1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 *
26 */
27
28 #include "nir.h"
29 #include "nir_builder.h"
30 #include "nir_vla.h"
31
32 /*
33 * This file implements an out-of-SSA pass as described in "Revisiting
34 * Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by
35 * Boissinot et al.
36 */
37
38 struct from_ssa_state {
39 nir_builder builder;
40 void *dead_ctx;
41 bool phi_webs_only;
42 struct hash_table *merge_node_table;
43 nir_instr *instr;
44 bool progress;
45 };
46
47 /* Returns if def @a comes after def @b.
48 *
49 * We treat SSA undefs as always coming before other instruction types.
50 */
51 static bool
def_after(nir_ssa_def * a,nir_ssa_def * b)52 def_after(nir_ssa_def *a, nir_ssa_def *b)
53 {
54 if (a->parent_instr->type == nir_instr_type_ssa_undef)
55 return false;
56
57 if (b->parent_instr->type == nir_instr_type_ssa_undef)
58 return true;
59
60 return a->parent_instr->index > b->parent_instr->index;
61 }
62
63 /* Returns true if a dominates b */
64 static bool
ssa_def_dominates(nir_ssa_def * a,nir_ssa_def * b)65 ssa_def_dominates(nir_ssa_def *a, nir_ssa_def *b)
66 {
67 if (a->parent_instr->type == nir_instr_type_ssa_undef) {
68 /* SSA undefs always dominate */
69 return true;
70 } if (def_after(a, b)) {
71 return false;
72 } else if (a->parent_instr->block == b->parent_instr->block) {
73 return def_after(b, a);
74 } else {
75 return nir_block_dominates(a->parent_instr->block,
76 b->parent_instr->block);
77 }
78 }
79
80
81 /* The following data structure, which I have named merge_set is a way of
82 * representing a set registers of non-interfering registers. This is
83 * based on the concept of a "dominance forest" presented in "Fast Copy
84 * Coalescing and Live-Range Identification" by Budimlic et al. but the
85 * implementation concept is taken from "Revisiting Out-of-SSA Translation
86 * for Correctness, Code Quality, and Efficiency" by Boissinot et al.
87 *
88 * Each SSA definition is associated with a merge_node and the association
89 * is represented by a combination of a hash table and the "def" parameter
90 * in the merge_node structure. The merge_set stores a linked list of
91 * merge_nodes in dominance order of the ssa definitions. (Since the
92 * liveness analysis pass indexes the SSA values in dominance order for us,
93 * this is an easy thing to keep up.) It is assumed that no pair of the
94 * nodes in a given set interfere. Merging two sets or checking for
95 * interference can be done in a single linear-time merge-sort walk of the
96 * two lists of nodes.
97 */
98 struct merge_set;
99
100 typedef struct {
101 struct exec_node node;
102 struct merge_set *set;
103 nir_ssa_def *def;
104 } merge_node;
105
106 typedef struct merge_set {
107 struct exec_list nodes;
108 unsigned size;
109 nir_register *reg;
110 } merge_set;
111
112 #if 0
113 static void
114 merge_set_dump(merge_set *set, FILE *fp)
115 {
116 nir_ssa_def *dom[set->size];
117 int dom_idx = -1;
118
119 foreach_list_typed(merge_node, node, node, &set->nodes) {
120 while (dom_idx >= 0 && !ssa_def_dominates(dom[dom_idx], node->def))
121 dom_idx--;
122
123 for (int i = 0; i <= dom_idx; i++)
124 fprintf(fp, " ");
125
126 if (node->def->name)
127 fprintf(fp, "ssa_%d /* %s */\n", node->def->index, node->def->name);
128 else
129 fprintf(fp, "ssa_%d\n", node->def->index);
130
131 dom[++dom_idx] = node->def;
132 }
133 }
134 #endif
135
136 static merge_node *
get_merge_node(nir_ssa_def * def,struct from_ssa_state * state)137 get_merge_node(nir_ssa_def *def, struct from_ssa_state *state)
138 {
139 struct hash_entry *entry =
140 _mesa_hash_table_search(state->merge_node_table, def);
141 if (entry)
142 return entry->data;
143
144 merge_set *set = ralloc(state->dead_ctx, merge_set);
145 exec_list_make_empty(&set->nodes);
146 set->size = 1;
147 set->reg = NULL;
148
149 merge_node *node = ralloc(state->dead_ctx, merge_node);
150 node->set = set;
151 node->def = def;
152 exec_list_push_head(&set->nodes, &node->node);
153
154 _mesa_hash_table_insert(state->merge_node_table, def, node);
155
156 return node;
157 }
158
159 static bool
merge_nodes_interfere(merge_node * a,merge_node * b)160 merge_nodes_interfere(merge_node *a, merge_node *b)
161 {
162 return nir_ssa_defs_interfere(a->def, b->def);
163 }
164
165 /* Merges b into a */
166 static merge_set *
merge_merge_sets(merge_set * a,merge_set * b)167 merge_merge_sets(merge_set *a, merge_set *b)
168 {
169 struct exec_node *an = exec_list_get_head(&a->nodes);
170 struct exec_node *bn = exec_list_get_head(&b->nodes);
171 while (!exec_node_is_tail_sentinel(bn)) {
172 merge_node *a_node = exec_node_data(merge_node, an, node);
173 merge_node *b_node = exec_node_data(merge_node, bn, node);
174
175 if (exec_node_is_tail_sentinel(an) ||
176 def_after(a_node->def, b_node->def)) {
177 struct exec_node *next = bn->next;
178 exec_node_remove(bn);
179 exec_node_insert_node_before(an, bn);
180 exec_node_data(merge_node, bn, node)->set = a;
181 bn = next;
182 } else {
183 an = an->next;
184 }
185 }
186
187 a->size += b->size;
188 b->size = 0;
189
190 return a;
191 }
192
193 /* Checks for any interference between two merge sets
194 *
195 * This is an implementation of Algorithm 2 in "Revisiting Out-of-SSA
196 * Translation for Correctness, Code Quality, and Efficiency" by
197 * Boissinot et al.
198 */
199 static bool
merge_sets_interfere(merge_set * a,merge_set * b)200 merge_sets_interfere(merge_set *a, merge_set *b)
201 {
202 NIR_VLA(merge_node *, dom, a->size + b->size);
203 int dom_idx = -1;
204
205 struct exec_node *an = exec_list_get_head(&a->nodes);
206 struct exec_node *bn = exec_list_get_head(&b->nodes);
207 while (!exec_node_is_tail_sentinel(an) ||
208 !exec_node_is_tail_sentinel(bn)) {
209
210 merge_node *current;
211 if (exec_node_is_tail_sentinel(an)) {
212 current = exec_node_data(merge_node, bn, node);
213 bn = bn->next;
214 } else if (exec_node_is_tail_sentinel(bn)) {
215 current = exec_node_data(merge_node, an, node);
216 an = an->next;
217 } else {
218 merge_node *a_node = exec_node_data(merge_node, an, node);
219 merge_node *b_node = exec_node_data(merge_node, bn, node);
220
221 if (def_after(b_node->def, a_node->def)) {
222 current = a_node;
223 an = an->next;
224 } else {
225 current = b_node;
226 bn = bn->next;
227 }
228 }
229
230 while (dom_idx >= 0 &&
231 !ssa_def_dominates(dom[dom_idx]->def, current->def))
232 dom_idx--;
233
234 if (dom_idx >= 0 && merge_nodes_interfere(current, dom[dom_idx]))
235 return true;
236
237 dom[++dom_idx] = current;
238 }
239
240 return false;
241 }
242
243 static bool
add_parallel_copy_to_end_of_block(nir_block * block,void * dead_ctx)244 add_parallel_copy_to_end_of_block(nir_block *block, void *dead_ctx)
245 {
246
247 bool need_end_copy = false;
248 if (block->successors[0]) {
249 nir_instr *instr = nir_block_first_instr(block->successors[0]);
250 if (instr && instr->type == nir_instr_type_phi)
251 need_end_copy = true;
252 }
253
254 if (block->successors[1]) {
255 nir_instr *instr = nir_block_first_instr(block->successors[1]);
256 if (instr && instr->type == nir_instr_type_phi)
257 need_end_copy = true;
258 }
259
260 if (need_end_copy) {
261 /* If one of our successors has at least one phi node, we need to
262 * create a parallel copy at the end of the block but before the jump
263 * (if there is one).
264 */
265 nir_parallel_copy_instr *pcopy =
266 nir_parallel_copy_instr_create(dead_ctx);
267
268 nir_instr_insert(nir_after_block_before_jump(block), &pcopy->instr);
269 }
270
271 return true;
272 }
273
274 static nir_parallel_copy_instr *
get_parallel_copy_at_end_of_block(nir_block * block)275 get_parallel_copy_at_end_of_block(nir_block *block)
276 {
277 nir_instr *last_instr = nir_block_last_instr(block);
278 if (last_instr == NULL)
279 return NULL;
280
281 /* The last instruction may be a jump in which case the parallel copy is
282 * right before it.
283 */
284 if (last_instr->type == nir_instr_type_jump)
285 last_instr = nir_instr_prev(last_instr);
286
287 if (last_instr && last_instr->type == nir_instr_type_parallel_copy)
288 return nir_instr_as_parallel_copy(last_instr);
289 else
290 return NULL;
291 }
292
293 /** Isolate phi nodes with parallel copies
294 *
295 * In order to solve the dependency problems with the sources and
296 * destinations of phi nodes, we first isolate them by adding parallel
297 * copies to the beginnings and ends of basic blocks. For every block with
298 * phi nodes, we add a parallel copy immediately following the last phi
299 * node that copies the destinations of all of the phi nodes to new SSA
300 * values. We also add a parallel copy to the end of every block that has
301 * a successor with phi nodes that, for each phi node in each successor,
302 * copies the corresponding sorce of the phi node and adjust the phi to
303 * used the destination of the parallel copy.
304 *
305 * In SSA form, each value has exactly one definition. What this does is
306 * ensure that each value used in a phi also has exactly one use. The
307 * destinations of phis are only used by the parallel copy immediately
308 * following the phi nodes and. Thanks to the parallel copy at the end of
309 * the predecessor block, the sources of phi nodes are are the only use of
310 * that value. This allows us to immediately assign all the sources and
311 * destinations of any given phi node to the same register without worrying
312 * about interference at all. We do coalescing to get rid of the parallel
313 * copies where possible.
314 *
315 * Before this pass can be run, we have to iterate over the blocks with
316 * add_parallel_copy_to_end_of_block to ensure that the parallel copies at
317 * the ends of blocks exist. We can create the ones at the beginnings as
318 * we go, but the ones at the ends of blocks need to be created ahead of
319 * time because of potential back-edges in the CFG.
320 */
321 static bool
isolate_phi_nodes_block(nir_block * block,void * dead_ctx)322 isolate_phi_nodes_block(nir_block *block, void *dead_ctx)
323 {
324 nir_instr *last_phi_instr = NULL;
325 nir_foreach_instr(instr, block) {
326 /* Phi nodes only ever come at the start of a block */
327 if (instr->type != nir_instr_type_phi)
328 break;
329
330 last_phi_instr = instr;
331 }
332
333 /* If we don't have any phis, then there's nothing for us to do. */
334 if (last_phi_instr == NULL)
335 return true;
336
337 /* If we have phi nodes, we need to create a parallel copy at the
338 * start of this block but after the phi nodes.
339 */
340 nir_parallel_copy_instr *block_pcopy =
341 nir_parallel_copy_instr_create(dead_ctx);
342 nir_instr_insert_after(last_phi_instr, &block_pcopy->instr);
343
344 nir_foreach_instr(instr, block) {
345 /* Phi nodes only ever come at the start of a block */
346 if (instr->type != nir_instr_type_phi)
347 break;
348
349 nir_phi_instr *phi = nir_instr_as_phi(instr);
350 assert(phi->dest.is_ssa);
351 nir_foreach_phi_src(src, phi) {
352 nir_parallel_copy_instr *pcopy =
353 get_parallel_copy_at_end_of_block(src->pred);
354 assert(pcopy);
355
356 nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
357 nir_parallel_copy_entry);
358 nir_ssa_dest_init(&pcopy->instr, &entry->dest,
359 phi->dest.ssa.num_components,
360 phi->dest.ssa.bit_size, src->src.ssa->name);
361 exec_list_push_tail(&pcopy->entries, &entry->node);
362
363 assert(src->src.is_ssa);
364 nir_instr_rewrite_src(&pcopy->instr, &entry->src, src->src);
365
366 nir_instr_rewrite_src(&phi->instr, &src->src,
367 nir_src_for_ssa(&entry->dest.ssa));
368 }
369
370 nir_parallel_copy_entry *entry = rzalloc(dead_ctx,
371 nir_parallel_copy_entry);
372 nir_ssa_dest_init(&block_pcopy->instr, &entry->dest,
373 phi->dest.ssa.num_components, phi->dest.ssa.bit_size,
374 phi->dest.ssa.name);
375 exec_list_push_tail(&block_pcopy->entries, &entry->node);
376
377 nir_ssa_def_rewrite_uses(&phi->dest.ssa,
378 nir_src_for_ssa(&entry->dest.ssa));
379
380 nir_instr_rewrite_src(&block_pcopy->instr, &entry->src,
381 nir_src_for_ssa(&phi->dest.ssa));
382 }
383
384 return true;
385 }
386
387 static bool
coalesce_phi_nodes_block(nir_block * block,struct from_ssa_state * state)388 coalesce_phi_nodes_block(nir_block *block, struct from_ssa_state *state)
389 {
390 nir_foreach_instr(instr, block) {
391 /* Phi nodes only ever come at the start of a block */
392 if (instr->type != nir_instr_type_phi)
393 break;
394
395 nir_phi_instr *phi = nir_instr_as_phi(instr);
396
397 assert(phi->dest.is_ssa);
398 merge_node *dest_node = get_merge_node(&phi->dest.ssa, state);
399
400 nir_foreach_phi_src(src, phi) {
401 assert(src->src.is_ssa);
402 merge_node *src_node = get_merge_node(src->src.ssa, state);
403 if (src_node->set != dest_node->set)
404 merge_merge_sets(dest_node->set, src_node->set);
405 }
406 }
407
408 return true;
409 }
410
411 static void
aggressive_coalesce_parallel_copy(nir_parallel_copy_instr * pcopy,struct from_ssa_state * state)412 aggressive_coalesce_parallel_copy(nir_parallel_copy_instr *pcopy,
413 struct from_ssa_state *state)
414 {
415 nir_foreach_parallel_copy_entry(entry, pcopy) {
416 if (!entry->src.is_ssa)
417 continue;
418
419 /* Since load_const instructions are SSA only, we can't replace their
420 * destinations with registers and, therefore, can't coalesce them.
421 */
422 if (entry->src.ssa->parent_instr->type == nir_instr_type_load_const)
423 continue;
424
425 /* Don't try and coalesce these */
426 if (entry->dest.ssa.num_components != entry->src.ssa->num_components)
427 continue;
428
429 merge_node *src_node = get_merge_node(entry->src.ssa, state);
430 merge_node *dest_node = get_merge_node(&entry->dest.ssa, state);
431
432 if (src_node->set == dest_node->set)
433 continue;
434
435 if (!merge_sets_interfere(src_node->set, dest_node->set))
436 merge_merge_sets(src_node->set, dest_node->set);
437 }
438 }
439
440 static bool
aggressive_coalesce_block(nir_block * block,struct from_ssa_state * state)441 aggressive_coalesce_block(nir_block *block, struct from_ssa_state *state)
442 {
443 nir_parallel_copy_instr *start_pcopy = NULL;
444 nir_foreach_instr(instr, block) {
445 /* Phi nodes only ever come at the start of a block */
446 if (instr->type != nir_instr_type_phi) {
447 if (instr->type != nir_instr_type_parallel_copy)
448 break; /* The parallel copy must be right after the phis */
449
450 start_pcopy = nir_instr_as_parallel_copy(instr);
451
452 aggressive_coalesce_parallel_copy(start_pcopy, state);
453
454 break;
455 }
456 }
457
458 nir_parallel_copy_instr *end_pcopy =
459 get_parallel_copy_at_end_of_block(block);
460
461 if (end_pcopy && end_pcopy != start_pcopy)
462 aggressive_coalesce_parallel_copy(end_pcopy, state);
463
464 return true;
465 }
466
467 static nir_register *
create_reg_for_ssa_def(nir_ssa_def * def,nir_function_impl * impl)468 create_reg_for_ssa_def(nir_ssa_def *def, nir_function_impl *impl)
469 {
470 nir_register *reg = nir_local_reg_create(impl);
471
472 reg->name = def->name;
473 reg->num_components = def->num_components;
474 reg->bit_size = def->bit_size;
475 reg->num_array_elems = 0;
476
477 return reg;
478 }
479
480 static bool
rewrite_ssa_def(nir_ssa_def * def,void * void_state)481 rewrite_ssa_def(nir_ssa_def *def, void *void_state)
482 {
483 struct from_ssa_state *state = void_state;
484 nir_register *reg;
485
486 struct hash_entry *entry =
487 _mesa_hash_table_search(state->merge_node_table, def);
488 if (entry) {
489 /* In this case, we're part of a phi web. Use the web's register. */
490 merge_node *node = (merge_node *)entry->data;
491
492 /* If it doesn't have a register yet, create one. Note that all of
493 * the things in the merge set should be the same so it doesn't
494 * matter which node's definition we use.
495 */
496 if (node->set->reg == NULL)
497 node->set->reg = create_reg_for_ssa_def(def, state->builder.impl);
498
499 reg = node->set->reg;
500 } else {
501 if (state->phi_webs_only)
502 return true;
503
504 /* We leave load_const SSA values alone. They act as immediates to
505 * the backend. If it got coalesced into a phi, that's ok.
506 */
507 if (def->parent_instr->type == nir_instr_type_load_const)
508 return true;
509
510 reg = create_reg_for_ssa_def(def, state->builder.impl);
511 }
512
513 nir_ssa_def_rewrite_uses(def, nir_src_for_reg(reg));
514 assert(list_is_empty(&def->uses) && list_is_empty(&def->if_uses));
515
516 if (def->parent_instr->type == nir_instr_type_ssa_undef) {
517 /* If it's an ssa_undef instruction, remove it since we know we just got
518 * rid of all its uses.
519 */
520 nir_instr *parent_instr = def->parent_instr;
521 nir_instr_remove(parent_instr);
522 ralloc_steal(state->dead_ctx, parent_instr);
523 state->progress = true;
524 return true;
525 }
526
527 assert(def->parent_instr->type != nir_instr_type_load_const);
528
529 /* At this point we know a priori that this SSA def is part of a
530 * nir_dest. We can use exec_node_data to get the dest pointer.
531 */
532 nir_dest *dest = exec_node_data(nir_dest, def, ssa);
533
534 nir_instr_rewrite_dest(state->instr, dest, nir_dest_for_reg(reg));
535 state->progress = true;
536 return true;
537 }
538
539 /* Resolves ssa definitions to registers. While we're at it, we also
540 * remove phi nodes.
541 */
542 static void
resolve_registers_block(nir_block * block,struct from_ssa_state * state)543 resolve_registers_block(nir_block *block, struct from_ssa_state *state)
544 {
545 nir_foreach_instr_safe(instr, block) {
546 state->instr = instr;
547 nir_foreach_ssa_def(instr, rewrite_ssa_def, state);
548
549 if (instr->type == nir_instr_type_phi) {
550 nir_instr_remove(instr);
551 ralloc_steal(state->dead_ctx, instr);
552 state->progress = true;
553 }
554 }
555 state->instr = NULL;
556 }
557
558 static void
emit_copy(nir_builder * b,nir_src src,nir_src dest_src)559 emit_copy(nir_builder *b, nir_src src, nir_src dest_src)
560 {
561 assert(!dest_src.is_ssa &&
562 dest_src.reg.indirect == NULL &&
563 dest_src.reg.base_offset == 0);
564
565 if (src.is_ssa)
566 assert(src.ssa->num_components >= dest_src.reg.reg->num_components);
567 else
568 assert(src.reg.reg->num_components >= dest_src.reg.reg->num_components);
569
570 nir_alu_instr *mov = nir_alu_instr_create(b->shader, nir_op_mov);
571 nir_src_copy(&mov->src[0].src, &src, mov);
572 mov->dest.dest = nir_dest_for_reg(dest_src.reg.reg);
573 mov->dest.write_mask = (1 << dest_src.reg.reg->num_components) - 1;
574
575 nir_builder_instr_insert(b, &mov->instr);
576 }
577
578 /* Resolves a single parallel copy operation into a sequence of movs
579 *
580 * This is based on Algorithm 1 from "Revisiting Out-of-SSA Translation for
581 * Correctness, Code Quality, and Efficiency" by Boissinot et al.
582 * However, I never got the algorithm to work as written, so this version
583 * is slightly modified.
584 *
585 * The algorithm works by playing this little shell game with the values.
586 * We start by recording where every source value is and which source value
587 * each destination value should receive. We then grab any copy whose
588 * destination is "empty", i.e. not used as a source, and do the following:
589 * - Find where its source value currently lives
590 * - Emit the move instruction
591 * - Set the location of the source value to the destination
592 * - Mark the location containing the source value
593 * - Mark the destination as no longer needing to be copied
594 *
595 * When we run out of "empty" destinations, we have a cycle and so we
596 * create a temporary register, copy to that register, and mark the value
597 * we copied as living in that temporary. Now, the cycle is broken, so we
598 * can continue with the above steps.
599 */
600 static void
resolve_parallel_copy(nir_parallel_copy_instr * pcopy,struct from_ssa_state * state)601 resolve_parallel_copy(nir_parallel_copy_instr *pcopy,
602 struct from_ssa_state *state)
603 {
604 unsigned num_copies = 0;
605 nir_foreach_parallel_copy_entry(entry, pcopy) {
606 /* Sources may be SSA */
607 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
608 continue;
609
610 num_copies++;
611 }
612
613 if (num_copies == 0) {
614 /* Hooray, we don't need any copies! */
615 nir_instr_remove(&pcopy->instr);
616 return;
617 }
618
619 /* The register/source corresponding to the given index */
620 NIR_VLA_ZERO(nir_src, values, num_copies * 2);
621
622 /* The current location of a given piece of data. We will use -1 for "null" */
623 NIR_VLA_FILL(int, loc, num_copies * 2, -1);
624
625 /* The piece of data that the given piece of data is to be copied from. We will use -1 for "null" */
626 NIR_VLA_FILL(int, pred, num_copies * 2, -1);
627
628 /* The destinations we have yet to properly fill */
629 NIR_VLA(int, to_do, num_copies * 2);
630 int to_do_idx = -1;
631
632 state->builder.cursor = nir_before_instr(&pcopy->instr);
633
634 /* Now we set everything up:
635 * - All values get assigned a temporary index
636 * - Current locations are set from sources
637 * - Predicessors are recorded from sources and destinations
638 */
639 int num_vals = 0;
640 nir_foreach_parallel_copy_entry(entry, pcopy) {
641 /* Sources may be SSA */
642 if (!entry->src.is_ssa && entry->src.reg.reg == entry->dest.reg.reg)
643 continue;
644
645 int src_idx = -1;
646 for (int i = 0; i < num_vals; ++i) {
647 if (nir_srcs_equal(values[i], entry->src))
648 src_idx = i;
649 }
650 if (src_idx < 0) {
651 src_idx = num_vals++;
652 values[src_idx] = entry->src;
653 }
654
655 nir_src dest_src = nir_src_for_reg(entry->dest.reg.reg);
656
657 int dest_idx = -1;
658 for (int i = 0; i < num_vals; ++i) {
659 if (nir_srcs_equal(values[i], dest_src)) {
660 /* Each destination of a parallel copy instruction should be
661 * unique. A destination may get used as a source, so we still
662 * have to walk the list. However, the predecessor should not,
663 * at this point, be set yet, so we should have -1 here.
664 */
665 assert(pred[i] == -1);
666 dest_idx = i;
667 }
668 }
669 if (dest_idx < 0) {
670 dest_idx = num_vals++;
671 values[dest_idx] = dest_src;
672 }
673
674 loc[src_idx] = src_idx;
675 pred[dest_idx] = src_idx;
676
677 to_do[++to_do_idx] = dest_idx;
678 }
679
680 /* Currently empty destinations we can go ahead and fill */
681 NIR_VLA(int, ready, num_copies * 2);
682 int ready_idx = -1;
683
684 /* Mark the ones that are ready for copying. We know an index is a
685 * destination if it has a predecessor and it's ready for copying if
686 * it's not marked as containing data.
687 */
688 for (int i = 0; i < num_vals; i++) {
689 if (pred[i] != -1 && loc[i] == -1)
690 ready[++ready_idx] = i;
691 }
692
693 while (to_do_idx >= 0) {
694 while (ready_idx >= 0) {
695 int b = ready[ready_idx--];
696 int a = pred[b];
697 emit_copy(&state->builder, values[loc[a]], values[b]);
698
699 /* b has been filled, mark it as not needing to be copied */
700 pred[b] = -1;
701
702 /* If a needs to be filled... */
703 if (pred[a] != -1) {
704 /* If any other copies want a they can find it at b */
705 loc[a] = b;
706
707 /* It's ready for copying now */
708 ready[++ready_idx] = a;
709 }
710 }
711 int b = to_do[to_do_idx--];
712 if (pred[b] == -1)
713 continue;
714
715 /* If we got here, then we don't have any more trivial copies that we
716 * can do. We have to break a cycle, so we create a new temporary
717 * register for that purpose. Normally, if going out of SSA after
718 * register allocation, you would want to avoid creating temporary
719 * registers. However, we are going out of SSA before register
720 * allocation, so we would rather not create extra register
721 * dependencies for the backend to deal with. If it wants, the
722 * backend can coalesce the (possibly multiple) temporaries.
723 */
724 assert(num_vals < num_copies * 2);
725 nir_register *reg = nir_local_reg_create(state->builder.impl);
726 reg->name = "copy_temp";
727 reg->num_array_elems = 0;
728 if (values[b].is_ssa) {
729 reg->num_components = values[b].ssa->num_components;
730 reg->bit_size = values[b].ssa->bit_size;
731 } else {
732 reg->num_components = values[b].reg.reg->num_components;
733 reg->bit_size = values[b].reg.reg->bit_size;
734 }
735 values[num_vals].is_ssa = false;
736 values[num_vals].reg.reg = reg;
737
738 emit_copy(&state->builder, values[b], values[num_vals]);
739 loc[b] = num_vals;
740 ready[++ready_idx] = b;
741 num_vals++;
742 }
743
744 nir_instr_remove(&pcopy->instr);
745 }
746
747 /* Resolves the parallel copies in a block. Each block can have at most
748 * two: One at the beginning, right after all the phi noces, and one at
749 * the end (or right before the final jump if it exists).
750 */
751 static bool
resolve_parallel_copies_block(nir_block * block,struct from_ssa_state * state)752 resolve_parallel_copies_block(nir_block *block, struct from_ssa_state *state)
753 {
754 /* At this point, we have removed all of the phi nodes. If a parallel
755 * copy existed right after the phi nodes in this block, it is now the
756 * first instruction.
757 */
758 nir_instr *first_instr = nir_block_first_instr(block);
759 if (first_instr == NULL)
760 return true; /* Empty, nothing to do. */
761
762 if (first_instr->type == nir_instr_type_parallel_copy) {
763 nir_parallel_copy_instr *pcopy = nir_instr_as_parallel_copy(first_instr);
764
765 resolve_parallel_copy(pcopy, state);
766 }
767
768 /* It's possible that the above code already cleaned up the end parallel
769 * copy. However, doing so removed it form the instructions list so we
770 * won't find it here. Therefore, it's safe to go ahead and just look
771 * for one and clean it up if it exists.
772 */
773 nir_parallel_copy_instr *end_pcopy =
774 get_parallel_copy_at_end_of_block(block);
775 if (end_pcopy)
776 resolve_parallel_copy(end_pcopy, state);
777
778 return true;
779 }
780
781 static bool
nir_convert_from_ssa_impl(nir_function_impl * impl,bool phi_webs_only)782 nir_convert_from_ssa_impl(nir_function_impl *impl, bool phi_webs_only)
783 {
784 struct from_ssa_state state;
785
786 nir_builder_init(&state.builder, impl);
787 state.dead_ctx = ralloc_context(NULL);
788 state.phi_webs_only = phi_webs_only;
789 state.merge_node_table = _mesa_pointer_hash_table_create(NULL);
790 state.progress = false;
791
792 nir_foreach_block(block, impl) {
793 add_parallel_copy_to_end_of_block(block, state.dead_ctx);
794 }
795
796 nir_foreach_block(block, impl) {
797 isolate_phi_nodes_block(block, state.dead_ctx);
798 }
799
800 /* Mark metadata as dirty before we ask for liveness analysis */
801 nir_metadata_preserve(impl, nir_metadata_block_index |
802 nir_metadata_dominance);
803
804 nir_metadata_require(impl, nir_metadata_instr_index |
805 nir_metadata_live_ssa_defs |
806 nir_metadata_dominance);
807
808 nir_foreach_block(block, impl) {
809 coalesce_phi_nodes_block(block, &state);
810 }
811
812 nir_foreach_block(block, impl) {
813 aggressive_coalesce_block(block, &state);
814 }
815
816 nir_foreach_block(block, impl) {
817 resolve_registers_block(block, &state);
818 }
819
820 nir_foreach_block(block, impl) {
821 resolve_parallel_copies_block(block, &state);
822 }
823
824 nir_metadata_preserve(impl, nir_metadata_block_index |
825 nir_metadata_dominance);
826
827 /* Clean up dead instructions and the hash tables */
828 _mesa_hash_table_destroy(state.merge_node_table, NULL);
829 ralloc_free(state.dead_ctx);
830 return state.progress;
831 }
832
833 bool
nir_convert_from_ssa(nir_shader * shader,bool phi_webs_only)834 nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only)
835 {
836 bool progress = false;
837
838 nir_foreach_function(function, shader) {
839 if (function->impl)
840 progress |= nir_convert_from_ssa_impl(function->impl, phi_webs_only);
841 }
842
843 return progress;
844 }
845
846
847 static void
place_phi_read(nir_builder * b,nir_register * reg,nir_ssa_def * def,nir_block * block,unsigned depth)848 place_phi_read(nir_builder *b, nir_register *reg,
849 nir_ssa_def *def, nir_block *block, unsigned depth)
850 {
851 if (block != def->parent_instr->block) {
852 /* Try to go up the single-successor tree */
853 bool all_single_successors = true;
854 set_foreach(block->predecessors, entry) {
855 nir_block *pred = (nir_block *)entry->key;
856 if (pred->successors[0] && pred->successors[1]) {
857 all_single_successors = false;
858 break;
859 }
860 }
861
862 if (all_single_successors && depth < 32) {
863 /* All predecessors of this block have exactly one successor and it
864 * is this block so they must eventually lead here without
865 * intersecting each other. Place the reads in the predecessors
866 * instead of this block.
867 *
868 * We only let this function recurse 32 times because it can recurse
869 * indefinitely in the presence of infinite loops. Because we're
870 * crawling a single-successor chain, it doesn't matter where we
871 * place it so it's ok to stop at an arbitrary distance.
872 *
873 * TODO: One day, we could detect back edges and avoid the recursion
874 * that way.
875 */
876 set_foreach(block->predecessors, entry) {
877 place_phi_read(b, reg, def, (nir_block *)entry->key, depth + 1);
878 }
879 return;
880 }
881 }
882
883 b->cursor = nir_after_block_before_jump(block);
884 nir_store_reg(b, reg, def, ~0);
885 }
886
887 /** Lower all of the phi nodes in a block to imovs to and from a register
888 *
889 * This provides a very quick-and-dirty out-of-SSA pass that you can run on a
890 * single block to convert all of its phis to a register and some imovs.
891 * The code that is generated, while not optimal for actual codegen in a
892 * back-end, is easy to generate, correct, and will turn into the same set of
893 * phis after you call regs_to_ssa and do some copy propagation.
894 *
895 * The one intelligent thing this pass does is that it places the moves from
896 * the phi sources as high up the predecessor tree as possible instead of in
897 * the exact predecessor. This means that, in particular, it will crawl into
898 * the deepest nesting of any if-ladders. In order to ensure that doing so is
899 * safe, it stops as soon as one of the predecessors has multiple successors.
900 */
901 bool
nir_lower_phis_to_regs_block(nir_block * block)902 nir_lower_phis_to_regs_block(nir_block *block)
903 {
904 nir_builder b;
905 nir_builder_init(&b, nir_cf_node_get_function(&block->cf_node));
906
907 bool progress = false;
908 nir_foreach_instr_safe(instr, block) {
909 if (instr->type != nir_instr_type_phi)
910 break;
911
912 nir_phi_instr *phi = nir_instr_as_phi(instr);
913 assert(phi->dest.is_ssa);
914
915 nir_register *reg = create_reg_for_ssa_def(&phi->dest.ssa, b.impl);
916
917 b.cursor = nir_after_instr(&phi->instr);
918 nir_ssa_def *def = nir_load_reg(&b, reg);
919
920 nir_ssa_def_rewrite_uses(&phi->dest.ssa, nir_src_for_ssa(def));
921
922 nir_foreach_phi_src(src, phi) {
923 assert(src->src.is_ssa);
924 place_phi_read(&b, reg, src->src.ssa, src->pred, 0);
925 }
926
927 nir_instr_remove(&phi->instr);
928
929 progress = true;
930 }
931
932 return progress;
933 }
934
935 struct ssa_def_to_reg_state {
936 nir_function_impl *impl;
937 bool progress;
938 };
939
940 static bool
dest_replace_ssa_with_reg(nir_dest * dest,void * void_state)941 dest_replace_ssa_with_reg(nir_dest *dest, void *void_state)
942 {
943 struct ssa_def_to_reg_state *state = void_state;
944
945 if (!dest->is_ssa)
946 return true;
947
948 nir_register *reg = create_reg_for_ssa_def(&dest->ssa, state->impl);
949
950 nir_ssa_def_rewrite_uses(&dest->ssa, nir_src_for_reg(reg));
951
952 nir_instr *instr = dest->ssa.parent_instr;
953 *dest = nir_dest_for_reg(reg);
954 dest->reg.parent_instr = instr;
955 list_addtail(&dest->reg.def_link, ®->defs);
956
957 state->progress = true;
958
959 return true;
960 }
961
962 static bool
ssa_def_is_local_to_block(nir_ssa_def * def,UNUSED void * state)963 ssa_def_is_local_to_block(nir_ssa_def *def, UNUSED void *state)
964 {
965 nir_block *block = def->parent_instr->block;
966 nir_foreach_use(use_src, def) {
967 if (use_src->parent_instr->block != block ||
968 use_src->parent_instr->type == nir_instr_type_phi) {
969 return false;
970 }
971 }
972
973 if (!list_is_empty(&def->if_uses))
974 return false;
975
976 return true;
977 }
978
979 /** Lower all of the SSA defs in a block to registers
980 *
981 * This performs the very simple operation of blindly replacing all of the SSA
982 * defs in the given block with registers. If not used carefully, this may
983 * result in phi nodes with register sources which is technically invalid.
984 * Fortunately, the register-based into-SSA pass handles them anyway.
985 */
986 bool
nir_lower_ssa_defs_to_regs_block(nir_block * block)987 nir_lower_ssa_defs_to_regs_block(nir_block *block)
988 {
989 nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
990 nir_shader *shader = impl->function->shader;
991
992 struct ssa_def_to_reg_state state = {
993 .impl = impl,
994 .progress = false,
995 };
996
997 nir_foreach_instr(instr, block) {
998 if (instr->type == nir_instr_type_ssa_undef) {
999 /* Undefs are just a read of something never written. */
1000 nir_ssa_undef_instr *undef = nir_instr_as_ssa_undef(instr);
1001 nir_register *reg = create_reg_for_ssa_def(&undef->def, state.impl);
1002 nir_ssa_def_rewrite_uses(&undef->def, nir_src_for_reg(reg));
1003 } else if (instr->type == nir_instr_type_load_const) {
1004 /* Constant loads are SSA-only, we need to insert a move */
1005 nir_load_const_instr *load = nir_instr_as_load_const(instr);
1006 nir_register *reg = create_reg_for_ssa_def(&load->def, state.impl);
1007 nir_ssa_def_rewrite_uses(&load->def, nir_src_for_reg(reg));
1008
1009 nir_alu_instr *mov = nir_alu_instr_create(shader, nir_op_mov);
1010 mov->src[0].src = nir_src_for_ssa(&load->def);
1011 mov->dest.dest = nir_dest_for_reg(reg);
1012 mov->dest.write_mask = (1 << reg->num_components) - 1;
1013 nir_instr_insert(nir_after_instr(&load->instr), &mov->instr);
1014 } else if (nir_foreach_ssa_def(instr, ssa_def_is_local_to_block, NULL)) {
1015 /* If the SSA def produced by this instruction is only in the block
1016 * in which it is defined and is not used by ifs or phis, then we
1017 * don't have a reason to convert it to a register.
1018 */
1019 } else {
1020 nir_foreach_dest(instr, dest_replace_ssa_with_reg, &state);
1021 }
1022 }
1023
1024 return state.progress;
1025 }
1026