1 //===- ScopDetection.h - Detect Scops ---------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Detect the maximal Scops of a function. 10 // 11 // A static control part (Scop) is a subgraph of the control flow graph (CFG) 12 // that only has statically known control flow and can therefore be described 13 // within the polyhedral model. 14 // 15 // Every Scop fulfills these restrictions: 16 // 17 // * It is a single entry single exit region 18 // 19 // * Only affine linear bounds in the loops 20 // 21 // Every natural loop in a Scop must have a number of loop iterations that can 22 // be described as an affine linear function in surrounding loop iterators or 23 // parameters. (A parameter is a scalar that does not change its value during 24 // execution of the Scop). 25 // 26 // * Only comparisons of affine linear expressions in conditions 27 // 28 // * All loops and conditions perfectly nested 29 // 30 // The control flow needs to be structured such that it could be written using 31 // just 'for' and 'if' statements, without the need for any 'goto', 'break' or 32 // 'continue'. 33 // 34 // * Side effect free functions call 35 // 36 // Only function calls and intrinsics that do not have side effects are allowed 37 // (readnone). 38 // 39 // The Scop detection finds the largest Scops by checking if the largest 40 // region is a Scop. If this is not the case, its canonical subregions are 41 // checked until a region is a Scop. It is now tried to extend this Scop by 42 // creating a larger non canonical region. 43 // 44 //===----------------------------------------------------------------------===// 45 46 #ifndef POLLY_SCOPDETECTION_H 47 #define POLLY_SCOPDETECTION_H 48 49 #include "polly/ScopDetectionDiagnostic.h" 50 #include "polly/Support/ScopHelper.h" 51 #include "llvm/Analysis/AliasSetTracker.h" 52 #include "llvm/Analysis/RegionInfo.h" 53 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 54 #include "llvm/Pass.h" 55 #include <set> 56 57 using namespace llvm; 58 59 namespace llvm { 60 class AAResults; 61 62 void initializeScopDetectionWrapperPassPass(PassRegistry &); 63 } // namespace llvm 64 65 namespace polly { 66 67 using ParamSetType = std::set<const SCEV *>; 68 69 // Description of the shape of an array. 70 struct ArrayShape { 71 // Base pointer identifying all accesses to this array. 72 const SCEVUnknown *BasePointer; 73 74 // Sizes of each delinearized dimension. 75 SmallVector<const SCEV *, 4> DelinearizedSizes; 76 ArrayShapeArrayShape77 ArrayShape(const SCEVUnknown *B) : BasePointer(B) {} 78 }; 79 80 struct MemAcc { 81 const Instruction *Insn; 82 83 // A pointer to the shape description of the array. 84 std::shared_ptr<ArrayShape> Shape; 85 86 // Subscripts computed by delinearization. 87 SmallVector<const SCEV *, 4> DelinearizedSubscripts; 88 MemAccMemAcc89 MemAcc(const Instruction *I, std::shared_ptr<ArrayShape> S) 90 : Insn(I), Shape(S) {} 91 }; 92 93 using MapInsnToMemAcc = std::map<const Instruction *, MemAcc>; 94 using PairInstSCEV = std::pair<const Instruction *, const SCEV *>; 95 using AFs = std::vector<PairInstSCEV>; 96 using BaseToAFs = std::map<const SCEVUnknown *, AFs>; 97 using BaseToElSize = std::map<const SCEVUnknown *, const SCEV *>; 98 99 extern bool PollyTrackFailures; 100 extern bool PollyDelinearize; 101 extern bool PollyUseRuntimeAliasChecks; 102 extern bool PollyProcessUnprofitable; 103 extern bool PollyInvariantLoadHoisting; 104 extern bool PollyAllowUnsignedOperations; 105 extern bool PollyAllowFullFunction; 106 107 /// A function attribute which will cause Polly to skip the function 108 extern StringRef PollySkipFnAttr; 109 110 //===----------------------------------------------------------------------===// 111 /// Pass to detect the maximal static control parts (Scops) of a 112 /// function. 113 class ScopDetection { 114 public: 115 using RegionSet = SetVector<const Region *>; 116 117 // Remember the valid regions 118 RegionSet ValidRegions; 119 120 /// Context variables for SCoP detection. 121 struct DetectionContext { 122 Region &CurRegion; // The region to check. 123 AliasSetTracker AST; // The AliasSetTracker to hold the alias information. 124 bool Verifying; // If we are in the verification phase? 125 126 /// Container to remember rejection reasons for this region. 127 RejectLog Log; 128 129 /// Map a base pointer to all access functions accessing it. 130 /// 131 /// This map is indexed by the base pointer. Each element of the map 132 /// is a list of memory accesses that reference this base pointer. 133 BaseToAFs Accesses; 134 135 /// The set of base pointers with non-affine accesses. 136 /// 137 /// This set contains all base pointers and the locations where they are 138 /// used for memory accesses that can not be detected as affine accesses. 139 SetVector<std::pair<const SCEVUnknown *, Loop *>> NonAffineAccesses; 140 BaseToElSize ElementSize; 141 142 /// The region has at least one load instruction. 143 bool hasLoads = false; 144 145 /// The region has at least one store instruction. 146 bool hasStores = false; 147 148 /// Flag to indicate the region has at least one unknown access. 149 bool HasUnknownAccess = false; 150 151 /// The set of non-affine subregions in the region we analyze. 152 RegionSet NonAffineSubRegionSet; 153 154 /// The set of loops contained in non-affine regions. 155 BoxedLoopsSetTy BoxedLoopsSet; 156 157 /// Loads that need to be invariant during execution. 158 InvariantLoadsSetTy RequiredILS; 159 160 /// Map to memory access description for the corresponding LLVM 161 /// instructions. 162 MapInsnToMemAcc InsnToMemAcc; 163 164 /// Initialize a DetectionContext from scratch. DetectionContextDetectionContext165 DetectionContext(Region &R, AAResults &AA, bool Verify) 166 : CurRegion(R), AST(AA), Verifying(Verify), Log(&R) {} 167 168 /// Initialize a DetectionContext with the data from @p DC. DetectionContextDetectionContext169 DetectionContext(const DetectionContext &&DC) 170 : CurRegion(DC.CurRegion), AST(DC.AST.getAliasAnalysis()), 171 Verifying(DC.Verifying), Log(std::move(DC.Log)), 172 Accesses(std::move(DC.Accesses)), 173 NonAffineAccesses(std::move(DC.NonAffineAccesses)), 174 ElementSize(std::move(DC.ElementSize)), hasLoads(DC.hasLoads), 175 hasStores(DC.hasStores), HasUnknownAccess(DC.HasUnknownAccess), 176 NonAffineSubRegionSet(std::move(DC.NonAffineSubRegionSet)), 177 BoxedLoopsSet(std::move(DC.BoxedLoopsSet)), 178 RequiredILS(std::move(DC.RequiredILS)) { 179 AST.add(DC.AST); 180 } 181 }; 182 183 /// Helper data structure to collect statistics about loop counts. 184 struct LoopStats { 185 int NumLoops; 186 int MaxDepth; 187 }; 188 189 int NextScopID = 0; getNextID()190 int getNextID() { return NextScopID++; } 191 192 private: 193 //===--------------------------------------------------------------------===// 194 195 /// Analyses used 196 //@{ 197 const DominatorTree &DT; 198 ScalarEvolution &SE; 199 LoopInfo &LI; 200 RegionInfo &RI; 201 AAResults &AA; 202 //@} 203 204 /// Map to remember detection contexts for all regions. 205 using DetectionContextMapTy = DenseMap<BBPair, DetectionContext>; 206 mutable DetectionContextMapTy DetectionContextMap; 207 208 /// Remove cached results for @p R. 209 void removeCachedResults(const Region &R); 210 211 /// Remove cached results for the children of @p R recursively. 212 void removeCachedResultsRecursively(const Region &R); 213 214 /// Check if @p S0 and @p S1 do contain multiple possibly aliasing pointers. 215 /// 216 /// @param S0 A expression to check. 217 /// @param S1 Another expression to check or nullptr. 218 /// @param Scope The loop/scope the expressions are checked in. 219 /// 220 /// @returns True, if multiple possibly aliasing pointers are used in @p S0 221 /// (and @p S1 if given). 222 bool involvesMultiplePtrs(const SCEV *S0, const SCEV *S1, Loop *Scope) const; 223 224 /// Add the region @p AR as over approximated sub-region in @p Context. 225 /// 226 /// @param AR The non-affine subregion. 227 /// @param Context The current detection context. 228 /// 229 /// @returns True if the subregion can be over approximated, false otherwise. 230 bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const; 231 232 /// Find for a given base pointer terms that hint towards dimension 233 /// sizes of a multi-dimensional array. 234 /// 235 /// @param Context The current detection context. 236 /// @param BasePointer A base pointer indicating the virtual array we are 237 /// interested in. 238 SmallVector<const SCEV *, 4> 239 getDelinearizationTerms(DetectionContext &Context, 240 const SCEVUnknown *BasePointer) const; 241 242 /// Check if the dimension size of a delinearized array is valid. 243 /// 244 /// @param Context The current detection context. 245 /// @param Sizes The sizes of the different array dimensions. 246 /// @param BasePointer The base pointer we are interested in. 247 /// @param Scope The location where @p BasePointer is being used. 248 /// @returns True if one or more array sizes could be derived - meaning: we 249 /// see this array as multi-dimensional. 250 bool hasValidArraySizes(DetectionContext &Context, 251 SmallVectorImpl<const SCEV *> &Sizes, 252 const SCEVUnknown *BasePointer, Loop *Scope) const; 253 254 /// Derive access functions for a given base pointer. 255 /// 256 /// @param Context The current detection context. 257 /// @param Sizes The sizes of the different array dimensions. 258 /// @param BasePointer The base pointer of all the array for which to compute 259 /// access functions. 260 /// @param Shape The shape that describes the derived array sizes and 261 /// which should be filled with newly computed access 262 /// functions. 263 /// @returns True if a set of affine access functions could be derived. 264 bool computeAccessFunctions(DetectionContext &Context, 265 const SCEVUnknown *BasePointer, 266 std::shared_ptr<ArrayShape> Shape) const; 267 268 /// Check if all accesses to a given BasePointer are affine. 269 /// 270 /// @param Context The current detection context. 271 /// @param BasePointer the base pointer we are interested in. 272 /// @param Scope The location where @p BasePointer is being used. 273 /// @param True if consistent (multi-dimensional) array accesses could be 274 /// derived for this array. 275 bool hasBaseAffineAccesses(DetectionContext &Context, 276 const SCEVUnknown *BasePointer, Loop *Scope) const; 277 278 // Delinearize all non affine memory accesses and return false when there 279 // exists a non affine memory access that cannot be delinearized. Return true 280 // when all array accesses are affine after delinearization. 281 bool hasAffineMemoryAccesses(DetectionContext &Context) const; 282 283 // Try to expand the region R. If R can be expanded return the expanded 284 // region, NULL otherwise. 285 Region *expandRegion(Region &R); 286 287 /// Find the Scops in this region tree. 288 /// 289 /// @param The region tree to scan for scops. 290 void findScops(Region &R); 291 292 /// Check if all basic block in the region are valid. 293 /// 294 /// @param Context The context of scop detection. 295 /// 296 /// @return True if all blocks in R are valid, false otherwise. 297 bool allBlocksValid(DetectionContext &Context) const; 298 299 /// Check if a region has sufficient compute instructions. 300 /// 301 /// This function checks if a region has a non-trivial number of instructions 302 /// in each loop. This can be used as an indicator whether a loop is worth 303 /// optimizing. 304 /// 305 /// @param Context The context of scop detection. 306 /// @param NumLoops The number of loops in the region. 307 /// 308 /// @return True if region is has sufficient compute instructions, 309 /// false otherwise. 310 bool hasSufficientCompute(DetectionContext &Context, 311 int NumAffineLoops) const; 312 313 /// Check if the unique affine loop might be amendable to distribution. 314 /// 315 /// This function checks if the number of non-trivial blocks in the unique 316 /// affine loop in Context.CurRegion is at least two, thus if the loop might 317 /// be amendable to distribution. 318 /// 319 /// @param Context The context of scop detection. 320 /// 321 /// @return True only if the affine loop might be amendable to distributable. 322 bool hasPossiblyDistributableLoop(DetectionContext &Context) const; 323 324 /// Check if a region is profitable to optimize. 325 /// 326 /// Regions that are unlikely to expose interesting optimization opportunities 327 /// are called 'unprofitable' and may be skipped during scop detection. 328 /// 329 /// @param Context The context of scop detection. 330 /// 331 /// @return True if region is profitable to optimize, false otherwise. 332 bool isProfitableRegion(DetectionContext &Context) const; 333 334 /// Check if a region is a Scop. 335 /// 336 /// @param Context The context of scop detection. 337 /// 338 /// @return True if R is a Scop, false otherwise. 339 bool isValidRegion(DetectionContext &Context) const; 340 341 /// Check if an intrinsic call can be part of a Scop. 342 /// 343 /// @param II The intrinsic call instruction to check. 344 /// @param Context The current detection context. 345 /// 346 /// @return True if the call instruction is valid, false otherwise. 347 bool isValidIntrinsicInst(IntrinsicInst &II, DetectionContext &Context) const; 348 349 /// Check if a call instruction can be part of a Scop. 350 /// 351 /// @param CI The call instruction to check. 352 /// @param Context The current detection context. 353 /// 354 /// @return True if the call instruction is valid, false otherwise. 355 bool isValidCallInst(CallInst &CI, DetectionContext &Context) const; 356 357 /// Check if the given loads could be invariant and can be hoisted. 358 /// 359 /// If true is returned the loads are added to the required invariant loads 360 /// contained in the @p Context. 361 /// 362 /// @param RequiredILS The loads to check. 363 /// @param Context The current detection context. 364 /// 365 /// @return True if all loads can be assumed invariant. 366 bool onlyValidRequiredInvariantLoads(InvariantLoadsSetTy &RequiredILS, 367 DetectionContext &Context) const; 368 369 /// Check if a value is invariant in the region Reg. 370 /// 371 /// @param Val Value to check for invariance. 372 /// @param Reg The region to consider for the invariance of Val. 373 /// @param Ctx The current detection context. 374 /// 375 /// @return True if the value represented by Val is invariant in the region 376 /// identified by Reg. 377 bool isInvariant(Value &Val, const Region &Reg, DetectionContext &Ctx) const; 378 379 /// Check if the memory access caused by @p Inst is valid. 380 /// 381 /// @param Inst The access instruction. 382 /// @param AF The access function. 383 /// @param BP The access base pointer. 384 /// @param Context The current detection context. 385 bool isValidAccess(Instruction *Inst, const SCEV *AF, const SCEVUnknown *BP, 386 DetectionContext &Context) const; 387 388 /// Check if a memory access can be part of a Scop. 389 /// 390 /// @param Inst The instruction accessing the memory. 391 /// @param Context The context of scop detection. 392 /// 393 /// @return True if the memory access is valid, false otherwise. 394 bool isValidMemoryAccess(MemAccInst Inst, DetectionContext &Context) const; 395 396 /// Check if an instruction has any non trivial scalar dependencies as part of 397 /// a Scop. 398 /// 399 /// @param Inst The instruction to check. 400 /// @param RefRegion The region in respect to which we check the access 401 /// function. 402 /// 403 /// @return True if the instruction has scalar dependences, false otherwise. 404 bool hasScalarDependency(Instruction &Inst, Region &RefRegion) const; 405 406 /// Check if an instruction can be part of a Scop. 407 /// 408 /// @param Inst The instruction to check. 409 /// @param Context The context of scop detection. 410 /// 411 /// @return True if the instruction is valid, false otherwise. 412 bool isValidInstruction(Instruction &Inst, DetectionContext &Context) const; 413 414 /// Check if the switch @p SI with condition @p Condition is valid. 415 /// 416 /// @param BB The block to check. 417 /// @param SI The switch to check. 418 /// @param Condition The switch condition. 419 /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch. 420 /// @param Context The context of scop detection. 421 /// 422 /// @return True if the branch @p BI is valid. 423 bool isValidSwitch(BasicBlock &BB, SwitchInst *SI, Value *Condition, 424 bool IsLoopBranch, DetectionContext &Context) const; 425 426 /// Check if the branch @p BI with condition @p Condition is valid. 427 /// 428 /// @param BB The block to check. 429 /// @param BI The branch to check. 430 /// @param Condition The branch condition. 431 /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch. 432 /// @param Context The context of scop detection. 433 /// 434 /// @return True if the branch @p BI is valid. 435 bool isValidBranch(BasicBlock &BB, BranchInst *BI, Value *Condition, 436 bool IsLoopBranch, DetectionContext &Context) const; 437 438 /// Check if the SCEV @p S is affine in the current @p Context. 439 /// 440 /// This will also use a heuristic to decide if we want to require loads to be 441 /// invariant to make the expression affine or if we want to treat is as 442 /// non-affine. 443 /// 444 /// @param S The expression to be checked. 445 /// @param Scope The loop nest in which @p S is used. 446 /// @param Context The context of scop detection. 447 bool isAffine(const SCEV *S, Loop *Scope, DetectionContext &Context) const; 448 449 /// Check if the control flow in a basic block is valid. 450 /// 451 /// This function checks if a certain basic block is terminated by a 452 /// Terminator instruction we can handle or, if this is not the case, 453 /// registers this basic block as the start of a non-affine region. 454 /// 455 /// This function optionally allows unreachable statements. 456 /// 457 /// @param BB The BB to check the control flow. 458 /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch. 459 // @param AllowUnreachable Allow unreachable statements. 460 /// @param Context The context of scop detection. 461 /// 462 /// @return True if the BB contains only valid control flow. 463 bool isValidCFG(BasicBlock &BB, bool IsLoopBranch, bool AllowUnreachable, 464 DetectionContext &Context) const; 465 466 /// Is a loop valid with respect to a given region. 467 /// 468 /// @param L The loop to check. 469 /// @param Context The context of scop detection. 470 /// 471 /// @return True if the loop is valid in the region. 472 bool isValidLoop(Loop *L, DetectionContext &Context) const; 473 474 /// Count the number of loops and the maximal loop depth in @p L. 475 /// 476 /// @param L The loop to check. 477 /// @param SE The scalar evolution analysis. 478 /// @param MinProfitableTrips The minimum number of trip counts from which 479 /// a loop is assumed to be profitable and 480 /// consequently is counted. 481 /// returns A tuple of number of loops and their maximal depth. 482 static ScopDetection::LoopStats 483 countBeneficialSubLoops(Loop *L, ScalarEvolution &SE, 484 unsigned MinProfitableTrips); 485 486 /// Check if the function @p F is marked as invalid. 487 /// 488 /// @note An OpenMP subfunction will be marked as invalid. 489 bool isValidFunction(Function &F); 490 491 /// Can ISL compute the trip count of a loop. 492 /// 493 /// @param L The loop to check. 494 /// @param Context The context of scop detection. 495 /// 496 /// @return True if ISL can compute the trip count of the loop. 497 bool canUseISLTripCount(Loop *L, DetectionContext &Context) const; 498 499 /// Print the locations of all detected scops. 500 void printLocations(Function &F); 501 502 /// Check if a region is reducible or not. 503 /// 504 /// @param Region The region to check. 505 /// @param DbgLoc Parameter to save the location of instruction that 506 /// causes irregular control flow if the region is irreducible. 507 /// 508 /// @return True if R is reducible, false otherwise. 509 bool isReducibleRegion(Region &R, DebugLoc &DbgLoc) const; 510 511 /// Track diagnostics for invalid scops. 512 /// 513 /// @param Context The context of scop detection. 514 /// @param Assert Throw an assert in verify mode or not. 515 /// @param Args Argument list that gets passed to the constructor of RR. 516 template <class RR, typename... Args> 517 inline bool invalid(DetectionContext &Context, bool Assert, 518 Args &&...Arguments) const; 519 520 public: 521 ScopDetection(Function &F, const DominatorTree &DT, ScalarEvolution &SE, 522 LoopInfo &LI, RegionInfo &RI, AAResults &AA, 523 OptimizationRemarkEmitter &ORE); 524 525 /// Get the RegionInfo stored in this pass. 526 /// 527 /// This was added to give the DOT printer easy access to this information. getRI()528 RegionInfo *getRI() const { return &RI; } 529 530 /// Get the LoopInfo stored in this pass. getLI()531 LoopInfo *getLI() const { return &LI; } 532 533 /// Is the region is the maximum region of a Scop? 534 /// 535 /// @param R The Region to test if it is maximum. 536 /// @param Verify Rerun the scop detection to verify SCoP was not invalidated 537 /// meanwhile. 538 /// 539 /// @return Return true if R is the maximum Region in a Scop, false otherwise. 540 bool isMaxRegionInScop(const Region &R, bool Verify = true) const; 541 542 /// Return the detection context for @p R, nullptr if @p R was invalid. 543 DetectionContext *getDetectionContext(const Region *R) const; 544 545 /// Return the set of rejection causes for @p R. 546 const RejectLog *lookupRejectionLog(const Region *R) const; 547 548 /// Return true if @p SubR is a non-affine subregion in @p ScopR. 549 bool isNonAffineSubRegion(const Region *SubR, const Region *ScopR) const; 550 551 /// Get a message why a region is invalid 552 /// 553 /// @param R The region for which we get the error message 554 /// 555 /// @return The error or "" if no error appeared. 556 std::string regionIsInvalidBecause(const Region *R) const; 557 558 /// @name Maximum Region In Scops Iterators 559 /// 560 /// These iterators iterator over all maximum region in Scops of this 561 /// function. 562 //@{ 563 using iterator = RegionSet::iterator; 564 using const_iterator = RegionSet::const_iterator; 565 begin()566 iterator begin() { return ValidRegions.begin(); } end()567 iterator end() { return ValidRegions.end(); } 568 begin()569 const_iterator begin() const { return ValidRegions.begin(); } end()570 const_iterator end() const { return ValidRegions.end(); } 571 //@} 572 573 /// Emit rejection remarks for all rejected regions. 574 /// 575 /// @param F The function to emit remarks for. 576 void emitMissedRemarks(const Function &F); 577 578 /// Mark the function as invalid so we will not extract any scop from 579 /// the function. 580 /// 581 /// @param F The function to mark as invalid. 582 static void markFunctionAsInvalid(Function *F); 583 584 /// Verify if all valid Regions in this Function are still valid 585 /// after some transformations. 586 void verifyAnalysis() const; 587 588 /// Verify if R is still a valid part of Scop after some transformations. 589 /// 590 /// @param R The Region to verify. 591 void verifyRegion(const Region &R) const; 592 593 /// Count the number of loops and the maximal loop depth in @p R. 594 /// 595 /// @param R The region to check 596 /// @param SE The scalar evolution analysis. 597 /// @param MinProfitableTrips The minimum number of trip counts from which 598 /// a loop is assumed to be profitable and 599 /// consequently is counted. 600 /// returns A tuple of number of loops and their maximal depth. 601 static ScopDetection::LoopStats 602 countBeneficialLoops(Region *R, ScalarEvolution &SE, LoopInfo &LI, 603 unsigned MinProfitableTrips); 604 605 private: 606 /// OptimizationRemarkEmitter object used to emit diagnostic remarks 607 OptimizationRemarkEmitter &ORE; 608 }; 609 610 struct ScopAnalysis : public AnalysisInfoMixin<ScopAnalysis> { 611 static AnalysisKey Key; 612 613 using Result = ScopDetection; 614 615 ScopAnalysis(); 616 617 Result run(Function &F, FunctionAnalysisManager &FAM); 618 }; 619 620 struct ScopAnalysisPrinterPass : public PassInfoMixin<ScopAnalysisPrinterPass> { ScopAnalysisPrinterPassScopAnalysisPrinterPass621 ScopAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {} 622 623 PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM); 624 625 raw_ostream &OS; 626 }; 627 628 struct ScopDetectionWrapperPass : public FunctionPass { 629 static char ID; 630 std::unique_ptr<ScopDetection> Result; 631 632 ScopDetectionWrapperPass(); 633 634 /// @name FunctionPass interface 635 //@{ 636 void getAnalysisUsage(AnalysisUsage &AU) const override; 637 void releaseMemory() override; 638 bool runOnFunction(Function &F) override; 639 void print(raw_ostream &OS, const Module *) const override; 640 //@} 641 getSDScopDetectionWrapperPass642 ScopDetection &getSD() { return *Result; } getSDScopDetectionWrapperPass643 const ScopDetection &getSD() const { return *Result; } 644 }; 645 } // namespace polly 646 647 #endif // POLLY_SCOPDETECTION_H 648