAX_PERM >= (K-1)
119  *
120  * storage in FACTOR for a maximum of 15 prime factors of NPASS. if NPASS
121  * has more than one square-free factor, the product of the square-free
122  * factors must be <= 210 array storage for maximum prime factor of 23 the
123  * following two constants should agree with the array dimensions.
124  *
125  *----------------------------------------------------------------------*/
126 
127 #include <stdlib.h>
128 #include <math.h>
129 
130 #include "modules/third_party/fft/fft.h"
131 
132 /* double precision routine */
133 static int
134 WebRtcIsac_Fftradix (double Re[], double Im[],
135                     size_t nTotal, size_t nPass, size_t nSpan, int isign,
136                     int max_factors, unsigned int max_perm,
137                     FFTstr *fftstate);
138 
139 
140 
141 #ifndef M_PI
142 # define M_PI 3.14159265358979323846264338327950288
143 #endif
144 
145 #ifndef SIN60
146 # define SIN60 0.86602540378443865 /* sin(60 deg) */
147 # define COS72 0.30901699437494742 /* cos(72 deg) */
148 # define SIN72 0.95105651629515357 /* sin(72 deg) */
149 #endif
150 
151 # define REAL  double
152 # define FFTN  WebRtcIsac_Fftn
153 # define FFTNS  "fftn"
154 # define FFTRADIX WebRtcIsac_Fftradix
155 # define FFTRADIXS "fftradix"
156 
157 
WebRtcIsac_Fftns(unsigned int ndim,const int dims[],double Re[],double Im[],int iSign,double scaling,FFTstr * fftstate)158 int  WebRtcIsac_Fftns(unsigned int ndim, const int dims[],
159                      double Re[],
160                      double Im[],
161                      int iSign,
162                      double scaling,
163                      FFTstr *fftstate)
164 {
165 
166   size_t nSpan, nPass, nTotal;
167   unsigned int i;
168   int ret, max_factors, max_perm;
169 
170   /*
171    * tally the number of elements in the data array
172    * and determine the number of dimensions
173    */
174   nTotal = 1;
175   if (ndim && dims [0])
176   {
177     for (i = 0; i < ndim; i++)
178     {
179       if (dims [i] <= 0)
180       {
181         return -1;
182       }
183       nTotal *= dims [i];
184     }
185   }
186   else
187   {
188     ndim = 0;
189     for (i = 0; dims [i]; i++)
190     {
191       if (dims [i] <= 0)
192       {
193         return -1;
194       }
195       nTotal *= dims [i];
196       ndim++;
197     }
198   }
199 
200   /* determine maximum number of factors and permuations */
201 #if 1
202   /*
203    * follow John Beale's example, just use the largest dimension and don't
204    * worry about excess allocation.  May be someone else will do it?
205    */
206   max_factors = max_perm = 1;
207   for (i = 0; i < ndim; i++)
208   {
209     nSpan = dims [i];
210     if ((int)nSpan > max_factors)
211     {
212       max_factors = (int)nSpan;
213     }
214     if ((int)nSpan > max_perm)
215     {
216       max_perm = (int)nSpan;
217     }
218   }
219 #else
220   /* use the constants used in the original Fortran code */
221   max_factors = 23;
222   max_perm = 209;
223 #endif
224   /* loop over the dimensions: */
225   nPass = 1;
226   for (i = 0; i < ndim; i++)
227   {
228     nSpan = dims [i];
229     nPass *= nSpan;
230     ret = FFTRADIX (Re, Im, nTotal, nSpan, nPass, iSign,
231                     max_factors, max_perm, fftstate);
232     /* exit, clean-up already done */
233     if (ret)
234       return ret;
235   }
236 
237   /* Divide through by the normalizing constant: */
238   if (scaling && scaling != 1.0)
239   {
240     if (iSign < 0) iSign = -iSign;
241     if (scaling < 0.0)
242     {
243       scaling = (double)nTotal;
244       if (scaling < -1.0)
245         scaling = sqrt (scaling);
246     }
247     scaling = 1.0 / scaling; /* multiply is often faster */
248     for (i = 0; i < nTotal; i += iSign)
249     {
250       Re [i] *= scaling;
251       Im [i] *= scaling;
252     }
253   }
254   return 0;
255 }
256 
257 /*
258  * singleton's mixed radix routine
259  *
260  * could move allocation out to WebRtcIsac_Fftn(), but leave it here so that it's
261  * possible to make this a standalone function
262  */
263 
FFTRADIX(REAL Re[],REAL Im[],size_t nTotal,size_t nPass,size_t nSpan,int iSign,int max_factors,unsigned int max_perm,FFTstr * fftstate)264 static int   FFTRADIX (REAL Re[],
265                        REAL Im[],
266                        size_t nTotal,
267                        size_t nPass,
268                        size_t nSpan,
269                        int iSign,
270                        int max_factors,
271                        unsigned int max_perm,
272                        FFTstr *fftstate)
273 {
274   int ii, mfactor, kspan, ispan, inc;
275   int j, jc, jf, jj, k, k1, k2, k3, k4, kk, kt, nn, ns, nt;
276 
277 
278   REAL radf;
279   REAL c1, c2, c3, cd, aa, aj, ak, ajm, ajp, akm, akp;
280   REAL s1, s2, s3, sd, bb, bj, bk, bjm, bjp, bkm, bkp;
281 
282   REAL *Rtmp = NULL; /* temp space for real part*/
283   REAL *Itmp = NULL; /* temp space for imaginary part */
284   REAL *Cos = NULL; /* Cosine values */
285   REAL *Sin = NULL; /* Sine values */
286 
287   REAL s60 = SIN60;  /* sin(60 deg) */
288   REAL c72 = COS72;  /* cos(72 deg) */
289   REAL s72 = SIN72;  /* sin(72 deg) */
290   REAL pi2 = M_PI;  /* use PI first, 2 PI later */
291 
292 
293   fftstate->SpaceAlloced = 0;
294   fftstate->MaxPermAlloced = 0;
295 
296 
297   // initialize to avoid warnings
298   k3 = c2 = c3 = s2 = s3 = 0.0;
299 
300   if (nPass < 2)
301     return 0;
302 
303   /*  allocate storage */
304   if (fftstate->SpaceAlloced < max_factors * sizeof (REAL))
305   {
306 #ifdef SUN_BROKEN_REALLOC
307     if (!fftstate->SpaceAlloced) /* first time */
308     {
309       fftstate->SpaceAlloced = max_factors * sizeof (REAL);
310     }
311     else
312     {
313 #endif
314       fftstate->SpaceAlloced = max_factors * sizeof (REAL);
315 #ifdef SUN_BROKEN_REALLOC
316     }
317 #endif
318   }
319   else
320   {
321     /* allow full use of alloc'd space */
322     max_factors = fftstate->SpaceAlloced / sizeof (REAL);
323   }
324   if (fftstate->MaxPermAlloced < max_perm)
325   {
326 #ifdef SUN_BROKEN_REALLOC
327     if (!fftstate->MaxPermAlloced) /* first time */
328     else
329 #endif
330       fftstate->MaxPermAlloced = max_perm;
331   }
332   else
333   {
334     /* allow full use of alloc'd space */
335     max_perm = fftstate->MaxPermAlloced;
336   }
337 
338   /* assign pointers */
339   Rtmp = (REAL *) fftstate->Tmp0;
340   Itmp = (REAL *) fftstate->Tmp1;
341   Cos  = (REAL *) fftstate->Tmp2;
342   Sin  = (REAL *) fftstate->Tmp3;
343 
344   /*
345    * Function Body
346    */
347   inc = iSign;
348   if (iSign < 0) {
349     s72 = -s72;
350     s60 = -s60;
351     pi2 = -pi2;
352     inc = -inc;  /* absolute value */
353   }
354 
355   /* adjust for strange increments */
356   nt = inc * (int)nTotal;
357   ns = inc * (int)nSpan;
358   kspan = ns;
359 
360   nn = nt - inc;
361   jc = ns / (int)nPass;
362   radf = pi2 * (double) jc;
363   pi2 *= 2.0;   /* use 2 PI from here on */
364 
365   ii = 0;
366   jf = 0;
367   /*  determine the factors of n */
368   mfactor = 0;
369   k = (int)nPass;
370   while (k % 16 == 0) {
371     mfactor++;
372     fftstate->factor [mfactor - 1] = 4;
373     k /= 16;
374   }
375   j = 3;
376   jj = 9;
377   do {
378     while (k % jj == 0) {
379       mfactor++;
380       fftstate->factor [mfactor - 1] = j;
381       k /= jj;
382     }
383     j += 2;
384     jj = j * j;
385   } while (jj <= k);
386   if (k <= 4) {
387     kt = mfactor;
388     fftstate->factor [mfactor] = k;
389     if (k != 1)
390       mfactor++;
391   } else {
392     if (k - (k / 4 << 2) == 0) {
393       mfactor++;
394       fftstate->factor [mfactor - 1] = 2;
395       k /= 4;
396     }
397     kt = mfactor;
398     j = 2;
399     do {
400       if (k % j == 0) {
401         mfactor++;
402         fftstate->factor [mfactor - 1] = j;
403         k /= j;
404       }
405       j = ((j + 1) / 2 << 1) + 1;
406     } while (j <= k);
407   }
408   if (kt) {
409     j = kt;
410     do {
411       mfactor++;
412       fftstate->factor [mfactor - 1] = fftstate->factor [j - 1];
413       j--;
414     } while (j);
415   }
416 
417   /* test that mfactors is in range */
418   if (mfactor > FFT_NFACTOR)
419   {
420     return -1;
421   }
422 
423   /* compute fourier transform */
424   for (;;) {
425     sd = radf / (double) kspan;
426     cd = sin(sd);
427     cd = 2.0 * cd * cd;
428     sd = sin(sd + sd);
429     kk = 0;
430     ii++;
431 
432     switch (fftstate->factor [ii - 1]) {
433       case 2:
434         /* transform for factor of 2 (including rotation factor) */
435         kspan /= 2;
436         k1 = kspan + 2;
437         do {
438           do {
439             k2 = kk + kspan;
440             ak = Re [k2];
441             bk = Im [k2];
442             Re [k2] = Re [kk] - ak;
443             Im [k2] = Im [kk] - bk;
444             Re [kk] += ak;
445             Im [kk] += bk;
446             kk = k2 + kspan;
447           } while (kk < nn);
448           kk -= nn;
449         } while (kk < jc);
450         if (kk >= kspan)
451           goto Permute_Results_Label;  /* exit infinite loop */
452         do {
453           c1 = 1.0 - cd;
454           s1 = sd;
455           do {
456             do {
457               do {
458                 k2 = kk + kspan;
459                 ak = Re [kk] - Re [k2];
460                 bk = Im [kk] - Im [k2];
461                 Re [kk] += Re [k2];
462                 Im [kk] += Im [k2];
463                 Re [k2] = c1 * ak - s1 * bk;
464                 Im [k2] = s1 * ak + c1 * bk;
465                 kk = k2 + kspan;
466               } while (kk < (nt-1));
467               k2 = kk - nt;
468               c1 = -c1;
469               kk = k1 - k2;
470             } while (kk > k2);
471             ak = c1 - (cd * c1 + sd * s1);
472             s1 = sd * c1 - cd * s1 + s1;
473             c1 = 2.0 - (ak * ak + s1 * s1);
474             s1 *= c1;
475             c1 *= ak;
476             kk += jc;
477           } while (kk < k2);
478           k1 += inc + inc;
479           kk = (k1 - kspan + 1) / 2 + jc - 1;
480         } while (kk < (jc + jc));
481         break;
482 
483       case 4:   /* transform for factor of 4 */
484         ispan = kspan;
485         kspan /= 4;
486 
487         do {
488           c1 = 1.0;
489           s1 = 0.0;
490           do {
491             do {
492               k1 = kk + kspan;
493               k2 = k1 + kspan;
494               k3 = k2 + kspan;
495               akp = Re [kk] + Re [k2];
496               akm = Re [kk] - Re [k2];
497               ajp = Re [k1] + Re [k3];
498               ajm = Re [k1] - Re [k3];
499               bkp = Im [kk] + Im [k2];
500               bkm = Im [kk] - Im [k2];
501               bjp = Im [k1] + Im [k3];
502               bjm = Im [k1] - Im [k3];
503               Re [kk] = akp + ajp;
504               Im [kk] = bkp + bjp;
505               ajp = akp - ajp;
506               bjp = bkp - bjp;
507               if (iSign < 0) {
508                 akp = akm + bjm;
509                 bkp = bkm - ajm;
510                 akm -= bjm;
511                 bkm += ajm;
512               } else {
513                 akp = akm - bjm;
514                 bkp = bkm + ajm;
515                 akm += bjm;
516                 bkm -= ajm;
517               }
518               /* avoid useless multiplies */
519               if (s1 == 0.0) {
520                 Re [k1] = akp;
521                 Re [k2] = ajp;
522                 Re [k3] = akm;
523                 Im [k1] = bkp;
524                 Im [k2] = bjp;
525                 Im [k3] = bkm;
526               } else {
527                 Re [k1] = akp * c1 - bkp * s1;
528                 Re [k2] = ajp * c2 - bjp * s2;
529                 Re [k3] = akm * c3 - bkm * s3;
530                 Im [k1] = akp * s1 + bkp * c1;
531                 Im [k2] = ajp * s2 + bjp * c2;
532                 Im [k3] = akm * s3 + bkm * c3;
533               }
534               kk = k3 + kspan;
535             } while (kk < nt);
536 
537             c2 = c1 - (cd * c1 + sd * s1);
538             s1 = sd * c1 - cd * s1 + s1;
539             c1 = 2.0 - (c2 * c2 + s1 * s1);
540             s1 *= c1;
541             c1 *= c2;
542             /* values of c2, c3, s2, s3 that will get used next time */
543             c2 = c1 * c1 - s1 * s1;
544             s2 = 2.0 * c1 * s1;
545             c3 = c2 * c1 - s2 * s1;
546             s3 = c2 * s1 + s2 * c1;
547             kk = kk - nt + jc;
548           } while (kk < kspan);
549           kk = kk - kspan + inc;
550         } while (kk < jc);
551         if (kspan == jc)
552           goto Permute_Results_Label;  /* exit infinite loop */
553         break;
554 
555       default:
556         /*  transform for odd factors */
557 #ifdef FFT_RADIX4
558         return -1;
559         break;
560 #else /* FFT_RADIX4 */
561         k = fftstate->factor [ii - 1];
562         ispan = kspan;
563         kspan /= k;
564 
565         switch (k) {
566           case 3: /* transform for factor of 3 (optional code) */
567             do {
568               do {
569                 k1 = kk + kspan;
570                 k2 = k1 + kspan;
571                 ak = Re [kk];
572                 bk = Im [kk];
573                 aj = Re [k1] + Re [k2];
574                 bj = Im [k1] + Im [k2];
575                 Re [kk] = ak + aj;
576                 Im [kk] = bk + bj;
577                 ak -= 0.5 * aj;
578                 bk -= 0.5 * bj;
579                 aj = (Re [k1] - Re [k2]) * s60;
580                 bj = (Im [k1] - Im [k2]) * s60;
581                 Re [k1] = ak - bj;
582                 Re [k2] = ak + bj;
583                 Im [k1] = bk + aj;
584                 Im [k2] = bk - aj;
585                 kk = k2 + kspan;
586               } while (kk < (nn - 1));
587               kk -= nn;
588             } while (kk < kspan);
589             break;
590 
591           case 5: /*  transform for factor of 5 (optional code) */
592             c2 = c72 * c72 - s72 * s72;
593             s2 = 2.0 * c72 * s72;
594             do {
595               do {
596                 k1 = kk + kspan;
597                 k2 = k1 + kspan;
598                 k3 = k2 + kspan;
599                 k4 = k3 + kspan;
600                 akp = Re [k1] + Re [k4];
601                 akm = Re [k1] - Re [k4];
602                 bkp = Im [k1] + Im [k4];
603                 bkm = Im [k1] - Im [k4];
604                 ajp = Re [k2] + Re [k3];
605                 ajm = Re [k2] - Re [k3];
606                 bjp = Im [k2] + Im [k3];
607                 bjm = Im [k2] - Im [k3];
608                 aa = Re [kk];
609                 bb = Im [kk];
610                 Re [kk] = aa + akp + ajp;
611                 Im [kk] = bb + bkp + bjp;
612                 ak = akp * c72 + ajp * c2 + aa;
613                 bk = bkp * c72 + bjp * c2 + bb;
614                 aj = akm * s72 + ajm * s2;
615                 bj = bkm * s72 + bjm * s2;
616                 Re [k1] = ak - bj;
617                 Re [k4] = ak + bj;
618                 Im [k1] = bk + aj;
619                 Im [k4] = bk - aj;
620                 ak = akp * c2 + ajp * c72 + aa;
621                 bk = bkp * c2 + bjp * c72 + bb;
622                 aj = akm * s2 - ajm * s72;
623                 bj = bkm * s2 - bjm * s72;
624                 Re [k2] = ak - bj;
625                 Re [k3] = ak + bj;
626                 Im [k2] = bk + aj;
627                 Im [k3] = bk - aj;
628                 kk = k4 + kspan;
629               } while (kk < (nn-1));
630               kk -= nn;
631             } while (kk < kspan);
632             break;
633 
634           default:
635             if (k != jf) {
636               jf = k;
637               s1 = pi2 / (double) k;
638               c1 = cos(s1);
639               s1 = sin(s1);
640               if (jf > max_factors){
641                 return -1;
642               }
643               Cos [jf - 1] = 1.0;
644               Sin [jf - 1] = 0.0;
645               j = 1;
646               do {
647                 Cos [j - 1] = Cos [k - 1] * c1 + Sin [k - 1] * s1;
648                 Sin [j - 1] = Cos [k - 1] * s1 - Sin [k - 1] * c1;
649                 k--;
650                 Cos [k - 1] = Cos [j - 1];
651                 Sin [k - 1] = -Sin [j - 1];
652                 j++;
653               } while (j < k);
654             }
655             do {
656               do {
657                 k1 = kk;
658                 k2 = kk + ispan;
659                 ak = aa = Re [kk];
660                 bk = bb = Im [kk];
661                 j = 1;
662                 k1 += kspan;
663                 do {
664                   k2 -= kspan;
665                   j++;
666                   Rtmp [j - 1] = Re [k1] + Re [k2];
667                   ak += Rtmp [j - 1];
668                   Itmp [j - 1] = Im [k1] + Im [k2];
669                   bk += Itmp [j - 1];
670                   j++;
671                   Rtmp [j - 1] = Re [k1] - Re [k2];
672                   Itmp [j - 1] = Im [k1] - Im [k2];
673                   k1 += kspan;
674                 } while (k1 < k2);
675                 Re [kk] = ak;
676                 Im [kk] = bk;
677                 k1 = kk;
678                 k2 = kk + ispan;
679                 j = 1;
680                 do {
681                   k1 += kspan;
682                   k2 -= kspan;
683                   jj = j;
684                   ak = aa;
685                   bk = bb;
686                   aj = 0.0;
687                   bj = 0.0;
688                   k = 1;
689                   do {
690                     k++;
691                     ak += Rtmp [k - 1] * Cos [jj - 1];
692                     bk += Itmp [k - 1] * Cos [jj - 1];
693                     k++;
694                     aj += Rtmp [k - 1] * Sin [jj - 1];
695                     bj += Itmp [k - 1] * Sin [jj - 1];
696                     jj += j;
697                     if (jj > jf) {
698                       jj -= jf;
699                     }
700                   } while (k < jf);
701                   k = jf - j;
702                   Re [k1] = ak - bj;
703                   Im [k1] = bk + aj;
704                   Re [k2] = ak + bj;
705                   Im [k2] = bk - aj;
706                   j++;
707                 } while (j < k);
708                 kk += ispan;
709               } while (kk < nn);
710               kk -= nn;
711             } while (kk < kspan);
712             break;
713         }
714 
715         /*  multiply by rotation factor (except for factors of 2 and 4) */
716         if (ii == mfactor)
717           goto Permute_Results_Label;  /* exit infinite loop */
718         kk = jc;
719         do {
720           c2 = 1.0 - cd;
721           s1 = sd;
722           do {
723             c1 = c2;
724             s2 = s1;
725             kk += kspan;
726             do {
727               do {
728                 ak = Re [kk];
729                 Re [kk] = c2 * ak - s2 * Im [kk];
730                 Im [kk] = s2 * ak + c2 * Im [kk];
731                 kk += ispan;
732               } while (kk < nt);
733               ak = s1 * s2;
734               s2 = s1 * c2 + c1 * s2;
735               c2 = c1 * c2 - ak;
736               kk = kk - nt + kspan;
737             } while (kk < ispan);
738             c2 = c1 - (cd * c1 + sd * s1);
739             s1 += sd * c1 - cd * s1;
740             c1 = 2.0 - (c2 * c2 + s1 * s1);
741             s1 *= c1;
742             c2 *= c1;
743             kk = kk - ispan + jc;
744           } while (kk < kspan);
745           kk = kk - kspan + jc + inc;
746         } while (kk < (jc + jc));
747         break;
748 #endif /* FFT_RADIX4 */
749     }
750   }
751 
752   /*  permute the results to normal order---done in two stages */
753   /*  permutation for square factors of n */
754 Permute_Results_Label:
755   fftstate->Perm [0] = ns;
756   if (kt) {
757     k = kt + kt + 1;
758     if (mfactor < k)
759       k--;
760     j = 1;
761     fftstate->Perm [k] = jc;
762     do {
763       fftstate->Perm [j] = fftstate->Perm [j - 1] / fftstate->factor [j - 1];
764       fftstate->Perm [k - 1] = fftstate->Perm [k] * fftstate->factor [j - 1];
765       j++;
766       k--;
767     } while (j < k);
768     k3 = fftstate->Perm [k];
769     kspan = fftstate->Perm [1];
770     kk = jc;
771     k2 = kspan;
772     j = 1;
773     if (nPass != nTotal) {
774       /*  permutation for multivariate transform */
775    Permute_Multi_Label:
776       do {
777         do {
778           k = kk + jc;
779           do {
780             /* swap Re [kk] <> Re [k2], Im [kk] <> Im [k2] */
781             ak = Re [kk]; Re [kk] = Re [k2]; Re [k2] = ak;
782             bk = Im [kk]; Im [kk] = Im [k2]; Im [k2] = bk;
783             kk += inc;
784             k2 += inc;
785           } while (kk < (k-1));
786           kk += ns - jc;
787           k2 += ns - jc;
788         } while (kk < (nt-1));
789         k2 = k2 - nt + kspan;
790         kk = kk - nt + jc;
791       } while (k2 < (ns-1));
792       do {
793         do {
794           k2 -= fftstate->Perm [j - 1];
795           j++;
796           k2 = fftstate->Perm [j] + k2;
797         } while (k2 > fftstate->Perm [j - 1]);
798         j = 1;
799         do {
800           if (kk < (k2-1))
801             goto Permute_Multi_Label;
802           kk += jc;
803           k2 += kspan;
804         } while (k2 < (ns-1));
805       } while (kk < (ns-1));
806     } else {
807       /*  permutation for single-variate transform (optional code) */
808    Permute_Single_Label:
809       do {
810         /* swap Re [kk] <> Re [k2], Im [kk] <> Im [k2] */
811         ak = Re [kk]; Re [kk] = Re [k2]; Re [k2] = ak;
812         bk = Im [kk]; Im [kk] = Im [k2]; Im [k2] = bk;
813         kk += inc;
814         k2 += kspan;
815       } while (k2 < (ns-1));
816       do {
817         do {
818           k2 -= fftstate->Perm [j - 1];
819           j++;
820           k2 = fftstate->Perm [j] + k2;
821         } while (k2 >= fftstate->Perm [j - 1]);
822         j = 1;
823         do {
824           if (kk < k2)
825             goto Permute_Single_Label;
826           kk += inc;
827           k2 += kspan;
828         } while (k2 < (ns-1));
829       } while (kk < (ns-1));
830     }
831     jc = k3;
832   }
833 
834   if ((kt << 1) + 1 >= mfactor)
835     return 0;
836   ispan = fftstate->Perm [kt];
837   /* permutation for square-free factors of n */
838   j = mfactor - kt;
839   fftstate->factor [j] = 1;
840   do {
841     fftstate->factor [j - 1] *= fftstate->factor [j];
842     j--;
843   } while (j != kt);
844   kt++;
845   nn = fftstate->factor [kt - 1] - 1;
846   if (nn > (int) max_perm) {
847     return -1;
848   }
849   j = jj = 0;
850   for (;;) {
851     k = kt + 1;
852     k2 = fftstate->factor [kt - 1];
853     kk = fftstate->factor [k - 1];
854     j++;
855     if (j > nn)
856       break;    /* exit infinite loop */
857     jj += kk;
858     while (jj >= k2) {
859       jj -= k2;
860       k2 = kk;
861       k++;
862       kk = fftstate->factor [k - 1];
863       jj += kk;
864     }
865     fftstate->Perm [j - 1] = jj;
866   }
867   /*  determine the permutation cycles of length greater than 1 */
868   j = 0;
869   for (;;) {
870     do {
871       j++;
872       kk = fftstate->Perm [j - 1];
873     } while (kk < 0);
874     if (kk != j) {
875       do {
876         k = kk;
877         kk = fftstate->Perm [k - 1];
878         fftstate->Perm [k - 1] = -kk;
879       } while (kk != j);
880       k3 = kk;
881     } else {
882       fftstate->Perm [j - 1] = -j;
883       if (j == nn)
884         break;  /* exit infinite loop */
885     }
886   }
887   max_factors *= inc;
888   /*  reorder a and b, following the permutation cycles */
889   for (;;) {
890     j = k3 + 1;
891     nt -= ispan;
892     ii = nt - inc + 1;
893     if (nt < 0)
894       break;   /* exit infinite loop */
895     do {
896       do {
897         j--;
898       } while (fftstate->Perm [j - 1] < 0);
899       jj = jc;
900       do {
901         kspan = jj;
902         if (jj > max_factors) {
903           kspan = max_factors;
904         }
905         jj -= kspan;
906         k = fftstate->Perm [j - 1];
907         kk = jc * k + ii + jj;
908         k1 = kk + kspan - 1;
909         k2 = 0;
910         do {
911           k2++;
912           Rtmp [k2 - 1] = Re [k1];
913           Itmp [k2 - 1] = Im [k1];
914           k1 -= inc;
915         } while (k1 != (kk-1));
916         do {
917           k1 = kk + kspan - 1;
918           k2 = k1 - jc * (k + fftstate->Perm [k - 1]);
919           k = -fftstate->Perm [k - 1];
920           do {
921             Re [k1] = Re [k2];
922             Im [k1] = Im [k2];
923             k1 -= inc;
924             k2 -= inc;
925           } while (k1 != (kk-1));
926           kk = k2 + 1;
927         } while (k != j);
928         k1 = kk + kspan - 1;
929         k2 = 0;
930         do {
931           k2++;
932           Re [k1] = Rtmp [k2 - 1];
933           Im [k1] = Itmp [k2 - 1];
934           k1 -= inc;
935         } while (k1 != (kk-1));
936       } while (jj);
937     } while (j != 1);
938   }
939   return 0;   /* exit point here */
940 }
941 /* ---------------------- end-of-file (c source) ---------------------- */
942 
943