1 // Copyright 2008 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // A DFA (deterministic finite automaton)-based regular expression search.
6 //
7 // The DFA search has two main parts: the construction of the automaton,
8 // which is represented by a graph of State structures, and the execution
9 // of the automaton over a given input string.
10 //
11 // The basic idea is that the State graph is constructed so that the
12 // execution can simply start with a state s, and then for each byte c in
13 // the input string, execute "s = s->next[c]", checking at each point whether
14 // the current s represents a matching state.
15 //
16 // The simple explanation just given does convey the essence of this code,
17 // but it omits the details of how the State graph gets constructed as well
18 // as some performance-driven optimizations to the execution of the automaton.
19 // All these details are explained in the comments for the code following
20 // the definition of class DFA.
21 //
22 // See http://swtch.com/~rsc/regexp/ for a very bare-bones equivalent.
23
24 #include <stddef.h>
25 #include <stdint.h>
26 #include <stdio.h>
27 #include <string.h>
28 #include <algorithm>
29 #include <atomic>
30 #include <deque>
31 #include <mutex>
32 #include <new>
33 #include <string>
34 #include <unordered_map>
35 #include <unordered_set>
36 #include <utility>
37 #include <vector>
38
39 #include "util/logging.h"
40 #include "util/mix.h"
41 #include "util/mutex.h"
42 #include "util/strutil.h"
43 #include "re2/pod_array.h"
44 #include "re2/prog.h"
45 #include "re2/re2.h"
46 #include "re2/sparse_set.h"
47 #include "re2/stringpiece.h"
48
49 // Silence "zero-sized array in struct/union" warning for DFA::State::next_.
50 #ifdef _MSC_VER
51 #pragma warning(disable: 4200)
52 #endif
53
54 namespace re2 {
55
56 // Controls whether the DFA should bail out early if the NFA would be faster.
57 static bool dfa_should_bail_when_slow = true;
58
59 // Changing this to true compiles in prints that trace execution of the DFA.
60 // Generates a lot of output -- only useful for debugging.
61 static const bool ExtraDebug = false;
62
63 // A DFA implementation of a regular expression program.
64 // Since this is entirely a forward declaration mandated by C++,
65 // some of the comments here are better understood after reading
66 // the comments in the sections that follow the DFA definition.
67 class DFA {
68 public:
69 DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem);
70 ~DFA();
ok() const71 bool ok() const { return !init_failed_; }
kind()72 Prog::MatchKind kind() { return kind_; }
73
74 // Searches for the regular expression in text, which is considered
75 // as a subsection of context for the purposes of interpreting flags
76 // like ^ and $ and \A and \z.
77 // Returns whether a match was found.
78 // If a match is found, sets *ep to the end point of the best match in text.
79 // If "anchored", the match must begin at the start of text.
80 // If "want_earliest_match", the match that ends first is used, not
81 // necessarily the best one.
82 // If "run_forward" is true, the DFA runs from text.begin() to text.end().
83 // If it is false, the DFA runs from text.end() to text.begin(),
84 // returning the leftmost end of the match instead of the rightmost one.
85 // If the DFA cannot complete the search (for example, if it is out of
86 // memory), it sets *failed and returns false.
87 bool Search(const StringPiece& text, const StringPiece& context,
88 bool anchored, bool want_earliest_match, bool run_forward,
89 bool* failed, const char** ep, SparseSet* matches);
90
91 // Builds out all states for the entire DFA.
92 // If cb is not empty, it receives one callback per state built.
93 // Returns the number of states built.
94 // FOR TESTING OR EXPERIMENTAL PURPOSES ONLY.
95 int BuildAllStates(const Prog::DFAStateCallback& cb);
96
97 // Computes min and max for matching strings. Won't return strings
98 // bigger than maxlen.
99 bool PossibleMatchRange(std::string* min, std::string* max, int maxlen);
100
101 // These data structures are logically private, but C++ makes it too
102 // difficult to mark them as such.
103 class RWLocker;
104 class StateSaver;
105 class Workq;
106
107 // A single DFA state. The DFA is represented as a graph of these
108 // States, linked by the next_ pointers. If in state s and reading
109 // byte c, the next state should be s->next_[c].
110 struct State {
IsMatchre2::DFA::State111 inline bool IsMatch() const { return (flag_ & kFlagMatch) != 0; }
112
113 int* inst_; // Instruction pointers in the state.
114 int ninst_; // # of inst_ pointers.
115 uint32_t flag_; // Empty string bitfield flags in effect on the way
116 // into this state, along with kFlagMatch if this
117 // is a matching state.
118
119 // Work around the bug affecting flexible array members in GCC 6.x (for x >= 1).
120 // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=70932)
121 #if !defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && __GNUC_MINOR__ >= 1
122 std::atomic<State*> next_[0]; // Outgoing arrows from State,
123 #else
124 std::atomic<State*> next_[]; // Outgoing arrows from State,
125 #endif
126
127 // one per input byte class
128 };
129
130 enum {
131 kByteEndText = 256, // imaginary byte at end of text
132
133 kFlagEmptyMask = 0xFF, // State.flag_: bits holding kEmptyXXX flags
134 kFlagMatch = 0x0100, // State.flag_: this is a matching state
135 kFlagLastWord = 0x0200, // State.flag_: last byte was a word char
136 kFlagNeedShift = 16, // needed kEmpty bits are or'ed in shifted left
137 };
138
139 struct StateHash {
operator ()re2::DFA::StateHash140 size_t operator()(const State* a) const {
141 DCHECK(a != NULL);
142 HashMix mix(a->flag_);
143 for (int i = 0; i < a->ninst_; i++)
144 mix.Mix(a->inst_[i]);
145 mix.Mix(0);
146 return mix.get();
147 }
148 };
149
150 struct StateEqual {
operator ()re2::DFA::StateEqual151 bool operator()(const State* a, const State* b) const {
152 DCHECK(a != NULL);
153 DCHECK(b != NULL);
154 if (a == b)
155 return true;
156 if (a->flag_ != b->flag_)
157 return false;
158 if (a->ninst_ != b->ninst_)
159 return false;
160 for (int i = 0; i < a->ninst_; i++)
161 if (a->inst_[i] != b->inst_[i])
162 return false;
163 return true;
164 }
165 };
166
167 typedef std::unordered_set<State*, StateHash, StateEqual> StateSet;
168
169 private:
170 enum {
171 // Indices into start_ for unanchored searches.
172 // Add kStartAnchored for anchored searches.
173 kStartBeginText = 0, // text at beginning of context
174 kStartBeginLine = 2, // text at beginning of line
175 kStartAfterWordChar = 4, // text follows a word character
176 kStartAfterNonWordChar = 6, // text follows non-word character
177 kMaxStart = 8,
178
179 kStartAnchored = 1,
180 };
181
182 // Resets the DFA State cache, flushing all saved State* information.
183 // Releases and reacquires cache_mutex_ via cache_lock, so any
184 // State* existing before the call are not valid after the call.
185 // Use a StateSaver to preserve important states across the call.
186 // cache_mutex_.r <= L < mutex_
187 // After: cache_mutex_.w <= L < mutex_
188 void ResetCache(RWLocker* cache_lock);
189
190 // Looks up and returns the State corresponding to a Workq.
191 // L >= mutex_
192 State* WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag);
193
194 // Looks up and returns a State matching the inst, ninst, and flag.
195 // L >= mutex_
196 State* CachedState(int* inst, int ninst, uint32_t flag);
197
198 // Clear the cache entirely.
199 // Must hold cache_mutex_.w or be in destructor.
200 void ClearCache();
201
202 // Converts a State into a Workq: the opposite of WorkqToCachedState.
203 // L >= mutex_
204 void StateToWorkq(State* s, Workq* q);
205
206 // Runs a State on a given byte, returning the next state.
207 State* RunStateOnByteUnlocked(State*, int); // cache_mutex_.r <= L < mutex_
208 State* RunStateOnByte(State*, int); // L >= mutex_
209
210 // Runs a Workq on a given byte followed by a set of empty-string flags,
211 // producing a new Workq in nq. If a match instruction is encountered,
212 // sets *ismatch to true.
213 // L >= mutex_
214 void RunWorkqOnByte(Workq* q, Workq* nq,
215 int c, uint32_t flag, bool* ismatch);
216
217 // Runs a Workq on a set of empty-string flags, producing a new Workq in nq.
218 // L >= mutex_
219 void RunWorkqOnEmptyString(Workq* q, Workq* nq, uint32_t flag);
220
221 // Adds the instruction id to the Workq, following empty arrows
222 // according to flag.
223 // L >= mutex_
224 void AddToQueue(Workq* q, int id, uint32_t flag);
225
226 // For debugging, returns a text representation of State.
227 static std::string DumpState(State* state);
228
229 // For debugging, returns a text representation of a Workq.
230 static std::string DumpWorkq(Workq* q);
231
232 // Search parameters
233 struct SearchParams {
SearchParamsre2::DFA::SearchParams234 SearchParams(const StringPiece& text, const StringPiece& context,
235 RWLocker* cache_lock)
236 : text(text),
237 context(context),
238 anchored(false),
239 can_prefix_accel(false),
240 want_earliest_match(false),
241 run_forward(false),
242 start(NULL),
243 cache_lock(cache_lock),
244 failed(false),
245 ep(NULL),
246 matches(NULL) {}
247
248 StringPiece text;
249 StringPiece context;
250 bool anchored;
251 bool can_prefix_accel;
252 bool want_earliest_match;
253 bool run_forward;
254 State* start;
255 RWLocker* cache_lock;
256 bool failed; // "out" parameter: whether search gave up
257 const char* ep; // "out" parameter: end pointer for match
258 SparseSet* matches;
259
260 private:
261 SearchParams(const SearchParams&) = delete;
262 SearchParams& operator=(const SearchParams&) = delete;
263 };
264
265 // Before each search, the parameters to Search are analyzed by
266 // AnalyzeSearch to determine the state in which to start.
267 struct StartInfo {
StartInfore2::DFA::StartInfo268 StartInfo() : start(NULL) {}
269 std::atomic<State*> start;
270 };
271
272 // Fills in params->start and params->can_prefix_accel using
273 // the other search parameters. Returns true on success,
274 // false on failure.
275 // cache_mutex_.r <= L < mutex_
276 bool AnalyzeSearch(SearchParams* params);
277 bool AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
278 uint32_t flags);
279
280 // The generic search loop, inlined to create specialized versions.
281 // cache_mutex_.r <= L < mutex_
282 // Might unlock and relock cache_mutex_ via params->cache_lock.
283 inline bool InlinedSearchLoop(SearchParams* params,
284 bool can_prefix_accel,
285 bool want_earliest_match,
286 bool run_forward);
287
288 // The specialized versions of InlinedSearchLoop. The three letters
289 // at the ends of the name denote the true/false values used as the
290 // last three parameters of InlinedSearchLoop.
291 // cache_mutex_.r <= L < mutex_
292 // Might unlock and relock cache_mutex_ via params->cache_lock.
293 bool SearchFFF(SearchParams* params);
294 bool SearchFFT(SearchParams* params);
295 bool SearchFTF(SearchParams* params);
296 bool SearchFTT(SearchParams* params);
297 bool SearchTFF(SearchParams* params);
298 bool SearchTFT(SearchParams* params);
299 bool SearchTTF(SearchParams* params);
300 bool SearchTTT(SearchParams* params);
301
302 // The main search loop: calls an appropriate specialized version of
303 // InlinedSearchLoop.
304 // cache_mutex_.r <= L < mutex_
305 // Might unlock and relock cache_mutex_ via params->cache_lock.
306 bool FastSearchLoop(SearchParams* params);
307
308 // For debugging, a slow search loop that calls InlinedSearchLoop
309 // directly -- because the booleans passed are not constants, the
310 // loop is not specialized like the SearchFFF etc. versions, so it
311 // runs much more slowly. Useful only for debugging.
312 // cache_mutex_.r <= L < mutex_
313 // Might unlock and relock cache_mutex_ via params->cache_lock.
314 bool SlowSearchLoop(SearchParams* params);
315
316 // Looks up bytes in bytemap_ but handles case c == kByteEndText too.
ByteMap(int c)317 int ByteMap(int c) {
318 if (c == kByteEndText)
319 return prog_->bytemap_range();
320 return prog_->bytemap()[c];
321 }
322
323 // Constant after initialization.
324 Prog* prog_; // The regular expression program to run.
325 Prog::MatchKind kind_; // The kind of DFA.
326 bool init_failed_; // initialization failed (out of memory)
327
328 Mutex mutex_; // mutex_ >= cache_mutex_.r
329
330 // Scratch areas, protected by mutex_.
331 Workq* q0_; // Two pre-allocated work queues.
332 Workq* q1_;
333 PODArray<int> stack_; // Pre-allocated stack for AddToQueue
334
335 // State* cache. Many threads use and add to the cache simultaneously,
336 // holding cache_mutex_ for reading and mutex_ (above) when adding.
337 // If the cache fills and needs to be discarded, the discarding is done
338 // while holding cache_mutex_ for writing, to avoid interrupting other
339 // readers. Any State* pointers are only valid while cache_mutex_
340 // is held.
341 Mutex cache_mutex_;
342 int64_t mem_budget_; // Total memory budget for all States.
343 int64_t state_budget_; // Amount of memory remaining for new States.
344 StateSet state_cache_; // All States computed so far.
345 StartInfo start_[kMaxStart];
346
347 DFA(const DFA&) = delete;
348 DFA& operator=(const DFA&) = delete;
349 };
350
351 // Shorthand for casting to uint8_t*.
BytePtr(const void * v)352 static inline const uint8_t* BytePtr(const void* v) {
353 return reinterpret_cast<const uint8_t*>(v);
354 }
355
356 // Work queues
357
358 // Marks separate thread groups of different priority
359 // in the work queue when in leftmost-longest matching mode.
360 #define Mark (-1)
361
362 // Separates the match IDs from the instructions in inst_.
363 // Used only for "many match" DFA states.
364 #define MatchSep (-2)
365
366 // Internally, the DFA uses a sparse array of
367 // program instruction pointers as a work queue.
368 // In leftmost longest mode, marks separate sections
369 // of workq that started executing at different
370 // locations in the string (earlier locations first).
371 class DFA::Workq : public SparseSet {
372 public:
373 // Constructor: n is number of normal slots, maxmark number of mark slots.
Workq(int n,int maxmark)374 Workq(int n, int maxmark) :
375 SparseSet(n+maxmark),
376 n_(n),
377 maxmark_(maxmark),
378 nextmark_(n),
379 last_was_mark_(true) {
380 }
381
is_mark(int i)382 bool is_mark(int i) { return i >= n_; }
383
maxmark()384 int maxmark() { return maxmark_; }
385
clear()386 void clear() {
387 SparseSet::clear();
388 nextmark_ = n_;
389 }
390
mark()391 void mark() {
392 if (last_was_mark_)
393 return;
394 last_was_mark_ = false;
395 SparseSet::insert_new(nextmark_++);
396 }
397
size()398 int size() {
399 return n_ + maxmark_;
400 }
401
insert(int id)402 void insert(int id) {
403 if (contains(id))
404 return;
405 insert_new(id);
406 }
407
insert_new(int id)408 void insert_new(int id) {
409 last_was_mark_ = false;
410 SparseSet::insert_new(id);
411 }
412
413 private:
414 int n_; // size excluding marks
415 int maxmark_; // maximum number of marks
416 int nextmark_; // id of next mark
417 bool last_was_mark_; // last inserted was mark
418
419 Workq(const Workq&) = delete;
420 Workq& operator=(const Workq&) = delete;
421 };
422
DFA(Prog * prog,Prog::MatchKind kind,int64_t max_mem)423 DFA::DFA(Prog* prog, Prog::MatchKind kind, int64_t max_mem)
424 : prog_(prog),
425 kind_(kind),
426 init_failed_(false),
427 q0_(NULL),
428 q1_(NULL),
429 mem_budget_(max_mem) {
430 if (ExtraDebug)
431 fprintf(stderr, "\nkind %d\n%s\n", kind_, prog_->DumpUnanchored().c_str());
432 int nmark = 0;
433 if (kind_ == Prog::kLongestMatch)
434 nmark = prog_->size();
435 // See DFA::AddToQueue() for why this is so.
436 int nstack = prog_->inst_count(kInstCapture) +
437 prog_->inst_count(kInstEmptyWidth) +
438 prog_->inst_count(kInstNop) +
439 nmark + 1; // + 1 for start inst
440
441 // Account for space needed for DFA, q0, q1, stack.
442 mem_budget_ -= sizeof(DFA);
443 mem_budget_ -= (prog_->size() + nmark) *
444 (sizeof(int)+sizeof(int)) * 2; // q0, q1
445 mem_budget_ -= nstack * sizeof(int); // stack
446 if (mem_budget_ < 0) {
447 init_failed_ = true;
448 return;
449 }
450
451 state_budget_ = mem_budget_;
452
453 // Make sure there is a reasonable amount of working room left.
454 // At minimum, the search requires room for two states in order
455 // to limp along, restarting frequently. We'll get better performance
456 // if there is room for a larger number of states, say 20.
457 // Note that a state stores list heads only, so we use the program
458 // list count for the upper bound, not the program size.
459 int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot
460 int64_t one_state = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
461 (prog_->list_count()+nmark)*sizeof(int);
462 if (state_budget_ < 20*one_state) {
463 init_failed_ = true;
464 return;
465 }
466
467 q0_ = new Workq(prog_->size(), nmark);
468 q1_ = new Workq(prog_->size(), nmark);
469 stack_ = PODArray<int>(nstack);
470 }
471
~DFA()472 DFA::~DFA() {
473 delete q0_;
474 delete q1_;
475 ClearCache();
476 }
477
478 // In the DFA state graph, s->next[c] == NULL means that the
479 // state has not yet been computed and needs to be. We need
480 // a different special value to signal that s->next[c] is a
481 // state that can never lead to a match (and thus the search
482 // can be called off). Hence DeadState.
483 #define DeadState reinterpret_cast<State*>(1)
484
485 // Signals that the rest of the string matches no matter what it is.
486 #define FullMatchState reinterpret_cast<State*>(2)
487
488 #define SpecialStateMax FullMatchState
489
490 // Debugging printouts
491
492 // For debugging, returns a string representation of the work queue.
DumpWorkq(Workq * q)493 std::string DFA::DumpWorkq(Workq* q) {
494 std::string s;
495 const char* sep = "";
496 for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
497 if (q->is_mark(*it)) {
498 s += "|";
499 sep = "";
500 } else {
501 s += StringPrintf("%s%d", sep, *it);
502 sep = ",";
503 }
504 }
505 return s;
506 }
507
508 // For debugging, returns a string representation of the state.
DumpState(State * state)509 std::string DFA::DumpState(State* state) {
510 if (state == NULL)
511 return "_";
512 if (state == DeadState)
513 return "X";
514 if (state == FullMatchState)
515 return "*";
516 std::string s;
517 const char* sep = "";
518 s += StringPrintf("(%p)", state);
519 for (int i = 0; i < state->ninst_; i++) {
520 if (state->inst_[i] == Mark) {
521 s += "|";
522 sep = "";
523 } else if (state->inst_[i] == MatchSep) {
524 s += "||";
525 sep = "";
526 } else {
527 s += StringPrintf("%s%d", sep, state->inst_[i]);
528 sep = ",";
529 }
530 }
531 s += StringPrintf(" flag=%#x", state->flag_);
532 return s;
533 }
534
535 //////////////////////////////////////////////////////////////////////
536 //
537 // DFA state graph construction.
538 //
539 // The DFA state graph is a heavily-linked collection of State* structures.
540 // The state_cache_ is a set of all the State structures ever allocated,
541 // so that if the same state is reached by two different paths,
542 // the same State structure can be used. This reduces allocation
543 // requirements and also avoids duplication of effort across the two
544 // identical states.
545 //
546 // A State is defined by an ordered list of instruction ids and a flag word.
547 //
548 // The choice of an ordered list of instructions differs from a typical
549 // textbook DFA implementation, which would use an unordered set.
550 // Textbook descriptions, however, only care about whether
551 // the DFA matches, not where it matches in the text. To decide where the
552 // DFA matches, we need to mimic the behavior of the dominant backtracking
553 // implementations like PCRE, which try one possible regular expression
554 // execution, then another, then another, stopping when one of them succeeds.
555 // The DFA execution tries these many executions in parallel, representing
556 // each by an instruction id. These pointers are ordered in the State.inst_
557 // list in the same order that the executions would happen in a backtracking
558 // search: if a match is found during execution of inst_[2], inst_[i] for i>=3
559 // can be discarded.
560 //
561 // Textbooks also typically do not consider context-aware empty string operators
562 // like ^ or $. These are handled by the flag word, which specifies the set
563 // of empty-string operators that should be matched when executing at the
564 // current text position. These flag bits are defined in prog.h.
565 // The flag word also contains two DFA-specific bits: kFlagMatch if the state
566 // is a matching state (one that reached a kInstMatch in the program)
567 // and kFlagLastWord if the last processed byte was a word character, for the
568 // implementation of \B and \b.
569 //
570 // The flag word also contains, shifted up 16 bits, the bits looked for by
571 // any kInstEmptyWidth instructions in the state. These provide a useful
572 // summary indicating when new flags might be useful.
573 //
574 // The permanent representation of a State's instruction ids is just an array,
575 // but while a state is being analyzed, these instruction ids are represented
576 // as a Workq, which is an array that allows iteration in insertion order.
577
578 // NOTE(rsc): The choice of State construction determines whether the DFA
579 // mimics backtracking implementations (so-called leftmost first matching) or
580 // traditional DFA implementations (so-called leftmost longest matching as
581 // prescribed by POSIX). This implementation chooses to mimic the
582 // backtracking implementations, because we want to replace PCRE. To get
583 // POSIX behavior, the states would need to be considered not as a simple
584 // ordered list of instruction ids, but as a list of unordered sets of instruction
585 // ids. A match by a state in one set would inhibit the running of sets
586 // farther down the list but not other instruction ids in the same set. Each
587 // set would correspond to matches beginning at a given point in the string.
588 // This is implemented by separating different sets with Mark pointers.
589
590 // Looks in the State cache for a State matching q, flag.
591 // If one is found, returns it. If one is not found, allocates one,
592 // inserts it in the cache, and returns it.
593 // If mq is not null, MatchSep and the match IDs in mq will be appended
594 // to the State.
WorkqToCachedState(Workq * q,Workq * mq,uint32_t flag)595 DFA::State* DFA::WorkqToCachedState(Workq* q, Workq* mq, uint32_t flag) {
596 //mutex_.AssertHeld();
597
598 // Construct array of instruction ids for the new state.
599 // Only ByteRange, EmptyWidth, and Match instructions are useful to keep:
600 // those are the only operators with any effect in
601 // RunWorkqOnEmptyString or RunWorkqOnByte.
602 PODArray<int> inst(q->size());
603 int n = 0;
604 uint32_t needflags = 0; // flags needed by kInstEmptyWidth instructions
605 bool sawmatch = false; // whether queue contains guaranteed kInstMatch
606 bool sawmark = false; // whether queue contains a Mark
607 if (ExtraDebug)
608 fprintf(stderr, "WorkqToCachedState %s [%#x]", DumpWorkq(q).c_str(), flag);
609 for (Workq::iterator it = q->begin(); it != q->end(); ++it) {
610 int id = *it;
611 if (sawmatch && (kind_ == Prog::kFirstMatch || q->is_mark(id)))
612 break;
613 if (q->is_mark(id)) {
614 if (n > 0 && inst[n-1] != Mark) {
615 sawmark = true;
616 inst[n++] = Mark;
617 }
618 continue;
619 }
620 Prog::Inst* ip = prog_->inst(id);
621 switch (ip->opcode()) {
622 case kInstAltMatch:
623 // This state will continue to a match no matter what
624 // the rest of the input is. If it is the highest priority match
625 // being considered, return the special FullMatchState
626 // to indicate that it's all matches from here out.
627 if (kind_ != Prog::kManyMatch &&
628 (kind_ != Prog::kFirstMatch ||
629 (it == q->begin() && ip->greedy(prog_))) &&
630 (kind_ != Prog::kLongestMatch || !sawmark) &&
631 (flag & kFlagMatch)) {
632 if (ExtraDebug)
633 fprintf(stderr, " -> FullMatchState\n");
634 return FullMatchState;
635 }
636 FALLTHROUGH_INTENDED;
637 default:
638 // Record iff id is the head of its list, which must
639 // be the case if id-1 is the last of *its* list. :)
640 if (prog_->inst(id-1)->last())
641 inst[n++] = *it;
642 if (ip->opcode() == kInstEmptyWidth)
643 needflags |= ip->empty();
644 if (ip->opcode() == kInstMatch && !prog_->anchor_end())
645 sawmatch = true;
646 break;
647 }
648 }
649 DCHECK_LE(n, q->size());
650 if (n > 0 && inst[n-1] == Mark)
651 n--;
652
653 // If there are no empty-width instructions waiting to execute,
654 // then the extra flag bits will not be used, so there is no
655 // point in saving them. (Discarding them reduces the number
656 // of distinct states.)
657 if (needflags == 0)
658 flag &= kFlagMatch;
659
660 // NOTE(rsc): The code above cannot do flag &= needflags,
661 // because if the right flags were present to pass the current
662 // kInstEmptyWidth instructions, new kInstEmptyWidth instructions
663 // might be reached that in turn need different flags.
664 // The only sure thing is that if there are no kInstEmptyWidth
665 // instructions at all, no flags will be needed.
666 // We could do the extra work to figure out the full set of
667 // possibly needed flags by exploring past the kInstEmptyWidth
668 // instructions, but the check above -- are any flags needed
669 // at all? -- handles the most common case. More fine-grained
670 // analysis can only be justified by measurements showing that
671 // too many redundant states are being allocated.
672
673 // If there are no Insts in the list, it's a dead state,
674 // which is useful to signal with a special pointer so that
675 // the execution loop can stop early. This is only okay
676 // if the state is *not* a matching state.
677 if (n == 0 && flag == 0) {
678 if (ExtraDebug)
679 fprintf(stderr, " -> DeadState\n");
680 return DeadState;
681 }
682
683 // If we're in longest match mode, the state is a sequence of
684 // unordered state sets separated by Marks. Sort each set
685 // to canonicalize, to reduce the number of distinct sets stored.
686 if (kind_ == Prog::kLongestMatch) {
687 int* ip = inst.data();
688 int* ep = ip + n;
689 while (ip < ep) {
690 int* markp = ip;
691 while (markp < ep && *markp != Mark)
692 markp++;
693 std::sort(ip, markp);
694 if (markp < ep)
695 markp++;
696 ip = markp;
697 }
698 }
699
700 // If we're in many match mode, canonicalize for similar reasons:
701 // we have an unordered set of states (i.e. we don't have Marks)
702 // and sorting will reduce the number of distinct sets stored.
703 if (kind_ == Prog::kManyMatch) {
704 int* ip = inst.data();
705 int* ep = ip + n;
706 std::sort(ip, ep);
707 }
708
709 // Append MatchSep and the match IDs in mq if necessary.
710 if (mq != NULL) {
711 inst[n++] = MatchSep;
712 for (Workq::iterator i = mq->begin(); i != mq->end(); ++i) {
713 int id = *i;
714 Prog::Inst* ip = prog_->inst(id);
715 if (ip->opcode() == kInstMatch)
716 inst[n++] = ip->match_id();
717 }
718 }
719
720 // Save the needed empty-width flags in the top bits for use later.
721 flag |= needflags << kFlagNeedShift;
722
723 State* state = CachedState(inst.data(), n, flag);
724 return state;
725 }
726
727 // Looks in the State cache for a State matching inst, ninst, flag.
728 // If one is found, returns it. If one is not found, allocates one,
729 // inserts it in the cache, and returns it.
CachedState(int * inst,int ninst,uint32_t flag)730 DFA::State* DFA::CachedState(int* inst, int ninst, uint32_t flag) {
731 //mutex_.AssertHeld();
732
733 // Look in the cache for a pre-existing state.
734 // We have to initialise the struct like this because otherwise
735 // MSVC will complain about the flexible array member. :(
736 State state;
737 state.inst_ = inst;
738 state.ninst_ = ninst;
739 state.flag_ = flag;
740 StateSet::iterator it = state_cache_.find(&state);
741 if (it != state_cache_.end()) {
742 if (ExtraDebug)
743 fprintf(stderr, " -cached-> %s\n", DumpState(*it).c_str());
744 return *it;
745 }
746
747 // Must have enough memory for new state.
748 // In addition to what we're going to allocate,
749 // the state cache hash table seems to incur about 40 bytes per
750 // State*, empirically.
751 const int kStateCacheOverhead = 40;
752 int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot
753 int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
754 ninst*sizeof(int);
755 if (mem_budget_ < mem + kStateCacheOverhead) {
756 mem_budget_ = -1;
757 return NULL;
758 }
759 mem_budget_ -= mem + kStateCacheOverhead;
760
761 // Allocate new state along with room for next_ and inst_.
762 char* space = std::allocator<char>().allocate(mem);
763 State* s = new (space) State;
764 (void) new (s->next_) std::atomic<State*>[nnext];
765 // Work around a unfortunate bug in older versions of libstdc++.
766 // (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=64658)
767 for (int i = 0; i < nnext; i++)
768 (void) new (s->next_ + i) std::atomic<State*>(NULL);
769 s->inst_ = new (s->next_ + nnext) int[ninst];
770 memmove(s->inst_, inst, ninst*sizeof s->inst_[0]);
771 s->ninst_ = ninst;
772 s->flag_ = flag;
773 if (ExtraDebug)
774 fprintf(stderr, " -> %s\n", DumpState(s).c_str());
775
776 // Put state in cache and return it.
777 state_cache_.insert(s);
778 return s;
779 }
780
781 // Clear the cache. Must hold cache_mutex_.w or be in destructor.
ClearCache()782 void DFA::ClearCache() {
783 StateSet::iterator begin = state_cache_.begin();
784 StateSet::iterator end = state_cache_.end();
785 while (begin != end) {
786 StateSet::iterator tmp = begin;
787 ++begin;
788 // Deallocate the blob of memory that we allocated in DFA::CachedState().
789 // We recompute mem in order to benefit from sized delete where possible.
790 int ninst = (*tmp)->ninst_;
791 int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot
792 int mem = sizeof(State) + nnext*sizeof(std::atomic<State*>) +
793 ninst*sizeof(int);
794 std::allocator<char>().deallocate(reinterpret_cast<char*>(*tmp), mem);
795 }
796 state_cache_.clear();
797 }
798
799 // Copies insts in state s to the work queue q.
StateToWorkq(State * s,Workq * q)800 void DFA::StateToWorkq(State* s, Workq* q) {
801 q->clear();
802 for (int i = 0; i < s->ninst_; i++) {
803 if (s->inst_[i] == Mark) {
804 q->mark();
805 } else if (s->inst_[i] == MatchSep) {
806 // Nothing after this is an instruction!
807 break;
808 } else {
809 // Explore from the head of the list.
810 AddToQueue(q, s->inst_[i], s->flag_ & kFlagEmptyMask);
811 }
812 }
813 }
814
815 // Adds ip to the work queue, following empty arrows according to flag.
AddToQueue(Workq * q,int id,uint32_t flag)816 void DFA::AddToQueue(Workq* q, int id, uint32_t flag) {
817
818 // Use stack_ to hold our stack of instructions yet to process.
819 // It was preallocated as follows:
820 // one entry per Capture;
821 // one entry per EmptyWidth; and
822 // one entry per Nop.
823 // This reflects the maximum number of stack pushes that each can
824 // perform. (Each instruction can be processed at most once.)
825 // When using marks, we also added nmark == prog_->size().
826 // (Otherwise, nmark == 0.)
827 int* stk = stack_.data();
828 int nstk = 0;
829
830 stk[nstk++] = id;
831 while (nstk > 0) {
832 DCHECK_LE(nstk, stack_.size());
833 id = stk[--nstk];
834
835 Loop:
836 if (id == Mark) {
837 q->mark();
838 continue;
839 }
840
841 if (id == 0)
842 continue;
843
844 // If ip is already on the queue, nothing to do.
845 // Otherwise add it. We don't actually keep all the
846 // ones that get added, but adding all of them here
847 // increases the likelihood of q->contains(id),
848 // reducing the amount of duplicated work.
849 if (q->contains(id))
850 continue;
851 q->insert_new(id);
852
853 // Process instruction.
854 Prog::Inst* ip = prog_->inst(id);
855 switch (ip->opcode()) {
856 default:
857 LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
858 break;
859
860 case kInstByteRange: // just save these on the queue
861 case kInstMatch:
862 if (ip->last())
863 break;
864 id = id+1;
865 goto Loop;
866
867 case kInstCapture: // DFA treats captures as no-ops.
868 case kInstNop:
869 if (!ip->last())
870 stk[nstk++] = id+1;
871
872 // If this instruction is the [00-FF]* loop at the beginning of
873 // a leftmost-longest unanchored search, separate with a Mark so
874 // that future threads (which will start farther to the right in
875 // the input string) are lower priority than current threads.
876 if (ip->opcode() == kInstNop && q->maxmark() > 0 &&
877 id == prog_->start_unanchored() && id != prog_->start())
878 stk[nstk++] = Mark;
879 id = ip->out();
880 goto Loop;
881
882 case kInstAltMatch:
883 DCHECK(!ip->last());
884 id = id+1;
885 goto Loop;
886
887 case kInstEmptyWidth:
888 if (!ip->last())
889 stk[nstk++] = id+1;
890
891 // Continue on if we have all the right flag bits.
892 if (ip->empty() & ~flag)
893 break;
894 id = ip->out();
895 goto Loop;
896 }
897 }
898 }
899
900 // Running of work queues. In the work queue, order matters:
901 // the queue is sorted in priority order. If instruction i comes before j,
902 // then the instructions that i produces during the run must come before
903 // the ones that j produces. In order to keep this invariant, all the
904 // work queue runners have to take an old queue to process and then
905 // also a new queue to fill in. It's not acceptable to add to the end of
906 // an existing queue, because new instructions will not end up in the
907 // correct position.
908
909 // Runs the work queue, processing the empty strings indicated by flag.
910 // For example, flag == kEmptyBeginLine|kEmptyEndLine means to match
911 // both ^ and $. It is important that callers pass all flags at once:
912 // processing both ^ and $ is not the same as first processing only ^
913 // and then processing only $. Doing the two-step sequence won't match
914 // ^$^$^$ but processing ^ and $ simultaneously will (and is the behavior
915 // exhibited by existing implementations).
RunWorkqOnEmptyString(Workq * oldq,Workq * newq,uint32_t flag)916 void DFA::RunWorkqOnEmptyString(Workq* oldq, Workq* newq, uint32_t flag) {
917 newq->clear();
918 for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
919 if (oldq->is_mark(*i))
920 AddToQueue(newq, Mark, flag);
921 else
922 AddToQueue(newq, *i, flag);
923 }
924 }
925
926 // Runs the work queue, processing the single byte c followed by any empty
927 // strings indicated by flag. For example, c == 'a' and flag == kEmptyEndLine,
928 // means to match c$. Sets the bool *ismatch to true if the end of the
929 // regular expression program has been reached (the regexp has matched).
RunWorkqOnByte(Workq * oldq,Workq * newq,int c,uint32_t flag,bool * ismatch)930 void DFA::RunWorkqOnByte(Workq* oldq, Workq* newq,
931 int c, uint32_t flag, bool* ismatch) {
932 //mutex_.AssertHeld();
933
934 newq->clear();
935 for (Workq::iterator i = oldq->begin(); i != oldq->end(); ++i) {
936 if (oldq->is_mark(*i)) {
937 if (*ismatch)
938 return;
939 newq->mark();
940 continue;
941 }
942 int id = *i;
943 Prog::Inst* ip = prog_->inst(id);
944 switch (ip->opcode()) {
945 default:
946 LOG(DFATAL) << "unhandled opcode: " << ip->opcode();
947 break;
948
949 case kInstFail: // never succeeds
950 case kInstCapture: // already followed
951 case kInstNop: // already followed
952 case kInstAltMatch: // already followed
953 case kInstEmptyWidth: // already followed
954 break;
955
956 case kInstByteRange: // can follow if c is in range
957 if (!ip->Matches(c))
958 break;
959 AddToQueue(newq, ip->out(), flag);
960 if (ip->hint() != 0) {
961 // We have a hint, but we must cancel out the
962 // increment that will occur after the break.
963 i += ip->hint() - 1;
964 } else {
965 // We have no hint, so we must find the end
966 // of the current list and then skip to it.
967 Prog::Inst* ip0 = ip;
968 while (!ip->last())
969 ++ip;
970 i += ip - ip0;
971 }
972 break;
973
974 case kInstMatch:
975 if (prog_->anchor_end() && c != kByteEndText &&
976 kind_ != Prog::kManyMatch)
977 break;
978 *ismatch = true;
979 if (kind_ == Prog::kFirstMatch) {
980 // Can stop processing work queue since we found a match.
981 return;
982 }
983 break;
984 }
985 }
986
987 if (ExtraDebug)
988 fprintf(stderr, "%s on %d[%#x] -> %s [%d]\n",
989 DumpWorkq(oldq).c_str(), c, flag, DumpWorkq(newq).c_str(), *ismatch);
990 }
991
992 // Processes input byte c in state, returning new state.
993 // Caller does not hold mutex.
RunStateOnByteUnlocked(State * state,int c)994 DFA::State* DFA::RunStateOnByteUnlocked(State* state, int c) {
995 // Keep only one RunStateOnByte going
996 // even if the DFA is being run by multiple threads.
997 MutexLock l(&mutex_);
998 return RunStateOnByte(state, c);
999 }
1000
1001 // Processes input byte c in state, returning new state.
RunStateOnByte(State * state,int c)1002 DFA::State* DFA::RunStateOnByte(State* state, int c) {
1003 //mutex_.AssertHeld();
1004
1005 if (state <= SpecialStateMax) {
1006 if (state == FullMatchState) {
1007 // It is convenient for routines like PossibleMatchRange
1008 // if we implement RunStateOnByte for FullMatchState:
1009 // once you get into this state you never get out,
1010 // so it's pretty easy.
1011 return FullMatchState;
1012 }
1013 if (state == DeadState) {
1014 LOG(DFATAL) << "DeadState in RunStateOnByte";
1015 return NULL;
1016 }
1017 if (state == NULL) {
1018 LOG(DFATAL) << "NULL state in RunStateOnByte";
1019 return NULL;
1020 }
1021 LOG(DFATAL) << "Unexpected special state in RunStateOnByte";
1022 return NULL;
1023 }
1024
1025 // If someone else already computed this, return it.
1026 State* ns = state->next_[ByteMap(c)].load(std::memory_order_relaxed);
1027 if (ns != NULL)
1028 return ns;
1029
1030 // Convert state into Workq.
1031 StateToWorkq(state, q0_);
1032
1033 // Flags marking the kinds of empty-width things (^ $ etc)
1034 // around this byte. Before the byte we have the flags recorded
1035 // in the State structure itself. After the byte we have
1036 // nothing yet (but that will change: read on).
1037 uint32_t needflag = state->flag_ >> kFlagNeedShift;
1038 uint32_t beforeflag = state->flag_ & kFlagEmptyMask;
1039 uint32_t oldbeforeflag = beforeflag;
1040 uint32_t afterflag = 0;
1041
1042 if (c == '\n') {
1043 // Insert implicit $ and ^ around \n
1044 beforeflag |= kEmptyEndLine;
1045 afterflag |= kEmptyBeginLine;
1046 }
1047
1048 if (c == kByteEndText) {
1049 // Insert implicit $ and \z before the fake "end text" byte.
1050 beforeflag |= kEmptyEndLine | kEmptyEndText;
1051 }
1052
1053 // The state flag kFlagLastWord says whether the last
1054 // byte processed was a word character. Use that info to
1055 // insert empty-width (non-)word boundaries.
1056 bool islastword = (state->flag_ & kFlagLastWord) != 0;
1057 bool isword = c != kByteEndText && Prog::IsWordChar(static_cast<uint8_t>(c));
1058 if (isword == islastword)
1059 beforeflag |= kEmptyNonWordBoundary;
1060 else
1061 beforeflag |= kEmptyWordBoundary;
1062
1063 // Okay, finally ready to run.
1064 // Only useful to rerun on empty string if there are new, useful flags.
1065 if (beforeflag & ~oldbeforeflag & needflag) {
1066 RunWorkqOnEmptyString(q0_, q1_, beforeflag);
1067 using std::swap;
1068 swap(q0_, q1_);
1069 }
1070 bool ismatch = false;
1071 RunWorkqOnByte(q0_, q1_, c, afterflag, &ismatch);
1072 using std::swap;
1073 swap(q0_, q1_);
1074
1075 // Save afterflag along with ismatch and isword in new state.
1076 uint32_t flag = afterflag;
1077 if (ismatch)
1078 flag |= kFlagMatch;
1079 if (isword)
1080 flag |= kFlagLastWord;
1081
1082 if (ismatch && kind_ == Prog::kManyMatch)
1083 ns = WorkqToCachedState(q0_, q1_, flag);
1084 else
1085 ns = WorkqToCachedState(q0_, NULL, flag);
1086
1087 // Flush ns before linking to it.
1088 // Write barrier before updating state->next_ so that the
1089 // main search loop can proceed without any locking, for speed.
1090 // (Otherwise it would need one mutex operation per input byte.)
1091 state->next_[ByteMap(c)].store(ns, std::memory_order_release);
1092 return ns;
1093 }
1094
1095
1096 //////////////////////////////////////////////////////////////////////
1097 // DFA cache reset.
1098
1099 // Reader-writer lock helper.
1100 //
1101 // The DFA uses a reader-writer mutex to protect the state graph itself.
1102 // Traversing the state graph requires holding the mutex for reading,
1103 // and discarding the state graph and starting over requires holding the
1104 // lock for writing. If a search needs to expand the graph but is out
1105 // of memory, it will need to drop its read lock and then acquire the
1106 // write lock. Since it cannot then atomically downgrade from write lock
1107 // to read lock, it runs the rest of the search holding the write lock.
1108 // (This probably helps avoid repeated contention, but really the decision
1109 // is forced by the Mutex interface.) It's a bit complicated to keep
1110 // track of whether the lock is held for reading or writing and thread
1111 // that through the search, so instead we encapsulate it in the RWLocker
1112 // and pass that around.
1113
1114 class DFA::RWLocker {
1115 public:
1116 explicit RWLocker(Mutex* mu);
1117 ~RWLocker();
1118
1119 // If the lock is only held for reading right now,
1120 // drop the read lock and re-acquire for writing.
1121 // Subsequent calls to LockForWriting are no-ops.
1122 // Notice that the lock is *released* temporarily.
1123 void LockForWriting();
1124
1125 private:
1126 Mutex* mu_;
1127 bool writing_;
1128
1129 RWLocker(const RWLocker&) = delete;
1130 RWLocker& operator=(const RWLocker&) = delete;
1131 };
1132
RWLocker(Mutex * mu)1133 DFA::RWLocker::RWLocker(Mutex* mu) : mu_(mu), writing_(false) {
1134 mu_->ReaderLock();
1135 }
1136
1137 // This function is marked as NO_THREAD_SAFETY_ANALYSIS because
1138 // the annotations don't support lock upgrade.
LockForWriting()1139 void DFA::RWLocker::LockForWriting() NO_THREAD_SAFETY_ANALYSIS {
1140 if (!writing_) {
1141 mu_->ReaderUnlock();
1142 mu_->WriterLock();
1143 writing_ = true;
1144 }
1145 }
1146
~RWLocker()1147 DFA::RWLocker::~RWLocker() {
1148 if (!writing_)
1149 mu_->ReaderUnlock();
1150 else
1151 mu_->WriterUnlock();
1152 }
1153
1154
1155 // When the DFA's State cache fills, we discard all the states in the
1156 // cache and start over. Many threads can be using and adding to the
1157 // cache at the same time, so we synchronize using the cache_mutex_
1158 // to keep from stepping on other threads. Specifically, all the
1159 // threads using the current cache hold cache_mutex_ for reading.
1160 // When a thread decides to flush the cache, it drops cache_mutex_
1161 // and then re-acquires it for writing. That ensures there are no
1162 // other threads accessing the cache anymore. The rest of the search
1163 // runs holding cache_mutex_ for writing, avoiding any contention
1164 // with or cache pollution caused by other threads.
1165
ResetCache(RWLocker * cache_lock)1166 void DFA::ResetCache(RWLocker* cache_lock) {
1167 // Re-acquire the cache_mutex_ for writing (exclusive use).
1168 cache_lock->LockForWriting();
1169
1170 hooks::GetDFAStateCacheResetHook()({
1171 state_budget_,
1172 state_cache_.size(),
1173 });
1174
1175 // Clear the cache, reset the memory budget.
1176 for (int i = 0; i < kMaxStart; i++)
1177 start_[i].start.store(NULL, std::memory_order_relaxed);
1178 ClearCache();
1179 mem_budget_ = state_budget_;
1180 }
1181
1182 // Typically, a couple States do need to be preserved across a cache
1183 // reset, like the State at the current point in the search.
1184 // The StateSaver class helps keep States across cache resets.
1185 // It makes a copy of the state's guts outside the cache (before the reset)
1186 // and then can be asked, after the reset, to recreate the State
1187 // in the new cache. For example, in a DFA method ("this" is a DFA):
1188 //
1189 // StateSaver saver(this, s);
1190 // ResetCache(cache_lock);
1191 // s = saver.Restore();
1192 //
1193 // The saver should always have room in the cache to re-create the state,
1194 // because resetting the cache locks out all other threads, and the cache
1195 // is known to have room for at least a couple states (otherwise the DFA
1196 // constructor fails).
1197
1198 class DFA::StateSaver {
1199 public:
1200 explicit StateSaver(DFA* dfa, State* state);
1201 ~StateSaver();
1202
1203 // Recreates and returns a state equivalent to the
1204 // original state passed to the constructor.
1205 // Returns NULL if the cache has filled, but
1206 // since the DFA guarantees to have room in the cache
1207 // for a couple states, should never return NULL
1208 // if used right after ResetCache.
1209 State* Restore();
1210
1211 private:
1212 DFA* dfa_; // the DFA to use
1213 int* inst_; // saved info from State
1214 int ninst_;
1215 uint32_t flag_;
1216 bool is_special_; // whether original state was special
1217 State* special_; // if is_special_, the original state
1218
1219 StateSaver(const StateSaver&) = delete;
1220 StateSaver& operator=(const StateSaver&) = delete;
1221 };
1222
StateSaver(DFA * dfa,State * state)1223 DFA::StateSaver::StateSaver(DFA* dfa, State* state) {
1224 dfa_ = dfa;
1225 if (state <= SpecialStateMax) {
1226 inst_ = NULL;
1227 ninst_ = 0;
1228 flag_ = 0;
1229 is_special_ = true;
1230 special_ = state;
1231 return;
1232 }
1233 is_special_ = false;
1234 special_ = NULL;
1235 flag_ = state->flag_;
1236 ninst_ = state->ninst_;
1237 inst_ = new int[ninst_];
1238 memmove(inst_, state->inst_, ninst_*sizeof inst_[0]);
1239 }
1240
~StateSaver()1241 DFA::StateSaver::~StateSaver() {
1242 if (!is_special_)
1243 delete[] inst_;
1244 }
1245
Restore()1246 DFA::State* DFA::StateSaver::Restore() {
1247 if (is_special_)
1248 return special_;
1249 MutexLock l(&dfa_->mutex_);
1250 State* s = dfa_->CachedState(inst_, ninst_, flag_);
1251 if (s == NULL)
1252 LOG(DFATAL) << "StateSaver failed to restore state.";
1253 return s;
1254 }
1255
1256
1257 //////////////////////////////////////////////////////////////////////
1258 //
1259 // DFA execution.
1260 //
1261 // The basic search loop is easy: start in a state s and then for each
1262 // byte c in the input, s = s->next[c].
1263 //
1264 // This simple description omits a few efficiency-driven complications.
1265 //
1266 // First, the State graph is constructed incrementally: it is possible
1267 // that s->next[c] is null, indicating that that state has not been
1268 // fully explored. In this case, RunStateOnByte must be invoked to
1269 // determine the next state, which is cached in s->next[c] to save
1270 // future effort. An alternative reason for s->next[c] to be null is
1271 // that the DFA has reached a so-called "dead state", in which any match
1272 // is no longer possible. In this case RunStateOnByte will return NULL
1273 // and the processing of the string can stop early.
1274 //
1275 // Second, a 256-element pointer array for s->next_ makes each State
1276 // quite large (2kB on 64-bit machines). Instead, dfa->bytemap_[]
1277 // maps from bytes to "byte classes" and then next_ only needs to have
1278 // as many pointers as there are byte classes. A byte class is simply a
1279 // range of bytes that the regexp never distinguishes between.
1280 // A regexp looking for a[abc] would have four byte ranges -- 0 to 'a'-1,
1281 // 'a', 'b' to 'c', and 'c' to 0xFF. The bytemap slows us a little bit
1282 // but in exchange we typically cut the size of a State (and thus our
1283 // memory footprint) by about 5-10x. The comments still refer to
1284 // s->next[c] for simplicity, but code should refer to s->next_[bytemap_[c]].
1285 //
1286 // Third, it is common for a DFA for an unanchored match to begin in a
1287 // state in which only one particular byte value can take the DFA to a
1288 // different state. That is, s->next[c] != s for only one c. In this
1289 // situation, the DFA can do better than executing the simple loop.
1290 // Instead, it can call memchr to search very quickly for the byte c.
1291 // Whether the start state has this property is determined during a
1292 // pre-compilation pass and the "can_prefix_accel" argument is set.
1293 //
1294 // Fourth, the desired behavior is to search for the leftmost-best match
1295 // (approximately, the same one that Perl would find), which is not
1296 // necessarily the match ending earliest in the string. Each time a
1297 // match is found, it must be noted, but the DFA must continue on in
1298 // hope of finding a higher-priority match. In some cases, the caller only
1299 // cares whether there is any match at all, not which one is found.
1300 // The "want_earliest_match" flag causes the search to stop at the first
1301 // match found.
1302 //
1303 // Fifth, one algorithm that uses the DFA needs it to run over the
1304 // input string backward, beginning at the end and ending at the beginning.
1305 // Passing false for the "run_forward" flag causes the DFA to run backward.
1306 //
1307 // The checks for these last three cases, which in a naive implementation
1308 // would be performed once per input byte, slow the general loop enough
1309 // to merit specialized versions of the search loop for each of the
1310 // eight possible settings of the three booleans. Rather than write
1311 // eight different functions, we write one general implementation and then
1312 // inline it to create the specialized ones.
1313 //
1314 // Note that matches are delayed by one byte, to make it easier to
1315 // accomodate match conditions depending on the next input byte (like $ and \b).
1316 // When s->next[c]->IsMatch(), it means that there is a match ending just
1317 // *before* byte c.
1318
1319 // The generic search loop. Searches text for a match, returning
1320 // the pointer to the end of the chosen match, or NULL if no match.
1321 // The bools are equal to the same-named variables in params, but
1322 // making them function arguments lets the inliner specialize
1323 // this function to each combination (see two paragraphs above).
InlinedSearchLoop(SearchParams * params,bool can_prefix_accel,bool want_earliest_match,bool run_forward)1324 inline bool DFA::InlinedSearchLoop(SearchParams* params,
1325 bool can_prefix_accel,
1326 bool want_earliest_match,
1327 bool run_forward) {
1328 State* start = params->start;
1329 const uint8_t* bp = BytePtr(params->text.data()); // start of text
1330 const uint8_t* p = bp; // text scanning point
1331 const uint8_t* ep = BytePtr(params->text.data() +
1332 params->text.size()); // end of text
1333 const uint8_t* resetp = NULL; // p at last cache reset
1334 if (!run_forward) {
1335 using std::swap;
1336 swap(p, ep);
1337 }
1338
1339 const uint8_t* bytemap = prog_->bytemap();
1340 const uint8_t* lastmatch = NULL; // most recent matching position in text
1341 bool matched = false;
1342
1343 State* s = start;
1344 if (ExtraDebug)
1345 fprintf(stderr, "@stx: %s\n", DumpState(s).c_str());
1346
1347 if (s->IsMatch()) {
1348 matched = true;
1349 lastmatch = p;
1350 if (ExtraDebug)
1351 fprintf(stderr, "match @stx! [%s]\n", DumpState(s).c_str());
1352 if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1353 for (int i = s->ninst_ - 1; i >= 0; i--) {
1354 int id = s->inst_[i];
1355 if (id == MatchSep)
1356 break;
1357 params->matches->insert(id);
1358 }
1359 }
1360 if (want_earliest_match) {
1361 params->ep = reinterpret_cast<const char*>(lastmatch);
1362 return true;
1363 }
1364 }
1365
1366 while (p != ep) {
1367 if (ExtraDebug)
1368 fprintf(stderr, "@%td: %s\n", p - bp, DumpState(s).c_str());
1369
1370 if (can_prefix_accel && s == start) {
1371 // In start state, only way out is to find the prefix,
1372 // so we use prefix accel (e.g. memchr) to skip ahead.
1373 // If not found, we can skip to the end of the string.
1374 p = BytePtr(prog_->PrefixAccel(p, ep - p));
1375 if (p == NULL) {
1376 p = ep;
1377 break;
1378 }
1379 }
1380
1381 int c;
1382 if (run_forward)
1383 c = *p++;
1384 else
1385 c = *--p;
1386
1387 // Note that multiple threads might be consulting
1388 // s->next_[bytemap[c]] simultaneously.
1389 // RunStateOnByte takes care of the appropriate locking,
1390 // including a memory barrier so that the unlocked access
1391 // (sometimes known as "double-checked locking") is safe.
1392 // The alternative would be either one DFA per thread
1393 // or one mutex operation per input byte.
1394 //
1395 // ns == DeadState means the state is known to be dead
1396 // (no more matches are possible).
1397 // ns == NULL means the state has not yet been computed
1398 // (need to call RunStateOnByteUnlocked).
1399 // RunStateOnByte returns ns == NULL if it is out of memory.
1400 // ns == FullMatchState means the rest of the string matches.
1401 //
1402 // Okay to use bytemap[] not ByteMap() here, because
1403 // c is known to be an actual byte and not kByteEndText.
1404
1405 State* ns = s->next_[bytemap[c]].load(std::memory_order_acquire);
1406 if (ns == NULL) {
1407 ns = RunStateOnByteUnlocked(s, c);
1408 if (ns == NULL) {
1409 // After we reset the cache, we hold cache_mutex exclusively,
1410 // so if resetp != NULL, it means we filled the DFA state
1411 // cache with this search alone (without any other threads).
1412 // Benchmarks show that doing a state computation on every
1413 // byte runs at about 0.2 MB/s, while the NFA (nfa.cc) can do the
1414 // same at about 2 MB/s. Unless we're processing an average
1415 // of 10 bytes per state computation, fail so that RE2 can
1416 // fall back to the NFA. However, RE2::Set cannot fall back,
1417 // so we just have to keep on keeping on in that case.
1418 if (dfa_should_bail_when_slow && resetp != NULL &&
1419 static_cast<size_t>(p - resetp) < 10*state_cache_.size() &&
1420 kind_ != Prog::kManyMatch) {
1421 params->failed = true;
1422 return false;
1423 }
1424 resetp = p;
1425
1426 // Prepare to save start and s across the reset.
1427 StateSaver save_start(this, start);
1428 StateSaver save_s(this, s);
1429
1430 // Discard all the States in the cache.
1431 ResetCache(params->cache_lock);
1432
1433 // Restore start and s so we can continue.
1434 if ((start = save_start.Restore()) == NULL ||
1435 (s = save_s.Restore()) == NULL) {
1436 // Restore already did LOG(DFATAL).
1437 params->failed = true;
1438 return false;
1439 }
1440 ns = RunStateOnByteUnlocked(s, c);
1441 if (ns == NULL) {
1442 LOG(DFATAL) << "RunStateOnByteUnlocked failed after ResetCache";
1443 params->failed = true;
1444 return false;
1445 }
1446 }
1447 }
1448 if (ns <= SpecialStateMax) {
1449 if (ns == DeadState) {
1450 params->ep = reinterpret_cast<const char*>(lastmatch);
1451 return matched;
1452 }
1453 // FullMatchState
1454 params->ep = reinterpret_cast<const char*>(ep);
1455 return true;
1456 }
1457
1458 s = ns;
1459 if (s->IsMatch()) {
1460 matched = true;
1461 // The DFA notices the match one byte late,
1462 // so adjust p before using it in the match.
1463 if (run_forward)
1464 lastmatch = p - 1;
1465 else
1466 lastmatch = p + 1;
1467 if (ExtraDebug)
1468 fprintf(stderr, "match @%td! [%s]\n", lastmatch - bp, DumpState(s).c_str());
1469 if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1470 for (int i = s->ninst_ - 1; i >= 0; i--) {
1471 int id = s->inst_[i];
1472 if (id == MatchSep)
1473 break;
1474 params->matches->insert(id);
1475 }
1476 }
1477 if (want_earliest_match) {
1478 params->ep = reinterpret_cast<const char*>(lastmatch);
1479 return true;
1480 }
1481 }
1482 }
1483
1484 // Process one more byte to see if it triggers a match.
1485 // (Remember, matches are delayed one byte.)
1486 if (ExtraDebug)
1487 fprintf(stderr, "@etx: %s\n", DumpState(s).c_str());
1488
1489 int lastbyte;
1490 if (run_forward) {
1491 if (params->text.end() == params->context.end())
1492 lastbyte = kByteEndText;
1493 else
1494 lastbyte = params->text.end()[0] & 0xFF;
1495 } else {
1496 if (params->text.begin() == params->context.begin())
1497 lastbyte = kByteEndText;
1498 else
1499 lastbyte = params->text.begin()[-1] & 0xFF;
1500 }
1501
1502 State* ns = s->next_[ByteMap(lastbyte)].load(std::memory_order_acquire);
1503 if (ns == NULL) {
1504 ns = RunStateOnByteUnlocked(s, lastbyte);
1505 if (ns == NULL) {
1506 StateSaver save_s(this, s);
1507 ResetCache(params->cache_lock);
1508 if ((s = save_s.Restore()) == NULL) {
1509 params->failed = true;
1510 return false;
1511 }
1512 ns = RunStateOnByteUnlocked(s, lastbyte);
1513 if (ns == NULL) {
1514 LOG(DFATAL) << "RunStateOnByteUnlocked failed after Reset";
1515 params->failed = true;
1516 return false;
1517 }
1518 }
1519 }
1520 if (ns <= SpecialStateMax) {
1521 if (ns == DeadState) {
1522 params->ep = reinterpret_cast<const char*>(lastmatch);
1523 return matched;
1524 }
1525 // FullMatchState
1526 params->ep = reinterpret_cast<const char*>(ep);
1527 return true;
1528 }
1529
1530 s = ns;
1531 if (s->IsMatch()) {
1532 matched = true;
1533 lastmatch = p;
1534 if (ExtraDebug)
1535 fprintf(stderr, "match @etx! [%s]\n", DumpState(s).c_str());
1536 if (params->matches != NULL && kind_ == Prog::kManyMatch) {
1537 for (int i = s->ninst_ - 1; i >= 0; i--) {
1538 int id = s->inst_[i];
1539 if (id == MatchSep)
1540 break;
1541 params->matches->insert(id);
1542 }
1543 }
1544 }
1545
1546 params->ep = reinterpret_cast<const char*>(lastmatch);
1547 return matched;
1548 }
1549
1550 // Inline specializations of the general loop.
SearchFFF(SearchParams * params)1551 bool DFA::SearchFFF(SearchParams* params) {
1552 return InlinedSearchLoop(params, 0, 0, 0);
1553 }
SearchFFT(SearchParams * params)1554 bool DFA::SearchFFT(SearchParams* params) {
1555 return InlinedSearchLoop(params, 0, 0, 1);
1556 }
SearchFTF(SearchParams * params)1557 bool DFA::SearchFTF(SearchParams* params) {
1558 return InlinedSearchLoop(params, 0, 1, 0);
1559 }
SearchFTT(SearchParams * params)1560 bool DFA::SearchFTT(SearchParams* params) {
1561 return InlinedSearchLoop(params, 0, 1, 1);
1562 }
SearchTFF(SearchParams * params)1563 bool DFA::SearchTFF(SearchParams* params) {
1564 return InlinedSearchLoop(params, 1, 0, 0);
1565 }
SearchTFT(SearchParams * params)1566 bool DFA::SearchTFT(SearchParams* params) {
1567 return InlinedSearchLoop(params, 1, 0, 1);
1568 }
SearchTTF(SearchParams * params)1569 bool DFA::SearchTTF(SearchParams* params) {
1570 return InlinedSearchLoop(params, 1, 1, 0);
1571 }
SearchTTT(SearchParams * params)1572 bool DFA::SearchTTT(SearchParams* params) {
1573 return InlinedSearchLoop(params, 1, 1, 1);
1574 }
1575
1576 // For debugging, calls the general code directly.
SlowSearchLoop(SearchParams * params)1577 bool DFA::SlowSearchLoop(SearchParams* params) {
1578 return InlinedSearchLoop(params,
1579 params->can_prefix_accel,
1580 params->want_earliest_match,
1581 params->run_forward);
1582 }
1583
1584 // For performance, calls the appropriate specialized version
1585 // of InlinedSearchLoop.
FastSearchLoop(SearchParams * params)1586 bool DFA::FastSearchLoop(SearchParams* params) {
1587 // Because the methods are private, the Searches array
1588 // cannot be declared at top level.
1589 static bool (DFA::*Searches[])(SearchParams*) = {
1590 &DFA::SearchFFF,
1591 &DFA::SearchFFT,
1592 &DFA::SearchFTF,
1593 &DFA::SearchFTT,
1594 &DFA::SearchTFF,
1595 &DFA::SearchTFT,
1596 &DFA::SearchTTF,
1597 &DFA::SearchTTT,
1598 };
1599
1600 int index = 4 * params->can_prefix_accel +
1601 2 * params->want_earliest_match +
1602 1 * params->run_forward;
1603 return (this->*Searches[index])(params);
1604 }
1605
1606
1607 // The discussion of DFA execution above ignored the question of how
1608 // to determine the initial state for the search loop. There are two
1609 // factors that influence the choice of start state.
1610 //
1611 // The first factor is whether the search is anchored or not.
1612 // The regexp program (Prog*) itself has
1613 // two different entry points: one for anchored searches and one for
1614 // unanchored searches. (The unanchored version starts with a leading ".*?"
1615 // and then jumps to the anchored one.)
1616 //
1617 // The second factor is where text appears in the larger context, which
1618 // determines which empty-string operators can be matched at the beginning
1619 // of execution. If text is at the very beginning of context, \A and ^ match.
1620 // Otherwise if text is at the beginning of a line, then ^ matches.
1621 // Otherwise it matters whether the character before text is a word character
1622 // or a non-word character.
1623 //
1624 // The two cases (unanchored vs not) and four cases (empty-string flags)
1625 // combine to make the eight cases recorded in the DFA's begin_text_[2],
1626 // begin_line_[2], after_wordchar_[2], and after_nonwordchar_[2] cached
1627 // StartInfos. The start state for each is filled in the first time it
1628 // is used for an actual search.
1629
1630 // Examines text, context, and anchored to determine the right start
1631 // state for the DFA search loop. Fills in params and returns true on success.
1632 // Returns false on failure.
AnalyzeSearch(SearchParams * params)1633 bool DFA::AnalyzeSearch(SearchParams* params) {
1634 const StringPiece& text = params->text;
1635 const StringPiece& context = params->context;
1636
1637 // Sanity check: make sure that text lies within context.
1638 if (text.begin() < context.begin() || text.end() > context.end()) {
1639 LOG(DFATAL) << "context does not contain text";
1640 params->start = DeadState;
1641 return true;
1642 }
1643
1644 // Determine correct search type.
1645 int start;
1646 uint32_t flags;
1647 if (params->run_forward) {
1648 if (text.begin() == context.begin()) {
1649 start = kStartBeginText;
1650 flags = kEmptyBeginText|kEmptyBeginLine;
1651 } else if (text.begin()[-1] == '\n') {
1652 start = kStartBeginLine;
1653 flags = kEmptyBeginLine;
1654 } else if (Prog::IsWordChar(text.begin()[-1] & 0xFF)) {
1655 start = kStartAfterWordChar;
1656 flags = kFlagLastWord;
1657 } else {
1658 start = kStartAfterNonWordChar;
1659 flags = 0;
1660 }
1661 } else {
1662 if (text.end() == context.end()) {
1663 start = kStartBeginText;
1664 flags = kEmptyBeginText|kEmptyBeginLine;
1665 } else if (text.end()[0] == '\n') {
1666 start = kStartBeginLine;
1667 flags = kEmptyBeginLine;
1668 } else if (Prog::IsWordChar(text.end()[0] & 0xFF)) {
1669 start = kStartAfterWordChar;
1670 flags = kFlagLastWord;
1671 } else {
1672 start = kStartAfterNonWordChar;
1673 flags = 0;
1674 }
1675 }
1676 if (params->anchored)
1677 start |= kStartAnchored;
1678 StartInfo* info = &start_[start];
1679
1680 // Try once without cache_lock for writing.
1681 // Try again after resetting the cache
1682 // (ResetCache will relock cache_lock for writing).
1683 if (!AnalyzeSearchHelper(params, info, flags)) {
1684 ResetCache(params->cache_lock);
1685 if (!AnalyzeSearchHelper(params, info, flags)) {
1686 LOG(DFATAL) << "Failed to analyze start state.";
1687 params->failed = true;
1688 return false;
1689 }
1690 }
1691
1692 params->start = info->start.load(std::memory_order_acquire);
1693
1694 // Even if we could prefix accel, we cannot do so when anchored and,
1695 // less obviously, we cannot do so when we are going to need flags.
1696 // This trick works only when there is a single byte that leads to a
1697 // different state!
1698 if (prog_->can_prefix_accel() &&
1699 !params->anchored &&
1700 params->start > SpecialStateMax &&
1701 params->start->flag_ >> kFlagNeedShift == 0)
1702 params->can_prefix_accel = true;
1703
1704 if (ExtraDebug)
1705 fprintf(stderr, "anchored=%d fwd=%d flags=%#x state=%s can_prefix_accel=%d\n",
1706 params->anchored, params->run_forward, flags,
1707 DumpState(params->start).c_str(), params->can_prefix_accel);
1708
1709 return true;
1710 }
1711
1712 // Fills in info if needed. Returns true on success, false on failure.
AnalyzeSearchHelper(SearchParams * params,StartInfo * info,uint32_t flags)1713 bool DFA::AnalyzeSearchHelper(SearchParams* params, StartInfo* info,
1714 uint32_t flags) {
1715 // Quick check.
1716 State* start = info->start.load(std::memory_order_acquire);
1717 if (start != NULL)
1718 return true;
1719
1720 MutexLock l(&mutex_);
1721 start = info->start.load(std::memory_order_relaxed);
1722 if (start != NULL)
1723 return true;
1724
1725 q0_->clear();
1726 AddToQueue(q0_,
1727 params->anchored ? prog_->start() : prog_->start_unanchored(),
1728 flags);
1729 start = WorkqToCachedState(q0_, NULL, flags);
1730 if (start == NULL)
1731 return false;
1732
1733 // Synchronize with "quick check" above.
1734 info->start.store(start, std::memory_order_release);
1735 return true;
1736 }
1737
1738 // The actual DFA search: calls AnalyzeSearch and then FastSearchLoop.
Search(const StringPiece & text,const StringPiece & context,bool anchored,bool want_earliest_match,bool run_forward,bool * failed,const char ** epp,SparseSet * matches)1739 bool DFA::Search(const StringPiece& text,
1740 const StringPiece& context,
1741 bool anchored,
1742 bool want_earliest_match,
1743 bool run_forward,
1744 bool* failed,
1745 const char** epp,
1746 SparseSet* matches) {
1747 *epp = NULL;
1748 if (!ok()) {
1749 *failed = true;
1750 return false;
1751 }
1752 *failed = false;
1753
1754 if (ExtraDebug) {
1755 fprintf(stderr, "\nprogram:\n%s\n", prog_->DumpUnanchored().c_str());
1756 fprintf(stderr, "text %s anchored=%d earliest=%d fwd=%d kind %d\n",
1757 std::string(text).c_str(), anchored, want_earliest_match, run_forward, kind_);
1758 }
1759
1760 RWLocker l(&cache_mutex_);
1761 SearchParams params(text, context, &l);
1762 params.anchored = anchored;
1763 params.want_earliest_match = want_earliest_match;
1764 params.run_forward = run_forward;
1765 params.matches = matches;
1766
1767 if (!AnalyzeSearch(¶ms)) {
1768 *failed = true;
1769 return false;
1770 }
1771 if (params.start == DeadState)
1772 return false;
1773 if (params.start == FullMatchState) {
1774 if (run_forward == want_earliest_match)
1775 *epp = text.data();
1776 else
1777 *epp = text.data() + text.size();
1778 return true;
1779 }
1780 if (ExtraDebug)
1781 fprintf(stderr, "start %s\n", DumpState(params.start).c_str());
1782 bool ret = FastSearchLoop(¶ms);
1783 if (params.failed) {
1784 *failed = true;
1785 return false;
1786 }
1787 *epp = params.ep;
1788 return ret;
1789 }
1790
GetDFA(MatchKind kind)1791 DFA* Prog::GetDFA(MatchKind kind) {
1792 // For a forward DFA, half the memory goes to each DFA.
1793 // However, if it is a "many match" DFA, then there is
1794 // no counterpart with which the memory must be shared.
1795 //
1796 // For a reverse DFA, all the memory goes to the
1797 // "longest match" DFA, because RE2 never does reverse
1798 // "first match" searches.
1799 if (kind == kFirstMatch) {
1800 std::call_once(dfa_first_once_, [](Prog* prog) {
1801 prog->dfa_first_ = new DFA(prog, kFirstMatch, prog->dfa_mem_ / 2);
1802 }, this);
1803 return dfa_first_;
1804 } else if (kind == kManyMatch) {
1805 std::call_once(dfa_first_once_, [](Prog* prog) {
1806 prog->dfa_first_ = new DFA(prog, kManyMatch, prog->dfa_mem_);
1807 }, this);
1808 return dfa_first_;
1809 } else {
1810 std::call_once(dfa_longest_once_, [](Prog* prog) {
1811 if (!prog->reversed_)
1812 prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_ / 2);
1813 else
1814 prog->dfa_longest_ = new DFA(prog, kLongestMatch, prog->dfa_mem_);
1815 }, this);
1816 return dfa_longest_;
1817 }
1818 }
1819
DeleteDFA(DFA * dfa)1820 void Prog::DeleteDFA(DFA* dfa) {
1821 delete dfa;
1822 }
1823
1824 // Executes the regexp program to search in text,
1825 // which itself is inside the larger context. (As a convenience,
1826 // passing a NULL context is equivalent to passing text.)
1827 // Returns true if a match is found, false if not.
1828 // If a match is found, fills in match0->end() to point at the end of the match
1829 // and sets match0->begin() to text.begin(), since the DFA can't track
1830 // where the match actually began.
1831 //
1832 // This is the only external interface (class DFA only exists in this file).
1833 //
SearchDFA(const StringPiece & text,const StringPiece & const_context,Anchor anchor,MatchKind kind,StringPiece * match0,bool * failed,SparseSet * matches)1834 bool Prog::SearchDFA(const StringPiece& text, const StringPiece& const_context,
1835 Anchor anchor, MatchKind kind, StringPiece* match0,
1836 bool* failed, SparseSet* matches) {
1837 *failed = false;
1838
1839 StringPiece context = const_context;
1840 if (context.data() == NULL)
1841 context = text;
1842 bool caret = anchor_start();
1843 bool dollar = anchor_end();
1844 if (reversed_) {
1845 using std::swap;
1846 swap(caret, dollar);
1847 }
1848 if (caret && context.begin() != text.begin())
1849 return false;
1850 if (dollar && context.end() != text.end())
1851 return false;
1852
1853 // Handle full match by running an anchored longest match
1854 // and then checking if it covers all of text.
1855 bool anchored = anchor == kAnchored || anchor_start() || kind == kFullMatch;
1856 bool endmatch = false;
1857 if (kind == kManyMatch) {
1858 // This is split out in order to avoid clobbering kind.
1859 } else if (kind == kFullMatch || anchor_end()) {
1860 endmatch = true;
1861 kind = kLongestMatch;
1862 }
1863
1864 // If the caller doesn't care where the match is (just whether one exists),
1865 // then we can stop at the very first match we find, the so-called
1866 // "earliest match".
1867 bool want_earliest_match = false;
1868 if (kind == kManyMatch) {
1869 // This is split out in order to avoid clobbering kind.
1870 if (matches == NULL) {
1871 want_earliest_match = true;
1872 }
1873 } else if (match0 == NULL && !endmatch) {
1874 want_earliest_match = true;
1875 kind = kLongestMatch;
1876 }
1877
1878 DFA* dfa = GetDFA(kind);
1879 const char* ep;
1880 bool matched = dfa->Search(text, context, anchored,
1881 want_earliest_match, !reversed_,
1882 failed, &ep, matches);
1883 if (*failed) {
1884 hooks::GetDFASearchFailureHook()({
1885 // Nothing yet...
1886 });
1887 return false;
1888 }
1889 if (!matched)
1890 return false;
1891 if (endmatch && ep != (reversed_ ? text.data() : text.data() + text.size()))
1892 return false;
1893
1894 // If caller cares, record the boundary of the match.
1895 // We only know where it ends, so use the boundary of text
1896 // as the beginning.
1897 if (match0) {
1898 if (reversed_)
1899 *match0 =
1900 StringPiece(ep, static_cast<size_t>(text.data() + text.size() - ep));
1901 else
1902 *match0 =
1903 StringPiece(text.data(), static_cast<size_t>(ep - text.data()));
1904 }
1905 return true;
1906 }
1907
1908 // Build out all states in DFA. Returns number of states.
BuildAllStates(const Prog::DFAStateCallback & cb)1909 int DFA::BuildAllStates(const Prog::DFAStateCallback& cb) {
1910 if (!ok())
1911 return 0;
1912
1913 // Pick out start state for unanchored search
1914 // at beginning of text.
1915 RWLocker l(&cache_mutex_);
1916 SearchParams params(StringPiece(), StringPiece(), &l);
1917 params.anchored = false;
1918 if (!AnalyzeSearch(¶ms) ||
1919 params.start == NULL ||
1920 params.start == DeadState)
1921 return 0;
1922
1923 // Add start state to work queue.
1924 // Note that any State* that we handle here must point into the cache,
1925 // so we can simply depend on pointer-as-a-number hashing and equality.
1926 std::unordered_map<State*, int> m;
1927 std::deque<State*> q;
1928 m.emplace(params.start, static_cast<int>(m.size()));
1929 q.push_back(params.start);
1930
1931 // Compute the input bytes needed to cover all of the next pointers.
1932 int nnext = prog_->bytemap_range() + 1; // + 1 for kByteEndText slot
1933 std::vector<int> input(nnext);
1934 for (int c = 0; c < 256; c++) {
1935 int b = prog_->bytemap()[c];
1936 while (c < 256-1 && prog_->bytemap()[c+1] == b)
1937 c++;
1938 input[b] = c;
1939 }
1940 input[prog_->bytemap_range()] = kByteEndText;
1941
1942 // Scratch space for the output.
1943 std::vector<int> output(nnext);
1944
1945 // Flood to expand every state.
1946 bool oom = false;
1947 while (!q.empty()) {
1948 State* s = q.front();
1949 q.pop_front();
1950 for (int c : input) {
1951 State* ns = RunStateOnByteUnlocked(s, c);
1952 if (ns == NULL) {
1953 oom = true;
1954 break;
1955 }
1956 if (ns == DeadState) {
1957 output[ByteMap(c)] = -1;
1958 continue;
1959 }
1960 if (m.find(ns) == m.end()) {
1961 m.emplace(ns, static_cast<int>(m.size()));
1962 q.push_back(ns);
1963 }
1964 output[ByteMap(c)] = m[ns];
1965 }
1966 if (cb)
1967 cb(oom ? NULL : output.data(),
1968 s == FullMatchState || s->IsMatch());
1969 if (oom)
1970 break;
1971 }
1972
1973 return static_cast<int>(m.size());
1974 }
1975
1976 // Build out all states in DFA for kind. Returns number of states.
BuildEntireDFA(MatchKind kind,const DFAStateCallback & cb)1977 int Prog::BuildEntireDFA(MatchKind kind, const DFAStateCallback& cb) {
1978 return GetDFA(kind)->BuildAllStates(cb);
1979 }
1980
TEST_dfa_should_bail_when_slow(bool b)1981 void Prog::TEST_dfa_should_bail_when_slow(bool b) {
1982 dfa_should_bail_when_slow = b;
1983 }
1984
1985 // Computes min and max for matching string.
1986 // Won't return strings bigger than maxlen.
PossibleMatchRange(std::string * min,std::string * max,int maxlen)1987 bool DFA::PossibleMatchRange(std::string* min, std::string* max, int maxlen) {
1988 if (!ok())
1989 return false;
1990
1991 // NOTE: if future users of PossibleMatchRange want more precision when
1992 // presented with infinitely repeated elements, consider making this a
1993 // parameter to PossibleMatchRange.
1994 static int kMaxEltRepetitions = 0;
1995
1996 // Keep track of the number of times we've visited states previously. We only
1997 // revisit a given state if it's part of a repeated group, so if the value
1998 // portion of the map tuple exceeds kMaxEltRepetitions we bail out and set
1999 // |*max| to |PrefixSuccessor(*max)|.
2000 //
2001 // Also note that previously_visited_states[UnseenStatePtr] will, in the STL
2002 // tradition, implicitly insert a '0' value at first use. We take advantage
2003 // of that property below.
2004 std::unordered_map<State*, int> previously_visited_states;
2005
2006 // Pick out start state for anchored search at beginning of text.
2007 RWLocker l(&cache_mutex_);
2008 SearchParams params(StringPiece(), StringPiece(), &l);
2009 params.anchored = true;
2010 if (!AnalyzeSearch(¶ms))
2011 return false;
2012 if (params.start == DeadState) { // No matching strings
2013 *min = "";
2014 *max = "";
2015 return true;
2016 }
2017 if (params.start == FullMatchState) // Every string matches: no max
2018 return false;
2019
2020 // The DFA is essentially a big graph rooted at params.start,
2021 // and paths in the graph correspond to accepted strings.
2022 // Each node in the graph has potentially 256+1 arrows
2023 // coming out, one for each byte plus the magic end of
2024 // text character kByteEndText.
2025
2026 // To find the smallest possible prefix of an accepted
2027 // string, we just walk the graph preferring to follow
2028 // arrows with the lowest bytes possible. To find the
2029 // largest possible prefix, we follow the largest bytes
2030 // possible.
2031
2032 // The test for whether there is an arrow from s on byte j is
2033 // ns = RunStateOnByteUnlocked(s, j);
2034 // if (ns == NULL)
2035 // return false;
2036 // if (ns != DeadState && ns->ninst > 0)
2037 // The RunStateOnByteUnlocked call asks the DFA to build out the graph.
2038 // It returns NULL only if the DFA has run out of memory,
2039 // in which case we can't be sure of anything.
2040 // The second check sees whether there was graph built
2041 // and whether it is interesting graph. Nodes might have
2042 // ns->ninst == 0 if they exist only to represent the fact
2043 // that a match was found on the previous byte.
2044
2045 // Build minimum prefix.
2046 State* s = params.start;
2047 min->clear();
2048 MutexLock lock(&mutex_);
2049 for (int i = 0; i < maxlen; i++) {
2050 if (previously_visited_states[s] > kMaxEltRepetitions)
2051 break;
2052 previously_visited_states[s]++;
2053
2054 // Stop if min is a match.
2055 State* ns = RunStateOnByte(s, kByteEndText);
2056 if (ns == NULL) // DFA out of memory
2057 return false;
2058 if (ns != DeadState && (ns == FullMatchState || ns->IsMatch()))
2059 break;
2060
2061 // Try to extend the string with low bytes.
2062 bool extended = false;
2063 for (int j = 0; j < 256; j++) {
2064 ns = RunStateOnByte(s, j);
2065 if (ns == NULL) // DFA out of memory
2066 return false;
2067 if (ns == FullMatchState ||
2068 (ns > SpecialStateMax && ns->ninst_ > 0)) {
2069 extended = true;
2070 min->append(1, static_cast<char>(j));
2071 s = ns;
2072 break;
2073 }
2074 }
2075 if (!extended)
2076 break;
2077 }
2078
2079 // Build maximum prefix.
2080 previously_visited_states.clear();
2081 s = params.start;
2082 max->clear();
2083 for (int i = 0; i < maxlen; i++) {
2084 if (previously_visited_states[s] > kMaxEltRepetitions)
2085 break;
2086 previously_visited_states[s] += 1;
2087
2088 // Try to extend the string with high bytes.
2089 bool extended = false;
2090 for (int j = 255; j >= 0; j--) {
2091 State* ns = RunStateOnByte(s, j);
2092 if (ns == NULL)
2093 return false;
2094 if (ns == FullMatchState ||
2095 (ns > SpecialStateMax && ns->ninst_ > 0)) {
2096 extended = true;
2097 max->append(1, static_cast<char>(j));
2098 s = ns;
2099 break;
2100 }
2101 }
2102 if (!extended) {
2103 // Done, no need for PrefixSuccessor.
2104 return true;
2105 }
2106 }
2107
2108 // Stopped while still adding to *max - round aaaaaaaaaa... to aaaa...b
2109 PrefixSuccessor(max);
2110
2111 // If there are no bytes left, we have no way to say "there is no maximum
2112 // string". We could make the interface more complicated and be able to
2113 // return "there is no maximum but here is a minimum", but that seems like
2114 // overkill -- the most common no-max case is all possible strings, so not
2115 // telling the caller that the empty string is the minimum match isn't a
2116 // great loss.
2117 if (max->empty())
2118 return false;
2119
2120 return true;
2121 }
2122
2123 // PossibleMatchRange for a Prog.
PossibleMatchRange(std::string * min,std::string * max,int maxlen)2124 bool Prog::PossibleMatchRange(std::string* min, std::string* max, int maxlen) {
2125 // Have to use dfa_longest_ to get all strings for full matches.
2126 // For example, (a|aa) never matches aa in first-match mode.
2127 return GetDFA(kLongestMatch)->PossibleMatchRange(min, max, maxlen);
2128 }
2129
2130 } // namespace re2
2131