• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * jchuff-neon.c - Huffman entropy encoding (32-bit Arm Neon)
3  *
4  * Copyright (C) 2020, Arm Limited.  All Rights Reserved.
5  *
6  * This software is provided 'as-is', without any express or implied
7  * warranty.  In no event will the authors be held liable for any damages
8  * arising from the use of this software.
9  *
10  * Permission is granted to anyone to use this software for any purpose,
11  * including commercial applications, and to alter it and redistribute it
12  * freely, subject to the following restrictions:
13  *
14  * 1. The origin of this software must not be misrepresented; you must not
15  *    claim that you wrote the original software. If you use this software
16  *    in a product, an acknowledgment in the product documentation would be
17  *    appreciated but is not required.
18  * 2. Altered source versions must be plainly marked as such, and must not be
19  *    misrepresented as being the original software.
20  * 3. This notice may not be removed or altered from any source distribution.
21  *
22  * NOTE: All referenced figures are from
23  * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
24  */
25 
26 #define JPEG_INTERNALS
27 #include "../../../jinclude.h"
28 #include "../../../jpeglib.h"
29 #include "../../../jsimd.h"
30 #include "../../../jdct.h"
31 #include "../../../jsimddct.h"
32 #include "../../jsimd.h"
33 #include "../jchuff.h"
34 #include "neon-compat.h"
35 
36 #include <limits.h>
37 
38 #include <arm_neon.h>
39 
40 
jsimd_huff_encode_one_block_neon(void * state,JOCTET * buffer,JCOEFPTR block,int last_dc_val,c_derived_tbl * dctbl,c_derived_tbl * actbl)41 JOCTET *jsimd_huff_encode_one_block_neon(void *state, JOCTET *buffer,
42                                          JCOEFPTR block, int last_dc_val,
43                                          c_derived_tbl *dctbl,
44                                          c_derived_tbl *actbl)
45 {
46   uint8_t block_nbits[DCTSIZE2];
47   uint16_t block_diff[DCTSIZE2];
48 
49   /* Load rows of coefficients from DCT block in zig-zag order. */
50 
51   /* Compute DC coefficient difference value. (F.1.1.5.1) */
52   int16x8_t row0 = vdupq_n_s16(block[0] - last_dc_val);
53   row0 = vld1q_lane_s16(block +  1, row0, 1);
54   row0 = vld1q_lane_s16(block +  8, row0, 2);
55   row0 = vld1q_lane_s16(block + 16, row0, 3);
56   row0 = vld1q_lane_s16(block +  9, row0, 4);
57   row0 = vld1q_lane_s16(block +  2, row0, 5);
58   row0 = vld1q_lane_s16(block +  3, row0, 6);
59   row0 = vld1q_lane_s16(block + 10, row0, 7);
60 
61   int16x8_t row1 = vld1q_dup_s16(block + 17);
62   row1 = vld1q_lane_s16(block + 24, row1, 1);
63   row1 = vld1q_lane_s16(block + 32, row1, 2);
64   row1 = vld1q_lane_s16(block + 25, row1, 3);
65   row1 = vld1q_lane_s16(block + 18, row1, 4);
66   row1 = vld1q_lane_s16(block + 11, row1, 5);
67   row1 = vld1q_lane_s16(block +  4, row1, 6);
68   row1 = vld1q_lane_s16(block +  5, row1, 7);
69 
70   int16x8_t row2 = vld1q_dup_s16(block + 12);
71   row2 = vld1q_lane_s16(block + 19, row2, 1);
72   row2 = vld1q_lane_s16(block + 26, row2, 2);
73   row2 = vld1q_lane_s16(block + 33, row2, 3);
74   row2 = vld1q_lane_s16(block + 40, row2, 4);
75   row2 = vld1q_lane_s16(block + 48, row2, 5);
76   row2 = vld1q_lane_s16(block + 41, row2, 6);
77   row2 = vld1q_lane_s16(block + 34, row2, 7);
78 
79   int16x8_t row3 = vld1q_dup_s16(block + 27);
80   row3 = vld1q_lane_s16(block + 20, row3, 1);
81   row3 = vld1q_lane_s16(block + 13, row3, 2);
82   row3 = vld1q_lane_s16(block +  6, row3, 3);
83   row3 = vld1q_lane_s16(block +  7, row3, 4);
84   row3 = vld1q_lane_s16(block + 14, row3, 5);
85   row3 = vld1q_lane_s16(block + 21, row3, 6);
86   row3 = vld1q_lane_s16(block + 28, row3, 7);
87 
88   int16x8_t abs_row0 = vabsq_s16(row0);
89   int16x8_t abs_row1 = vabsq_s16(row1);
90   int16x8_t abs_row2 = vabsq_s16(row2);
91   int16x8_t abs_row3 = vabsq_s16(row3);
92 
93   int16x8_t row0_lz = vclzq_s16(abs_row0);
94   int16x8_t row1_lz = vclzq_s16(abs_row1);
95   int16x8_t row2_lz = vclzq_s16(abs_row2);
96   int16x8_t row3_lz = vclzq_s16(abs_row3);
97 
98   /* Compute number of bits required to represent each coefficient. */
99   uint8x8_t row0_nbits = vsub_u8(vdup_n_u8(16),
100                                  vmovn_u16(vreinterpretq_u16_s16(row0_lz)));
101   uint8x8_t row1_nbits = vsub_u8(vdup_n_u8(16),
102                                  vmovn_u16(vreinterpretq_u16_s16(row1_lz)));
103   uint8x8_t row2_nbits = vsub_u8(vdup_n_u8(16),
104                                  vmovn_u16(vreinterpretq_u16_s16(row2_lz)));
105   uint8x8_t row3_nbits = vsub_u8(vdup_n_u8(16),
106                                  vmovn_u16(vreinterpretq_u16_s16(row3_lz)));
107 
108   vst1_u8(block_nbits + 0 * DCTSIZE, row0_nbits);
109   vst1_u8(block_nbits + 1 * DCTSIZE, row1_nbits);
110   vst1_u8(block_nbits + 2 * DCTSIZE, row2_nbits);
111   vst1_u8(block_nbits + 3 * DCTSIZE, row3_nbits);
112 
113   uint16x8_t row0_mask =
114     vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row0, 15)),
115               vnegq_s16(row0_lz));
116   uint16x8_t row1_mask =
117     vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row1, 15)),
118               vnegq_s16(row1_lz));
119   uint16x8_t row2_mask =
120     vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row2, 15)),
121               vnegq_s16(row2_lz));
122   uint16x8_t row3_mask =
123     vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row3, 15)),
124               vnegq_s16(row3_lz));
125 
126   uint16x8_t row0_diff = veorq_u16(vreinterpretq_u16_s16(abs_row0), row0_mask);
127   uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1), row1_mask);
128   uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2), row2_mask);
129   uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3), row3_mask);
130 
131   /* Store diff values for rows 0, 1, 2, and 3. */
132   vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff);
133   vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff);
134   vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff);
135   vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff);
136 
137   /* Load last four rows of coefficients from DCT block in zig-zag order. */
138   int16x8_t row4 = vld1q_dup_s16(block + 35);
139   row4 = vld1q_lane_s16(block + 42, row4, 1);
140   row4 = vld1q_lane_s16(block + 49, row4, 2);
141   row4 = vld1q_lane_s16(block + 56, row4, 3);
142   row4 = vld1q_lane_s16(block + 57, row4, 4);
143   row4 = vld1q_lane_s16(block + 50, row4, 5);
144   row4 = vld1q_lane_s16(block + 43, row4, 6);
145   row4 = vld1q_lane_s16(block + 36, row4, 7);
146 
147   int16x8_t row5 = vld1q_dup_s16(block + 29);
148   row5 = vld1q_lane_s16(block + 22, row5, 1);
149   row5 = vld1q_lane_s16(block + 15, row5, 2);
150   row5 = vld1q_lane_s16(block + 23, row5, 3);
151   row5 = vld1q_lane_s16(block + 30, row5, 4);
152   row5 = vld1q_lane_s16(block + 37, row5, 5);
153   row5 = vld1q_lane_s16(block + 44, row5, 6);
154   row5 = vld1q_lane_s16(block + 51, row5, 7);
155 
156   int16x8_t row6 = vld1q_dup_s16(block + 58);
157   row6 = vld1q_lane_s16(block + 59, row6, 1);
158   row6 = vld1q_lane_s16(block + 52, row6, 2);
159   row6 = vld1q_lane_s16(block + 45, row6, 3);
160   row6 = vld1q_lane_s16(block + 38, row6, 4);
161   row6 = vld1q_lane_s16(block + 31, row6, 5);
162   row6 = vld1q_lane_s16(block + 39, row6, 6);
163   row6 = vld1q_lane_s16(block + 46, row6, 7);
164 
165   int16x8_t row7 = vld1q_dup_s16(block + 53);
166   row7 = vld1q_lane_s16(block + 60, row7, 1);
167   row7 = vld1q_lane_s16(block + 61, row7, 2);
168   row7 = vld1q_lane_s16(block + 54, row7, 3);
169   row7 = vld1q_lane_s16(block + 47, row7, 4);
170   row7 = vld1q_lane_s16(block + 55, row7, 5);
171   row7 = vld1q_lane_s16(block + 62, row7, 6);
172   row7 = vld1q_lane_s16(block + 63, row7, 7);
173 
174   int16x8_t abs_row4 = vabsq_s16(row4);
175   int16x8_t abs_row5 = vabsq_s16(row5);
176   int16x8_t abs_row6 = vabsq_s16(row6);
177   int16x8_t abs_row7 = vabsq_s16(row7);
178 
179   int16x8_t row4_lz = vclzq_s16(abs_row4);
180   int16x8_t row5_lz = vclzq_s16(abs_row5);
181   int16x8_t row6_lz = vclzq_s16(abs_row6);
182   int16x8_t row7_lz = vclzq_s16(abs_row7);
183 
184   /* Compute number of bits required to represent each coefficient. */
185   uint8x8_t row4_nbits = vsub_u8(vdup_n_u8(16),
186                                  vmovn_u16(vreinterpretq_u16_s16(row4_lz)));
187   uint8x8_t row5_nbits = vsub_u8(vdup_n_u8(16),
188                                  vmovn_u16(vreinterpretq_u16_s16(row5_lz)));
189   uint8x8_t row6_nbits = vsub_u8(vdup_n_u8(16),
190                                  vmovn_u16(vreinterpretq_u16_s16(row6_lz)));
191   uint8x8_t row7_nbits = vsub_u8(vdup_n_u8(16),
192                                  vmovn_u16(vreinterpretq_u16_s16(row7_lz)));
193 
194   vst1_u8(block_nbits + 4 * DCTSIZE, row4_nbits);
195   vst1_u8(block_nbits + 5 * DCTSIZE, row5_nbits);
196   vst1_u8(block_nbits + 6 * DCTSIZE, row6_nbits);
197   vst1_u8(block_nbits + 7 * DCTSIZE, row7_nbits);
198 
199   uint16x8_t row4_mask =
200     vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row4, 15)),
201               vnegq_s16(row4_lz));
202   uint16x8_t row5_mask =
203     vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row5, 15)),
204               vnegq_s16(row5_lz));
205   uint16x8_t row6_mask =
206     vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row6, 15)),
207               vnegq_s16(row6_lz));
208   uint16x8_t row7_mask =
209     vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row7, 15)),
210               vnegq_s16(row7_lz));
211 
212   uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4), row4_mask);
213   uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5), row5_mask);
214   uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6), row6_mask);
215   uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7), row7_mask);
216 
217   /* Store diff values for rows 4, 5, 6, and 7. */
218   vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff);
219   vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff);
220   vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff);
221   vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff);
222 
223   /* Construct bitmap to accelerate encoding of AC coefficients.  A set bit
224    * means that the corresponding coefficient != 0.
225    */
226   uint8x8_t row0_nbits_gt0 = vcgt_u8(row0_nbits, vdup_n_u8(0));
227   uint8x8_t row1_nbits_gt0 = vcgt_u8(row1_nbits, vdup_n_u8(0));
228   uint8x8_t row2_nbits_gt0 = vcgt_u8(row2_nbits, vdup_n_u8(0));
229   uint8x8_t row3_nbits_gt0 = vcgt_u8(row3_nbits, vdup_n_u8(0));
230   uint8x8_t row4_nbits_gt0 = vcgt_u8(row4_nbits, vdup_n_u8(0));
231   uint8x8_t row5_nbits_gt0 = vcgt_u8(row5_nbits, vdup_n_u8(0));
232   uint8x8_t row6_nbits_gt0 = vcgt_u8(row6_nbits, vdup_n_u8(0));
233   uint8x8_t row7_nbits_gt0 = vcgt_u8(row7_nbits, vdup_n_u8(0));
234 
235   /* { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 } */
236   const uint8x8_t bitmap_mask =
237     vreinterpret_u8_u64(vmov_n_u64(0x0102040810204080));
238 
239   row0_nbits_gt0 = vand_u8(row0_nbits_gt0, bitmap_mask);
240   row1_nbits_gt0 = vand_u8(row1_nbits_gt0, bitmap_mask);
241   row2_nbits_gt0 = vand_u8(row2_nbits_gt0, bitmap_mask);
242   row3_nbits_gt0 = vand_u8(row3_nbits_gt0, bitmap_mask);
243   row4_nbits_gt0 = vand_u8(row4_nbits_gt0, bitmap_mask);
244   row5_nbits_gt0 = vand_u8(row5_nbits_gt0, bitmap_mask);
245   row6_nbits_gt0 = vand_u8(row6_nbits_gt0, bitmap_mask);
246   row7_nbits_gt0 = vand_u8(row7_nbits_gt0, bitmap_mask);
247 
248   uint8x8_t bitmap_rows_10 = vpadd_u8(row1_nbits_gt0, row0_nbits_gt0);
249   uint8x8_t bitmap_rows_32 = vpadd_u8(row3_nbits_gt0, row2_nbits_gt0);
250   uint8x8_t bitmap_rows_54 = vpadd_u8(row5_nbits_gt0, row4_nbits_gt0);
251   uint8x8_t bitmap_rows_76 = vpadd_u8(row7_nbits_gt0, row6_nbits_gt0);
252   uint8x8_t bitmap_rows_3210 = vpadd_u8(bitmap_rows_32, bitmap_rows_10);
253   uint8x8_t bitmap_rows_7654 = vpadd_u8(bitmap_rows_76, bitmap_rows_54);
254   uint8x8_t bitmap = vpadd_u8(bitmap_rows_7654, bitmap_rows_3210);
255 
256   /* Shift left to remove DC bit. */
257   bitmap = vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(bitmap), 1));
258   /* Move bitmap to 32-bit scalar registers. */
259   uint32_t bitmap_1_32 = vget_lane_u32(vreinterpret_u32_u8(bitmap), 1);
260   uint32_t bitmap_33_63 = vget_lane_u32(vreinterpret_u32_u8(bitmap), 0);
261 
262   /* Set up state and bit buffer for output bitstream. */
263   working_state *state_ptr = (working_state *)state;
264   int free_bits = state_ptr->cur.free_bits;
265   size_t put_buffer = state_ptr->cur.put_buffer;
266 
267   /* Encode DC coefficient. */
268 
269   unsigned int nbits = block_nbits[0];
270   /* Emit Huffman-coded symbol and additional diff bits. */
271   unsigned int diff = block_diff[0];
272   PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits], diff)
273 
274   /* Encode AC coefficients. */
275 
276   unsigned int r = 0;  /* r = run length of zeros */
277   unsigned int i = 1;  /* i = number of coefficients encoded */
278   /* Code and size information for a run length of 16 zero coefficients */
279   const unsigned int code_0xf0 = actbl->ehufco[0xf0];
280   const unsigned int size_0xf0 = actbl->ehufsi[0xf0];
281 
282   while (bitmap_1_32 != 0) {
283     r = BUILTIN_CLZ(bitmap_1_32);
284     i += r;
285     bitmap_1_32 <<= r;
286     nbits = block_nbits[i];
287     diff = block_diff[i];
288     while (r > 15) {
289       /* If run length > 15, emit special run-length-16 codes. */
290       PUT_BITS(code_0xf0, size_0xf0)
291       r -= 16;
292     }
293     /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */
294     unsigned int rs = (r << 4) + nbits;
295     PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff)
296     i++;
297     bitmap_1_32 <<= 1;
298   }
299 
300   r = 33 - i;
301   i = 33;
302 
303   while (bitmap_33_63 != 0) {
304     unsigned int leading_zeros = BUILTIN_CLZ(bitmap_33_63);
305     r += leading_zeros;
306     i += leading_zeros;
307     bitmap_33_63 <<= leading_zeros;
308     nbits = block_nbits[i];
309     diff = block_diff[i];
310     while (r > 15) {
311       /* If run length > 15, emit special run-length-16 codes. */
312       PUT_BITS(code_0xf0, size_0xf0)
313       r -= 16;
314     }
315     /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */
316     unsigned int rs = (r << 4) + nbits;
317     PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff)
318     r = 0;
319     i++;
320     bitmap_33_63 <<= 1;
321   }
322 
323   /* If the last coefficient(s) were zero, emit an end-of-block (EOB) code.
324    * The value of RS for the EOB code is 0.
325    */
326   if (i != 64) {
327     PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0])
328   }
329 
330   state_ptr->cur.put_buffer = put_buffer;
331   state_ptr->cur.free_bits = free_bits;
332 
333   return buffer;
334 }
335