1 /* Portions are Copyright (C) 2011 Google Inc */
2 /* ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4 *
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
9 *
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
13 * License.
14 *
15 * The Original Code is the Netscape Portable Runtime (NSPR).
16 *
17 * The Initial Developer of the Original Code is
18 * Netscape Communications Corporation.
19 * Portions created by the Initial Developer are Copyright (C) 1998-2000
20 * the Initial Developer. All Rights Reserved.
21 *
22 * Contributor(s):
23 *
24 * Alternatively, the contents of this file may be used under the terms of
25 * either the GNU General Public License Version 2 or later (the "GPL"), or
26 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
27 * in which case the provisions of the GPL or the LGPL are applicable instead
28 * of those above. If you wish to allow use of your version of this file only
29 * under the terms of either the GPL or the LGPL, and not to allow others to
30 * use your version of this file under the terms of the MPL, indicate your
31 * decision by deleting the provisions above and replace them with the notice
32 * and other provisions required by the GPL or the LGPL. If you do not delete
33 * the provisions above, a recipient may use your version of this file under
34 * the terms of any one of the MPL, the GPL or the LGPL.
35 *
36 * ***** END LICENSE BLOCK ***** */
37
38 /*
39 * prtime.cc --
40 * NOTE: The original nspr file name is prtime.c
41 *
42 * NSPR date and time functions
43 *
44 * CVS revision 3.37
45 */
46
47 /*
48 * The following functions were copied from the NSPR prtime.c file.
49 * PR_ParseTimeString
50 * We inlined the new PR_ParseTimeStringToExplodedTime function to avoid
51 * copying PR_ExplodeTime and PR_LocalTimeParameters. (The PR_ExplodeTime
52 * and PR_ImplodeTime calls cancel each other out.)
53 * PR_NormalizeTime
54 * PR_GMTParameters
55 * PR_ImplodeTime
56 * Upstream implementation from
57 * http://lxr.mozilla.org/nspr/source/pr/src/misc/prtime.c#221
58 * All types and macros are defined in the base/third_party/prtime.h file.
59 * These have been copied from the following nspr files. We have only copied
60 * over the types we need.
61 * 1. prtime.h
62 * 2. prtypes.h
63 * 3. prlong.h
64 *
65 * Unit tests are in base/time/pr_time_unittest.cc.
66 */
67
68 #include <limits.h>
69
70 #include "base/logging.h"
71 #include "base/third_party/nspr/prtime.h"
72 #include "build/build_config.h"
73
74 #include <errno.h> /* for EINVAL */
75 #include <time.h>
76
77 /*
78 * The COUNT_LEAPS macro counts the number of leap years passed by
79 * till the start of the given year Y. At the start of the year 4
80 * A.D. the number of leap years passed by is 0, while at the start of
81 * the year 5 A.D. this count is 1. The number of years divisible by
82 * 100 but not divisible by 400 (the non-leap years) is deducted from
83 * the count to get the correct number of leap years.
84 *
85 * The COUNT_DAYS macro counts the number of days since 01/01/01 till the
86 * start of the given year Y. The number of days at the start of the year
87 * 1 is 0 while the number of days at the start of the year 2 is 365
88 * (which is ((2)-1) * 365) and so on. The reference point is 01/01/01
89 * midnight 00:00:00.
90 */
91
92 #define COUNT_LEAPS(Y) (((Y)-1) / 4 - ((Y)-1) / 100 + ((Y)-1) / 400)
93 #define COUNT_DAYS(Y) (((Y)-1) * 365 + COUNT_LEAPS(Y))
94 #define DAYS_BETWEEN_YEARS(A, B) (COUNT_DAYS(B) - COUNT_DAYS(A))
95
96 /* Implements the Unix localtime_r() function for windows */
97 #if defined(OS_WIN)
localtime_r(const time_t * secs,struct tm * time)98 static void localtime_r(const time_t* secs, struct tm* time) {
99 (void) localtime_s(time, secs);
100 }
101 #endif
102
103 /*
104 * Static variables used by functions in this file
105 */
106
107 /*
108 * The following array contains the day of year for the last day of
109 * each month, where index 1 is January, and day 0 is January 1.
110 */
111
112 static const int lastDayOfMonth[2][13] = {
113 {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364},
114 {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}
115 };
116
117 /*
118 * The number of days in a month
119 */
120
121 static const PRInt8 nDays[2][12] = {
122 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
123 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
124 };
125
126 /*
127 *------------------------------------------------------------------------
128 *
129 * PR_ImplodeTime --
130 *
131 * Cf. time_t mktime(struct tm *tp)
132 * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough.
133 *
134 *------------------------------------------------------------------------
135 */
136 PRTime
PR_ImplodeTime(const PRExplodedTime * exploded)137 PR_ImplodeTime(const PRExplodedTime *exploded)
138 {
139 PRExplodedTime copy;
140 PRTime retVal;
141 PRInt64 secPerDay, usecPerSec;
142 PRInt64 temp;
143 PRInt64 numSecs64;
144 PRInt32 numDays;
145 PRInt32 numSecs;
146
147 /* Normalize first. Do this on our copy */
148 copy = *exploded;
149 PR_NormalizeTime(©, PR_GMTParameters);
150
151 numDays = DAYS_BETWEEN_YEARS(1970, copy.tm_year);
152
153 numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600 + copy.tm_min * 60 +
154 copy.tm_sec;
155
156 LL_I2L(temp, numDays);
157 LL_I2L(secPerDay, 86400);
158 LL_MUL(temp, temp, secPerDay);
159 LL_I2L(numSecs64, numSecs);
160 LL_ADD(numSecs64, numSecs64, temp);
161
162 /* apply the GMT and DST offsets */
163 LL_I2L(temp, copy.tm_params.tp_gmt_offset);
164 LL_SUB(numSecs64, numSecs64, temp);
165 LL_I2L(temp, copy.tm_params.tp_dst_offset);
166 LL_SUB(numSecs64, numSecs64, temp);
167
168 LL_I2L(usecPerSec, 1000000L);
169 LL_MUL(temp, numSecs64, usecPerSec);
170 LL_I2L(retVal, copy.tm_usec);
171 LL_ADD(retVal, retVal, temp);
172
173 return retVal;
174 }
175
176 /*
177 *-------------------------------------------------------------------------
178 *
179 * IsLeapYear --
180 *
181 * Returns 1 if the year is a leap year, 0 otherwise.
182 *
183 *-------------------------------------------------------------------------
184 */
185
IsLeapYear(PRInt16 year)186 static int IsLeapYear(PRInt16 year)
187 {
188 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
189 return 1;
190 else
191 return 0;
192 }
193
194 /*
195 * 'secOffset' should be less than 86400 (i.e., a day).
196 * 'time' should point to a normalized PRExplodedTime.
197 */
198
199 static void
ApplySecOffset(PRExplodedTime * time,PRInt32 secOffset)200 ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset)
201 {
202 time->tm_sec += secOffset;
203
204 /* Note that in this implementation we do not count leap seconds */
205 if (time->tm_sec < 0 || time->tm_sec >= 60) {
206 time->tm_min += time->tm_sec / 60;
207 time->tm_sec %= 60;
208 if (time->tm_sec < 0) {
209 time->tm_sec += 60;
210 time->tm_min--;
211 }
212 }
213
214 if (time->tm_min < 0 || time->tm_min >= 60) {
215 time->tm_hour += time->tm_min / 60;
216 time->tm_min %= 60;
217 if (time->tm_min < 0) {
218 time->tm_min += 60;
219 time->tm_hour--;
220 }
221 }
222
223 if (time->tm_hour < 0) {
224 /* Decrement mday, yday, and wday */
225 time->tm_hour += 24;
226 time->tm_mday--;
227 time->tm_yday--;
228 if (time->tm_mday < 1) {
229 time->tm_month--;
230 if (time->tm_month < 0) {
231 time->tm_month = 11;
232 time->tm_year--;
233 if (IsLeapYear(time->tm_year))
234 time->tm_yday = 365;
235 else
236 time->tm_yday = 364;
237 }
238 time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month];
239 }
240 time->tm_wday--;
241 if (time->tm_wday < 0)
242 time->tm_wday = 6;
243 } else if (time->tm_hour > 23) {
244 /* Increment mday, yday, and wday */
245 time->tm_hour -= 24;
246 time->tm_mday++;
247 time->tm_yday++;
248 if (time->tm_mday >
249 nDays[IsLeapYear(time->tm_year)][time->tm_month]) {
250 time->tm_mday = 1;
251 time->tm_month++;
252 if (time->tm_month > 11) {
253 time->tm_month = 0;
254 time->tm_year++;
255 time->tm_yday = 0;
256 }
257 }
258 time->tm_wday++;
259 if (time->tm_wday > 6)
260 time->tm_wday = 0;
261 }
262 }
263
264 void
PR_NormalizeTime(PRExplodedTime * time,PRTimeParamFn params)265 PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params)
266 {
267 int daysInMonth;
268 PRInt32 numDays;
269
270 /* Get back to GMT */
271 time->tm_sec -= time->tm_params.tp_gmt_offset
272 + time->tm_params.tp_dst_offset;
273 time->tm_params.tp_gmt_offset = 0;
274 time->tm_params.tp_dst_offset = 0;
275
276 /* Now normalize GMT */
277
278 if (time->tm_usec < 0 || time->tm_usec >= 1000000) {
279 time->tm_sec += time->tm_usec / 1000000;
280 time->tm_usec %= 1000000;
281 if (time->tm_usec < 0) {
282 time->tm_usec += 1000000;
283 time->tm_sec--;
284 }
285 }
286
287 /* Note that we do not count leap seconds in this implementation */
288 if (time->tm_sec < 0 || time->tm_sec >= 60) {
289 time->tm_min += time->tm_sec / 60;
290 time->tm_sec %= 60;
291 if (time->tm_sec < 0) {
292 time->tm_sec += 60;
293 time->tm_min--;
294 }
295 }
296
297 if (time->tm_min < 0 || time->tm_min >= 60) {
298 time->tm_hour += time->tm_min / 60;
299 time->tm_min %= 60;
300 if (time->tm_min < 0) {
301 time->tm_min += 60;
302 time->tm_hour--;
303 }
304 }
305
306 if (time->tm_hour < 0 || time->tm_hour >= 24) {
307 time->tm_mday += time->tm_hour / 24;
308 time->tm_hour %= 24;
309 if (time->tm_hour < 0) {
310 time->tm_hour += 24;
311 time->tm_mday--;
312 }
313 }
314
315 /* Normalize month and year before mday */
316 if (time->tm_month < 0 || time->tm_month >= 12) {
317 time->tm_year += static_cast<PRInt16>(time->tm_month / 12);
318 time->tm_month %= 12;
319 if (time->tm_month < 0) {
320 time->tm_month += 12;
321 time->tm_year--;
322 }
323 }
324
325 /* Now that month and year are in proper range, normalize mday */
326
327 if (time->tm_mday < 1) {
328 /* mday too small */
329 do {
330 /* the previous month */
331 time->tm_month--;
332 if (time->tm_month < 0) {
333 time->tm_month = 11;
334 time->tm_year--;
335 }
336 time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month];
337 } while (time->tm_mday < 1);
338 } else {
339 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
340 while (time->tm_mday > daysInMonth) {
341 /* mday too large */
342 time->tm_mday -= daysInMonth;
343 time->tm_month++;
344 if (time->tm_month > 11) {
345 time->tm_month = 0;
346 time->tm_year++;
347 }
348 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
349 }
350 }
351
352 /* Recompute yday and wday */
353 time->tm_yday = static_cast<PRInt16>(time->tm_mday +
354 lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month]);
355
356 numDays = DAYS_BETWEEN_YEARS(1970, time->tm_year) + time->tm_yday;
357 time->tm_wday = (numDays + 4) % 7;
358 if (time->tm_wday < 0) {
359 time->tm_wday += 7;
360 }
361
362 /* Recompute time parameters */
363
364 time->tm_params = params(time);
365
366 ApplySecOffset(time, time->tm_params.tp_gmt_offset
367 + time->tm_params.tp_dst_offset);
368 }
369
370 /*
371 *------------------------------------------------------------------------
372 *
373 * PR_GMTParameters --
374 *
375 * Returns the PRTimeParameters for Greenwich Mean Time.
376 * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0.
377 *
378 *------------------------------------------------------------------------
379 */
380
381 PRTimeParameters
PR_GMTParameters(const PRExplodedTime * gmt)382 PR_GMTParameters(const PRExplodedTime *gmt)
383 {
384 PRTimeParameters retVal = { 0, 0 };
385 return retVal;
386 }
387
388 /*
389 * The following code implements PR_ParseTimeString(). It is based on
390 * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <jwz@netscape.com>.
391 */
392
393 /*
394 * We only recognize the abbreviations of a small subset of time zones
395 * in North America, Europe, and Japan.
396 *
397 * PST/PDT: Pacific Standard/Daylight Time
398 * MST/MDT: Mountain Standard/Daylight Time
399 * CST/CDT: Central Standard/Daylight Time
400 * EST/EDT: Eastern Standard/Daylight Time
401 * AST: Atlantic Standard Time
402 * NST: Newfoundland Standard Time
403 * GMT: Greenwich Mean Time
404 * BST: British Summer Time
405 * MET: Middle Europe Time
406 * EET: Eastern Europe Time
407 * JST: Japan Standard Time
408 */
409
410 typedef enum
411 {
412 TT_UNKNOWN,
413
414 TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT,
415
416 TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN,
417 TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC,
418
419 TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT,
420 TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST
421 } TIME_TOKEN;
422
423 /*
424 * This parses a time/date string into a PRTime
425 * (microseconds after "1-Jan-1970 00:00:00 GMT").
426 * It returns PR_SUCCESS on success, and PR_FAILURE
427 * if the time/date string can't be parsed.
428 *
429 * Many formats are handled, including:
430 *
431 * 14 Apr 89 03:20:12
432 * 14 Apr 89 03:20 GMT
433 * Fri, 17 Mar 89 4:01:33
434 * Fri, 17 Mar 89 4:01 GMT
435 * Mon Jan 16 16:12 PDT 1989
436 * Mon Jan 16 16:12 +0130 1989
437 * 6 May 1992 16:41-JST (Wednesday)
438 * 22-AUG-1993 10:59:12.82
439 * 22-AUG-1993 10:59pm
440 * 22-AUG-1993 12:59am
441 * 22-AUG-1993 12:59 PM
442 * Friday, August 04, 1995 3:54 PM
443 * 06/21/95 04:24:34 PM
444 * 20/06/95 21:07
445 * 95-06-08 19:32:48 EDT
446 * 1995-06-17T23:11:25.342156Z
447 *
448 * If the input string doesn't contain a description of the timezone,
449 * we consult the `default_to_gmt' to decide whether the string should
450 * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE).
451 * The correct value for this argument depends on what standard specified
452 * the time string which you are parsing.
453 */
454
455 PRStatus
PR_ParseTimeString(const char * string,PRBool default_to_gmt,PRTime * result_imploded)456 PR_ParseTimeString(
457 const char *string,
458 PRBool default_to_gmt,
459 PRTime *result_imploded)
460 {
461 PRExplodedTime tm;
462 PRExplodedTime *result = &tm;
463 TIME_TOKEN dotw = TT_UNKNOWN;
464 TIME_TOKEN month = TT_UNKNOWN;
465 TIME_TOKEN zone = TT_UNKNOWN;
466 int zone_offset = -1;
467 int dst_offset = 0;
468 int date = -1;
469 PRInt32 year = -1;
470 int hour = -1;
471 int min = -1;
472 int sec = -1;
473 int usec = -1;
474
475 const char *rest = string;
476
477 int iterations = 0;
478
479 PR_ASSERT(string && result);
480 if (!string || !result) return PR_FAILURE;
481
482 while (*rest)
483 {
484
485 if (iterations++ > 1000)
486 {
487 return PR_FAILURE;
488 }
489
490 switch (*rest)
491 {
492 case 'a': case 'A':
493 if (month == TT_UNKNOWN &&
494 (rest[1] == 'p' || rest[1] == 'P') &&
495 (rest[2] == 'r' || rest[2] == 'R'))
496 month = TT_APR;
497 else if (zone == TT_UNKNOWN &&
498 (rest[1] == 's' || rest[1] == 'S') &&
499 (rest[2] == 't' || rest[2] == 'T'))
500 zone = TT_AST;
501 else if (month == TT_UNKNOWN &&
502 (rest[1] == 'u' || rest[1] == 'U') &&
503 (rest[2] == 'g' || rest[2] == 'G'))
504 month = TT_AUG;
505 break;
506 case 'b': case 'B':
507 if (zone == TT_UNKNOWN &&
508 (rest[1] == 's' || rest[1] == 'S') &&
509 (rest[2] == 't' || rest[2] == 'T'))
510 zone = TT_BST;
511 break;
512 case 'c': case 'C':
513 if (zone == TT_UNKNOWN &&
514 (rest[1] == 'd' || rest[1] == 'D') &&
515 (rest[2] == 't' || rest[2] == 'T'))
516 zone = TT_CDT;
517 else if (zone == TT_UNKNOWN &&
518 (rest[1] == 's' || rest[1] == 'S') &&
519 (rest[2] == 't' || rest[2] == 'T'))
520 zone = TT_CST;
521 break;
522 case 'd': case 'D':
523 if (month == TT_UNKNOWN &&
524 (rest[1] == 'e' || rest[1] == 'E') &&
525 (rest[2] == 'c' || rest[2] == 'C'))
526 month = TT_DEC;
527 break;
528 case 'e': case 'E':
529 if (zone == TT_UNKNOWN &&
530 (rest[1] == 'd' || rest[1] == 'D') &&
531 (rest[2] == 't' || rest[2] == 'T'))
532 zone = TT_EDT;
533 else if (zone == TT_UNKNOWN &&
534 (rest[1] == 'e' || rest[1] == 'E') &&
535 (rest[2] == 't' || rest[2] == 'T'))
536 zone = TT_EET;
537 else if (zone == TT_UNKNOWN &&
538 (rest[1] == 's' || rest[1] == 'S') &&
539 (rest[2] == 't' || rest[2] == 'T'))
540 zone = TT_EST;
541 break;
542 case 'f': case 'F':
543 if (month == TT_UNKNOWN &&
544 (rest[1] == 'e' || rest[1] == 'E') &&
545 (rest[2] == 'b' || rest[2] == 'B'))
546 month = TT_FEB;
547 else if (dotw == TT_UNKNOWN &&
548 (rest[1] == 'r' || rest[1] == 'R') &&
549 (rest[2] == 'i' || rest[2] == 'I'))
550 dotw = TT_FRI;
551 break;
552 case 'g': case 'G':
553 if (zone == TT_UNKNOWN &&
554 (rest[1] == 'm' || rest[1] == 'M') &&
555 (rest[2] == 't' || rest[2] == 'T'))
556 zone = TT_GMT;
557 break;
558 case 'j': case 'J':
559 if (month == TT_UNKNOWN &&
560 (rest[1] == 'a' || rest[1] == 'A') &&
561 (rest[2] == 'n' || rest[2] == 'N'))
562 month = TT_JAN;
563 else if (zone == TT_UNKNOWN &&
564 (rest[1] == 's' || rest[1] == 'S') &&
565 (rest[2] == 't' || rest[2] == 'T'))
566 zone = TT_JST;
567 else if (month == TT_UNKNOWN &&
568 (rest[1] == 'u' || rest[1] == 'U') &&
569 (rest[2] == 'l' || rest[2] == 'L'))
570 month = TT_JUL;
571 else if (month == TT_UNKNOWN &&
572 (rest[1] == 'u' || rest[1] == 'U') &&
573 (rest[2] == 'n' || rest[2] == 'N'))
574 month = TT_JUN;
575 break;
576 case 'm': case 'M':
577 if (month == TT_UNKNOWN &&
578 (rest[1] == 'a' || rest[1] == 'A') &&
579 (rest[2] == 'r' || rest[2] == 'R'))
580 month = TT_MAR;
581 else if (month == TT_UNKNOWN &&
582 (rest[1] == 'a' || rest[1] == 'A') &&
583 (rest[2] == 'y' || rest[2] == 'Y'))
584 month = TT_MAY;
585 else if (zone == TT_UNKNOWN &&
586 (rest[1] == 'd' || rest[1] == 'D') &&
587 (rest[2] == 't' || rest[2] == 'T'))
588 zone = TT_MDT;
589 else if (zone == TT_UNKNOWN &&
590 (rest[1] == 'e' || rest[1] == 'E') &&
591 (rest[2] == 't' || rest[2] == 'T'))
592 zone = TT_MET;
593 else if (dotw == TT_UNKNOWN &&
594 (rest[1] == 'o' || rest[1] == 'O') &&
595 (rest[2] == 'n' || rest[2] == 'N'))
596 dotw = TT_MON;
597 else if (zone == TT_UNKNOWN &&
598 (rest[1] == 's' || rest[1] == 'S') &&
599 (rest[2] == 't' || rest[2] == 'T'))
600 zone = TT_MST;
601 break;
602 case 'n': case 'N':
603 if (month == TT_UNKNOWN &&
604 (rest[1] == 'o' || rest[1] == 'O') &&
605 (rest[2] == 'v' || rest[2] == 'V'))
606 month = TT_NOV;
607 else if (zone == TT_UNKNOWN &&
608 (rest[1] == 's' || rest[1] == 'S') &&
609 (rest[2] == 't' || rest[2] == 'T'))
610 zone = TT_NST;
611 break;
612 case 'o': case 'O':
613 if (month == TT_UNKNOWN &&
614 (rest[1] == 'c' || rest[1] == 'C') &&
615 (rest[2] == 't' || rest[2] == 'T'))
616 month = TT_OCT;
617 break;
618 case 'p': case 'P':
619 if (zone == TT_UNKNOWN &&
620 (rest[1] == 'd' || rest[1] == 'D') &&
621 (rest[2] == 't' || rest[2] == 'T'))
622 zone = TT_PDT;
623 else if (zone == TT_UNKNOWN &&
624 (rest[1] == 's' || rest[1] == 'S') &&
625 (rest[2] == 't' || rest[2] == 'T'))
626 zone = TT_PST;
627 break;
628 case 's': case 'S':
629 if (dotw == TT_UNKNOWN &&
630 (rest[1] == 'a' || rest[1] == 'A') &&
631 (rest[2] == 't' || rest[2] == 'T'))
632 dotw = TT_SAT;
633 else if (month == TT_UNKNOWN &&
634 (rest[1] == 'e' || rest[1] == 'E') &&
635 (rest[2] == 'p' || rest[2] == 'P'))
636 month = TT_SEP;
637 else if (dotw == TT_UNKNOWN &&
638 (rest[1] == 'u' || rest[1] == 'U') &&
639 (rest[2] == 'n' || rest[2] == 'N'))
640 dotw = TT_SUN;
641 break;
642 case 't': case 'T':
643 if (dotw == TT_UNKNOWN &&
644 (rest[1] == 'h' || rest[1] == 'H') &&
645 (rest[2] == 'u' || rest[2] == 'U'))
646 dotw = TT_THU;
647 else if (dotw == TT_UNKNOWN &&
648 (rest[1] == 'u' || rest[1] == 'U') &&
649 (rest[2] == 'e' || rest[2] == 'E'))
650 dotw = TT_TUE;
651 break;
652 case 'u': case 'U':
653 if (zone == TT_UNKNOWN &&
654 (rest[1] == 't' || rest[1] == 'T') &&
655 !(rest[2] >= 'A' && rest[2] <= 'Z') &&
656 !(rest[2] >= 'a' && rest[2] <= 'z'))
657 /* UT is the same as GMT but UTx is not. */
658 zone = TT_GMT;
659 break;
660 case 'w': case 'W':
661 if (dotw == TT_UNKNOWN &&
662 (rest[1] == 'e' || rest[1] == 'E') &&
663 (rest[2] == 'd' || rest[2] == 'D'))
664 dotw = TT_WED;
665 break;
666
667 case '+': case '-':
668 {
669 const char *end;
670 int sign;
671 if (zone_offset != -1)
672 {
673 /* already got one... */
674 rest++;
675 break;
676 }
677 if (zone != TT_UNKNOWN && zone != TT_GMT)
678 {
679 /* GMT+0300 is legal, but PST+0300 is not. */
680 rest++;
681 break;
682 }
683
684 sign = ((*rest == '+') ? 1 : -1);
685 rest++; /* move over sign */
686 end = rest;
687 while (*end >= '0' && *end <= '9')
688 end++;
689 if (rest == end) /* no digits here */
690 break;
691
692 if ((end - rest) == 4)
693 /* offset in HHMM */
694 zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) +
695 (((rest[2]-'0')*10) + (rest[3]-'0')));
696 else if ((end - rest) == 2)
697 /* offset in hours */
698 zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60;
699 else if ((end - rest) == 1)
700 /* offset in hours */
701 zone_offset = (rest[0]-'0') * 60;
702 else
703 /* 3 or >4 */
704 break;
705
706 zone_offset *= sign;
707 zone = TT_GMT;
708 break;
709 }
710
711 case '0': case '1': case '2': case '3': case '4':
712 case '5': case '6': case '7': case '8': case '9':
713 {
714 int tmp_hour = -1;
715 int tmp_min = -1;
716 int tmp_sec = -1;
717 int tmp_usec = -1;
718 const char *end = rest + 1;
719 while (*end >= '0' && *end <= '9')
720 end++;
721
722 /* end is now the first character after a range of digits. */
723
724 if (*end == ':')
725 {
726 if (hour >= 0 && min >= 0) /* already got it */
727 break;
728
729 /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */
730 if ((end - rest) > 2)
731 /* it is [0-9][0-9][0-9]+: */
732 break;
733 else if ((end - rest) == 2)
734 tmp_hour = ((rest[0]-'0')*10 +
735 (rest[1]-'0'));
736 else
737 tmp_hour = (rest[0]-'0');
738
739 /* move over the colon, and parse minutes */
740
741 rest = ++end;
742 while (*end >= '0' && *end <= '9')
743 end++;
744
745 if (end == rest)
746 /* no digits after first colon? */
747 break;
748 else if ((end - rest) > 2)
749 /* it is [0-9][0-9][0-9]+: */
750 break;
751 else if ((end - rest) == 2)
752 tmp_min = ((rest[0]-'0')*10 +
753 (rest[1]-'0'));
754 else
755 tmp_min = (rest[0]-'0');
756
757 /* now go for seconds */
758 rest = end;
759 if (*rest == ':')
760 rest++;
761 end = rest;
762 while (*end >= '0' && *end <= '9')
763 end++;
764
765 if (end == rest)
766 /* no digits after second colon - that's ok. */
767 ;
768 else if ((end - rest) > 2)
769 /* it is [0-9][0-9][0-9]+: */
770 break;
771 else if ((end - rest) == 2)
772 tmp_sec = ((rest[0]-'0')*10 +
773 (rest[1]-'0'));
774 else
775 tmp_sec = (rest[0]-'0');
776
777 /* fractional second */
778 rest = end;
779 if (*rest == '.')
780 {
781 rest++;
782 end++;
783 tmp_usec = 0;
784 /* use up to 6 digits, skip over the rest */
785 while (*end >= '0' && *end <= '9')
786 {
787 if (end - rest < 6)
788 tmp_usec = tmp_usec * 10 + *end - '0';
789 end++;
790 }
791 int ndigits = end - rest;
792 while (ndigits++ < 6)
793 tmp_usec *= 10;
794 rest = end;
795 }
796
797 if (*rest == 'Z')
798 {
799 zone = TT_GMT;
800 rest++;
801 }
802 else if (tmp_hour <= 12)
803 {
804 /* If we made it here, we've parsed hour and min,
805 and possibly sec, so the current token is a time.
806 Now skip over whitespace and see if there's an AM
807 or PM directly following the time.
808 */
809 const char *s = end;
810 while (*s && (*s == ' ' || *s == '\t'))
811 s++;
812 if ((s[0] == 'p' || s[0] == 'P') &&
813 (s[1] == 'm' || s[1] == 'M'))
814 /* 10:05pm == 22:05, and 12:05pm == 12:05 */
815 tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12);
816 else if (tmp_hour == 12 &&
817 (s[0] == 'a' || s[0] == 'A') &&
818 (s[1] == 'm' || s[1] == 'M'))
819 /* 12:05am == 00:05 */
820 tmp_hour = 0;
821 }
822
823 hour = tmp_hour;
824 min = tmp_min;
825 sec = tmp_sec;
826 usec = tmp_usec;
827 rest = end;
828 break;
829 }
830 else if ((*end == '/' || *end == '-') &&
831 end[1] >= '0' && end[1] <= '9')
832 {
833 /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95
834 or even 95-06-05 or 1995-06-22.
835 */
836 int n1, n2, n3;
837 const char *s;
838
839 if (month != TT_UNKNOWN)
840 /* if we saw a month name, this can't be. */
841 break;
842
843 s = rest;
844
845 n1 = (*s++ - '0'); /* first 1, 2 or 4 digits */
846 if (*s >= '0' && *s <= '9')
847 {
848 n1 = n1*10 + (*s++ - '0');
849
850 if (*s >= '0' && *s <= '9') /* optional digits 3 and 4 */
851 {
852 n1 = n1*10 + (*s++ - '0');
853 if (*s < '0' || *s > '9')
854 break;
855 n1 = n1*10 + (*s++ - '0');
856 }
857 }
858
859 if (*s != '/' && *s != '-') /* slash */
860 break;
861 s++;
862
863 if (*s < '0' || *s > '9') /* second 1 or 2 digits */
864 break;
865 n2 = (*s++ - '0');
866 if (*s >= '0' && *s <= '9')
867 n2 = n2*10 + (*s++ - '0');
868
869 if (*s != '/' && *s != '-') /* slash */
870 break;
871 s++;
872
873 if (*s < '0' || *s > '9') /* third 1, 2, 4, or 5 digits */
874 break;
875 n3 = (*s++ - '0');
876 if (*s >= '0' && *s <= '9')
877 n3 = n3*10 + (*s++ - '0');
878
879 if (*s >= '0' && *s <= '9') /* optional digits 3, 4, and 5 */
880 {
881 n3 = n3*10 + (*s++ - '0');
882 if (*s < '0' || *s > '9')
883 break;
884 n3 = n3*10 + (*s++ - '0');
885 if (*s >= '0' && *s <= '9')
886 n3 = n3*10 + (*s++ - '0');
887 }
888
889 if (*s == 'T' && s[1] >= '0' && s[1] <= '9')
890 /* followed by ISO 8601 T delimiter and number is ok */
891 ;
892 else if ((*s >= '0' && *s <= '9') ||
893 (*s >= 'A' && *s <= 'Z') ||
894 (*s >= 'a' && *s <= 'z'))
895 /* but other alphanumerics are not ok */
896 break;
897
898 /* Ok, we parsed three multi-digit numbers, with / or -
899 between them. Now decide what the hell they are
900 (DD/MM/YY or MM/DD/YY or [YY]YY/MM/DD.)
901 */
902
903 if (n1 > 31 || n1 == 0) /* must be [YY]YY/MM/DD */
904 {
905 if (n2 > 12) break;
906 if (n3 > 31) break;
907 year = n1;
908 if (year < 70)
909 year += 2000;
910 else if (year < 100)
911 year += 1900;
912 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
913 date = n3;
914 rest = s;
915 break;
916 }
917
918 if (n1 > 12 && n2 > 12) /* illegal */
919 {
920 rest = s;
921 break;
922 }
923
924 if (n3 < 70)
925 n3 += 2000;
926 else if (n3 < 100)
927 n3 += 1900;
928
929 if (n1 > 12) /* must be DD/MM/YY */
930 {
931 date = n1;
932 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
933 year = n3;
934 }
935 else /* assume MM/DD/YY */
936 {
937 /* #### In the ambiguous case, should we consult the
938 locale to find out the local default? */
939 month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1);
940 date = n2;
941 year = n3;
942 }
943 rest = s;
944 }
945 else if ((*end >= 'A' && *end <= 'Z') ||
946 (*end >= 'a' && *end <= 'z'))
947 /* Digits followed by non-punctuation - what's that? */
948 ;
949 else if ((end - rest) == 5) /* five digits is a year */
950 year = (year < 0
951 ? ((rest[0]-'0')*10000L +
952 (rest[1]-'0')*1000L +
953 (rest[2]-'0')*100L +
954 (rest[3]-'0')*10L +
955 (rest[4]-'0'))
956 : year);
957 else if ((end - rest) == 4) /* four digits is a year */
958 year = (year < 0
959 ? ((rest[0]-'0')*1000L +
960 (rest[1]-'0')*100L +
961 (rest[2]-'0')*10L +
962 (rest[3]-'0'))
963 : year);
964 else if ((end - rest) == 2) /* two digits - date or year */
965 {
966 int n = ((rest[0]-'0')*10 +
967 (rest[1]-'0'));
968 /* If we don't have a date (day of the month) and we see a number
969 less than 32, then assume that is the date.
970
971 Otherwise, if we have a date and not a year, assume this is the
972 year. If it is less than 70, then assume it refers to the 21st
973 century. If it is two digits (>= 70), assume it refers to this
974 century. Otherwise, assume it refers to an unambiguous year.
975
976 The world will surely end soon.
977 */
978 if (date < 0 && n < 32)
979 date = n;
980 else if (year < 0)
981 {
982 if (n < 70)
983 year = 2000 + n;
984 else if (n < 100)
985 year = 1900 + n;
986 else
987 year = n;
988 }
989 /* else what the hell is this. */
990 }
991 else if ((end - rest) == 1) /* one digit - date */
992 date = (date < 0 ? (rest[0]-'0') : date);
993 /* else, three or more than five digits - what's that? */
994
995 break;
996 } /* case '0' .. '9' */
997 } /* switch */
998
999 /* Skip to the end of this token, whether we parsed it or not.
1000 Tokens are delimited by whitespace, or ,;-+/()[] but explicitly not .:
1001 'T' is also treated as delimiter when followed by a digit (ISO 8601).
1002 */
1003 while (*rest &&
1004 *rest != ' ' && *rest != '\t' &&
1005 *rest != ',' && *rest != ';' &&
1006 *rest != '-' && *rest != '+' &&
1007 *rest != '/' &&
1008 *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']' &&
1009 !(*rest == 'T' && rest[1] >= '0' && rest[1] <= '9')
1010 )
1011 rest++;
1012 /* skip over uninteresting chars. */
1013 SKIP_MORE:
1014 while (*rest == ' ' || *rest == '\t' ||
1015 *rest == ',' || *rest == ';' || *rest == '/' ||
1016 *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']')
1017 rest++;
1018
1019 /* "-" is ignored at the beginning of a token if we have not yet
1020 parsed a year (e.g., the second "-" in "30-AUG-1966"), or if
1021 the character after the dash is not a digit. */
1022 if (*rest == '-' && ((rest > string &&
1023 isalpha((unsigned char)rest[-1]) && year < 0) ||
1024 rest[1] < '0' || rest[1] > '9'))
1025 {
1026 rest++;
1027 goto SKIP_MORE;
1028 }
1029
1030 /* Skip T that may precede ISO 8601 time. */
1031 if (*rest == 'T' && rest[1] >= '0' && rest[1] <= '9')
1032 rest++;
1033 } /* while */
1034
1035 if (zone != TT_UNKNOWN && zone_offset == -1)
1036 {
1037 switch (zone)
1038 {
1039 case TT_PST: zone_offset = -8 * 60; break;
1040 case TT_PDT: zone_offset = -8 * 60; dst_offset = 1 * 60; break;
1041 case TT_MST: zone_offset = -7 * 60; break;
1042 case TT_MDT: zone_offset = -7 * 60; dst_offset = 1 * 60; break;
1043 case TT_CST: zone_offset = -6 * 60; break;
1044 case TT_CDT: zone_offset = -6 * 60; dst_offset = 1 * 60; break;
1045 case TT_EST: zone_offset = -5 * 60; break;
1046 case TT_EDT: zone_offset = -5 * 60; dst_offset = 1 * 60; break;
1047 case TT_AST: zone_offset = -4 * 60; break;
1048 case TT_NST: zone_offset = -3 * 60 - 30; break;
1049 case TT_GMT: zone_offset = 0 * 60; break;
1050 case TT_BST: zone_offset = 0 * 60; dst_offset = 1 * 60; break;
1051 case TT_MET: zone_offset = 1 * 60; break;
1052 case TT_EET: zone_offset = 2 * 60; break;
1053 case TT_JST: zone_offset = 9 * 60; break;
1054 default:
1055 PR_ASSERT (0);
1056 break;
1057 }
1058 }
1059
1060 /* If we didn't find a year, month, or day-of-the-month, we can't
1061 possibly parse this, and in fact, mktime() will do something random
1062 (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt
1063 a numerologically significant date... */
1064 if (month == TT_UNKNOWN || date == -1 || year == -1 || year > PR_INT16_MAX)
1065 return PR_FAILURE;
1066
1067 memset(result, 0, sizeof(*result));
1068 if (usec != -1)
1069 result->tm_usec = usec;
1070 if (sec != -1)
1071 result->tm_sec = sec;
1072 if (min != -1)
1073 result->tm_min = min;
1074 if (hour != -1)
1075 result->tm_hour = hour;
1076 if (date != -1)
1077 result->tm_mday = date;
1078 if (month != TT_UNKNOWN)
1079 result->tm_month = (((int)month) - ((int)TT_JAN));
1080 if (year != -1)
1081 result->tm_year = static_cast<PRInt16>(year);
1082 if (dotw != TT_UNKNOWN)
1083 result->tm_wday = static_cast<PRInt8>(((int)dotw) - ((int)TT_SUN));
1084 /*
1085 * Mainly to compute wday and yday, but normalized time is also required
1086 * by the check below that works around a Visual C++ 2005 mktime problem.
1087 */
1088 PR_NormalizeTime(result, PR_GMTParameters);
1089 /* The remaining work is to set the gmt and dst offsets in tm_params. */
1090
1091 if (zone == TT_UNKNOWN && default_to_gmt)
1092 {
1093 /* No zone was specified, so pretend the zone was GMT. */
1094 zone = TT_GMT;
1095 zone_offset = 0;
1096 }
1097
1098 if (zone_offset == -1)
1099 {
1100 /* no zone was specified, and we're to assume that everything
1101 is local. */
1102 struct tm localTime;
1103 time_t secs;
1104
1105 PR_ASSERT(result->tm_month > -1 &&
1106 result->tm_mday > 0 &&
1107 result->tm_hour > -1 &&
1108 result->tm_min > -1 &&
1109 result->tm_sec > -1);
1110
1111 /*
1112 * To obtain time_t from a tm structure representing the local
1113 * time, we call mktime(). However, we need to see if we are
1114 * on 1-Jan-1970 or before. If we are, we can't call mktime()
1115 * because mktime() will crash on win16. In that case, we
1116 * calculate zone_offset based on the zone offset at
1117 * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the
1118 * date we are parsing to transform the date to GMT. We also
1119 * do so if mktime() returns (time_t) -1 (time out of range).
1120 */
1121
1122 /* month, day, hours, mins and secs are always non-negative
1123 so we dont need to worry about them. */
1124 if (result->tm_year >= 1970)
1125 {
1126 localTime.tm_sec = result->tm_sec;
1127 localTime.tm_min = result->tm_min;
1128 localTime.tm_hour = result->tm_hour;
1129 localTime.tm_mday = result->tm_mday;
1130 localTime.tm_mon = result->tm_month;
1131 localTime.tm_year = result->tm_year - 1900;
1132 /* Set this to -1 to tell mktime "I don't care". If you set
1133 it to 0 or 1, you are making assertions about whether the
1134 date you are handing it is in daylight savings mode or not;
1135 and if you're wrong, it will "fix" it for you. */
1136 localTime.tm_isdst = -1;
1137
1138 #if _MSC_VER == 1400 /* 1400 = Visual C++ 2005 (8.0) */
1139 /*
1140 * mktime will return (time_t) -1 if the input is a date
1141 * after 23:59:59, December 31, 3000, US Pacific Time (not
1142 * UTC as documented):
1143 * http://msdn.microsoft.com/en-us/library/d1y53h2a(VS.80).aspx
1144 * But if the year is 3001, mktime also invokes the invalid
1145 * parameter handler, causing the application to crash. This
1146 * problem has been reported in
1147 * http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=266036.
1148 * We avoid this crash by not calling mktime if the date is
1149 * out of range. To use a simple test that works in any time
1150 * zone, we consider year 3000 out of range as well. (See
1151 * bug 480740.)
1152 */
1153 if (result->tm_year >= 3000) {
1154 /* Emulate what mktime would have done. */
1155 errno = EINVAL;
1156 secs = (time_t) -1;
1157 } else {
1158 secs = mktime(&localTime);
1159 }
1160 #else
1161 secs = mktime(&localTime);
1162 #endif
1163 if (secs != (time_t) -1)
1164 {
1165 *result_imploded = (PRInt64)secs * PR_USEC_PER_SEC;
1166 *result_imploded += result->tm_usec;
1167 return PR_SUCCESS;
1168 }
1169 }
1170
1171 /* So mktime() can't handle this case. We assume the
1172 zone_offset for the date we are parsing is the same as
1173 the zone offset on 00:00:00 2 Jan 1970 GMT. */
1174 secs = 86400;
1175 localtime_r(&secs, &localTime);
1176 zone_offset = localTime.tm_min
1177 + 60 * localTime.tm_hour
1178 + 1440 * (localTime.tm_mday - 2);
1179 }
1180
1181 result->tm_params.tp_gmt_offset = zone_offset * 60;
1182 result->tm_params.tp_dst_offset = dst_offset * 60;
1183
1184 *result_imploded = PR_ImplodeTime(result);
1185 return PR_SUCCESS;
1186 }
1187