1; 2; jidctflt.asm - floating-point IDCT (SSE & MMX) 3; 4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB 5; Copyright (C) 2016, D. R. Commander. 6; 7; Based on the x86 SIMD extension for IJG JPEG library 8; Copyright (C) 1999-2006, MIYASAKA Masaru. 9; For conditions of distribution and use, see copyright notice in jsimdext.inc 10; 11; This file should be assembled with NASM (Netwide Assembler), 12; can *not* be assembled with Microsoft's MASM or any compatible 13; assembler (including Borland's Turbo Assembler). 14; NASM is available from http://nasm.sourceforge.net/ or 15; http://sourceforge.net/project/showfiles.php?group_id=6208 16; 17; This file contains a floating-point implementation of the inverse DCT 18; (Discrete Cosine Transform). The following code is based directly on 19; the IJG's original jidctflt.c; see the jidctflt.c for more details. 20 21%include "jsimdext.inc" 22%include "jdct.inc" 23 24; -------------------------------------------------------------------------- 25 26%macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) 27 shufps %1, %2, 0x44 28%endmacro 29 30%macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) 31 shufps %1, %2, 0xEE 32%endmacro 33 34; -------------------------------------------------------------------------- 35 SECTION SEG_CONST 36 37 alignz 32 38 GLOBAL_DATA(jconst_idct_float_sse) 39 40EXTN(jconst_idct_float_sse): 41 42PD_1_414 times 4 dd 1.414213562373095048801689 43PD_1_847 times 4 dd 1.847759065022573512256366 44PD_1_082 times 4 dd 1.082392200292393968799446 45PD_M2_613 times 4 dd -2.613125929752753055713286 46PD_0_125 times 4 dd 0.125 ; 1/8 47PB_CENTERJSAMP times 8 db CENTERJSAMPLE 48 49 alignz 32 50 51; -------------------------------------------------------------------------- 52 SECTION SEG_TEXT 53 BITS 32 54; 55; Perform dequantization and inverse DCT on one block of coefficients. 56; 57; GLOBAL(void) 58; jsimd_idct_float_sse(void *dct_table, JCOEFPTR coef_block, 59; JSAMPARRAY output_buf, JDIMENSION output_col) 60; 61 62%define dct_table(b) (b) + 8 ; void *dct_table 63%define coef_block(b) (b) + 12 ; JCOEFPTR coef_block 64%define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf 65%define output_col(b) (b) + 20 ; JDIMENSION output_col 66 67%define original_ebp ebp + 0 68%define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD 69 ; xmmword wk[WK_NUM] 70%define WK_NUM 2 71%define workspace wk(0) - DCTSIZE2 * SIZEOF_FAST_FLOAT 72 ; FAST_FLOAT workspace[DCTSIZE2] 73 74 align 32 75 GLOBAL_FUNCTION(jsimd_idct_float_sse) 76 77EXTN(jsimd_idct_float_sse): 78 push ebp 79 mov eax, esp ; eax = original ebp 80 sub esp, byte 4 81 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits 82 mov [esp], eax 83 mov ebp, esp ; ebp = aligned ebp 84 lea esp, [workspace] 85 push ebx 86; push ecx ; need not be preserved 87; push edx ; need not be preserved 88 push esi 89 push edi 90 91 get_GOT ebx ; get GOT address 92 93 ; ---- Pass 1: process columns from input, store into work array. 94 95; mov eax, [original_ebp] 96 mov edx, POINTER [dct_table(eax)] ; quantptr 97 mov esi, JCOEFPTR [coef_block(eax)] ; inptr 98 lea edi, [workspace] ; FAST_FLOAT *wsptr 99 mov ecx, DCTSIZE/4 ; ctr 100 alignx 16, 7 101.columnloop: 102%ifndef NO_ZERO_COLUMN_TEST_FLOAT_SSE 103 mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] 104 or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] 105 jnz near .columnDCT 106 107 movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] 108 movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] 109 por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] 110 por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] 111 por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] 112 por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] 113 por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] 114 por mm1, mm0 115 packsswb mm1, mm1 116 movd eax, mm1 117 test eax, eax 118 jnz short .columnDCT 119 120 ; -- AC terms all zero 121 122 movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] 123 124 punpckhwd mm1, mm0 ; mm1=(** 02 ** 03) 125 punpcklwd mm0, mm0 ; mm0=(00 00 01 01) 126 psrad mm1, (DWORD_BIT-WORD_BIT) ; mm1=in0H=(02 03) 127 psrad mm0, (DWORD_BIT-WORD_BIT) ; mm0=in0L=(00 01) 128 cvtpi2ps xmm3, mm1 ; xmm3=(02 03 ** **) 129 cvtpi2ps xmm0, mm0 ; xmm0=(00 01 ** **) 130 movlhps xmm0, xmm3 ; xmm0=in0=(00 01 02 03) 131 132 mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 133 134 movaps xmm1, xmm0 135 movaps xmm2, xmm0 136 movaps xmm3, xmm0 137 138 shufps xmm0, xmm0, 0x00 ; xmm0=(00 00 00 00) 139 shufps xmm1, xmm1, 0x55 ; xmm1=(01 01 01 01) 140 shufps xmm2, xmm2, 0xAA ; xmm2=(02 02 02 02) 141 shufps xmm3, xmm3, 0xFF ; xmm3=(03 03 03 03) 142 143 movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm0 144 movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm0 145 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm1 146 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm1 147 movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm2 148 movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm2 149 movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm3 150 movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3 151 jmp near .nextcolumn 152 alignx 16, 7 153%endif 154.columnDCT: 155 156 ; -- Even part 157 158 movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] 159 movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] 160 movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] 161 movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] 162 163 punpckhwd mm4, mm0 ; mm4=(** 02 ** 03) 164 punpcklwd mm0, mm0 ; mm0=(00 00 01 01) 165 punpckhwd mm5, mm1 ; mm5=(** 22 ** 23) 166 punpcklwd mm1, mm1 ; mm1=(20 20 21 21) 167 168 psrad mm4, (DWORD_BIT-WORD_BIT) ; mm4=in0H=(02 03) 169 psrad mm0, (DWORD_BIT-WORD_BIT) ; mm0=in0L=(00 01) 170 cvtpi2ps xmm4, mm4 ; xmm4=(02 03 ** **) 171 cvtpi2ps xmm0, mm0 ; xmm0=(00 01 ** **) 172 psrad mm5, (DWORD_BIT-WORD_BIT) ; mm5=in2H=(22 23) 173 psrad mm1, (DWORD_BIT-WORD_BIT) ; mm1=in2L=(20 21) 174 cvtpi2ps xmm5, mm5 ; xmm5=(22 23 ** **) 175 cvtpi2ps xmm1, mm1 ; xmm1=(20 21 ** **) 176 177 punpckhwd mm6, mm2 ; mm6=(** 42 ** 43) 178 punpcklwd mm2, mm2 ; mm2=(40 40 41 41) 179 punpckhwd mm7, mm3 ; mm7=(** 62 ** 63) 180 punpcklwd mm3, mm3 ; mm3=(60 60 61 61) 181 182 psrad mm6, (DWORD_BIT-WORD_BIT) ; mm6=in4H=(42 43) 183 psrad mm2, (DWORD_BIT-WORD_BIT) ; mm2=in4L=(40 41) 184 cvtpi2ps xmm6, mm6 ; xmm6=(42 43 ** **) 185 cvtpi2ps xmm2, mm2 ; xmm2=(40 41 ** **) 186 psrad mm7, (DWORD_BIT-WORD_BIT) ; mm7=in6H=(62 63) 187 psrad mm3, (DWORD_BIT-WORD_BIT) ; mm3=in6L=(60 61) 188 cvtpi2ps xmm7, mm7 ; xmm7=(62 63 ** **) 189 cvtpi2ps xmm3, mm3 ; xmm3=(60 61 ** **) 190 191 movlhps xmm0, xmm4 ; xmm0=in0=(00 01 02 03) 192 movlhps xmm1, xmm5 ; xmm1=in2=(20 21 22 23) 193 mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 194 mulps xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 195 196 movlhps xmm2, xmm6 ; xmm2=in4=(40 41 42 43) 197 movlhps xmm3, xmm7 ; xmm3=in6=(60 61 62 63) 198 mulps xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 199 mulps xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 200 201 movaps xmm4, xmm0 202 movaps xmm5, xmm1 203 subps xmm0, xmm2 ; xmm0=tmp11 204 subps xmm1, xmm3 205 addps xmm4, xmm2 ; xmm4=tmp10 206 addps xmm5, xmm3 ; xmm5=tmp13 207 208 mulps xmm1, [GOTOFF(ebx,PD_1_414)] 209 subps xmm1, xmm5 ; xmm1=tmp12 210 211 movaps xmm6, xmm4 212 movaps xmm7, xmm0 213 subps xmm4, xmm5 ; xmm4=tmp3 214 subps xmm0, xmm1 ; xmm0=tmp2 215 addps xmm6, xmm5 ; xmm6=tmp0 216 addps xmm7, xmm1 ; xmm7=tmp1 217 218 movaps XMMWORD [wk(1)], xmm4 ; tmp3 219 movaps XMMWORD [wk(0)], xmm0 ; tmp2 220 221 ; -- Odd part 222 223 movq mm4, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] 224 movq mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] 225 movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] 226 movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] 227 228 punpckhwd mm6, mm4 ; mm6=(** 12 ** 13) 229 punpcklwd mm4, mm4 ; mm4=(10 10 11 11) 230 punpckhwd mm2, mm0 ; mm2=(** 32 ** 33) 231 punpcklwd mm0, mm0 ; mm0=(30 30 31 31) 232 233 psrad mm6, (DWORD_BIT-WORD_BIT) ; mm6=in1H=(12 13) 234 psrad mm4, (DWORD_BIT-WORD_BIT) ; mm4=in1L=(10 11) 235 cvtpi2ps xmm4, mm6 ; xmm4=(12 13 ** **) 236 cvtpi2ps xmm2, mm4 ; xmm2=(10 11 ** **) 237 psrad mm2, (DWORD_BIT-WORD_BIT) ; mm2=in3H=(32 33) 238 psrad mm0, (DWORD_BIT-WORD_BIT) ; mm0=in3L=(30 31) 239 cvtpi2ps xmm0, mm2 ; xmm0=(32 33 ** **) 240 cvtpi2ps xmm3, mm0 ; xmm3=(30 31 ** **) 241 242 punpckhwd mm7, mm5 ; mm7=(** 52 ** 53) 243 punpcklwd mm5, mm5 ; mm5=(50 50 51 51) 244 punpckhwd mm3, mm1 ; mm3=(** 72 ** 73) 245 punpcklwd mm1, mm1 ; mm1=(70 70 71 71) 246 247 movlhps xmm2, xmm4 ; xmm2=in1=(10 11 12 13) 248 movlhps xmm3, xmm0 ; xmm3=in3=(30 31 32 33) 249 250 psrad mm7, (DWORD_BIT-WORD_BIT) ; mm7=in5H=(52 53) 251 psrad mm5, (DWORD_BIT-WORD_BIT) ; mm5=in5L=(50 51) 252 cvtpi2ps xmm4, mm7 ; xmm4=(52 53 ** **) 253 cvtpi2ps xmm5, mm5 ; xmm5=(50 51 ** **) 254 psrad mm3, (DWORD_BIT-WORD_BIT) ; mm3=in7H=(72 73) 255 psrad mm1, (DWORD_BIT-WORD_BIT) ; mm1=in7L=(70 71) 256 cvtpi2ps xmm0, mm3 ; xmm0=(72 73 ** **) 257 cvtpi2ps xmm1, mm1 ; xmm1=(70 71 ** **) 258 259 mulps xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 260 mulps xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 261 262 movlhps xmm5, xmm4 ; xmm5=in5=(50 51 52 53) 263 movlhps xmm1, xmm0 ; xmm1=in7=(70 71 72 73) 264 mulps xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 265 mulps xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_FLOAT_MULT_TYPE)] 266 267 movaps xmm4, xmm2 268 movaps xmm0, xmm5 269 addps xmm2, xmm1 ; xmm2=z11 270 addps xmm5, xmm3 ; xmm5=z13 271 subps xmm4, xmm1 ; xmm4=z12 272 subps xmm0, xmm3 ; xmm0=z10 273 274 movaps xmm1, xmm2 275 subps xmm2, xmm5 276 addps xmm1, xmm5 ; xmm1=tmp7 277 278 mulps xmm2, [GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11 279 280 movaps xmm3, xmm0 281 addps xmm0, xmm4 282 mulps xmm0, [GOTOFF(ebx,PD_1_847)] ; xmm0=z5 283 mulps xmm3, [GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930) 284 mulps xmm4, [GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200) 285 addps xmm3, xmm0 ; xmm3=tmp12 286 subps xmm4, xmm0 ; xmm4=tmp10 287 288 ; -- Final output stage 289 290 subps xmm3, xmm1 ; xmm3=tmp6 291 movaps xmm5, xmm6 292 movaps xmm0, xmm7 293 addps xmm6, xmm1 ; xmm6=data0=(00 01 02 03) 294 addps xmm7, xmm3 ; xmm7=data1=(10 11 12 13) 295 subps xmm5, xmm1 ; xmm5=data7=(70 71 72 73) 296 subps xmm0, xmm3 ; xmm0=data6=(60 61 62 63) 297 subps xmm2, xmm3 ; xmm2=tmp5 298 299 movaps xmm1, xmm6 ; transpose coefficients(phase 1) 300 unpcklps xmm6, xmm7 ; xmm6=(00 10 01 11) 301 unpckhps xmm1, xmm7 ; xmm1=(02 12 03 13) 302 movaps xmm3, xmm0 ; transpose coefficients(phase 1) 303 unpcklps xmm0, xmm5 ; xmm0=(60 70 61 71) 304 unpckhps xmm3, xmm5 ; xmm3=(62 72 63 73) 305 306 movaps xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 307 movaps xmm5, XMMWORD [wk(1)] ; xmm5=tmp3 308 309 movaps XMMWORD [wk(0)], xmm0 ; wk(0)=(60 70 61 71) 310 movaps XMMWORD [wk(1)], xmm3 ; wk(1)=(62 72 63 73) 311 312 addps xmm4, xmm2 ; xmm4=tmp4 313 movaps xmm0, xmm7 314 movaps xmm3, xmm5 315 addps xmm7, xmm2 ; xmm7=data2=(20 21 22 23) 316 addps xmm5, xmm4 ; xmm5=data4=(40 41 42 43) 317 subps xmm0, xmm2 ; xmm0=data5=(50 51 52 53) 318 subps xmm3, xmm4 ; xmm3=data3=(30 31 32 33) 319 320 movaps xmm2, xmm7 ; transpose coefficients(phase 1) 321 unpcklps xmm7, xmm3 ; xmm7=(20 30 21 31) 322 unpckhps xmm2, xmm3 ; xmm2=(22 32 23 33) 323 movaps xmm4, xmm5 ; transpose coefficients(phase 1) 324 unpcklps xmm5, xmm0 ; xmm5=(40 50 41 51) 325 unpckhps xmm4, xmm0 ; xmm4=(42 52 43 53) 326 327 movaps xmm3, xmm6 ; transpose coefficients(phase 2) 328 unpcklps2 xmm6, xmm7 ; xmm6=(00 10 20 30) 329 unpckhps2 xmm3, xmm7 ; xmm3=(01 11 21 31) 330 movaps xmm0, xmm1 ; transpose coefficients(phase 2) 331 unpcklps2 xmm1, xmm2 ; xmm1=(02 12 22 32) 332 unpckhps2 xmm0, xmm2 ; xmm0=(03 13 23 33) 333 334 movaps xmm7, XMMWORD [wk(0)] ; xmm7=(60 70 61 71) 335 movaps xmm2, XMMWORD [wk(1)] ; xmm2=(62 72 63 73) 336 337 movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm6 338 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm3 339 movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm1 340 movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm0 341 342 movaps xmm6, xmm5 ; transpose coefficients(phase 2) 343 unpcklps2 xmm5, xmm7 ; xmm5=(40 50 60 70) 344 unpckhps2 xmm6, xmm7 ; xmm6=(41 51 61 71) 345 movaps xmm3, xmm4 ; transpose coefficients(phase 2) 346 unpcklps2 xmm4, xmm2 ; xmm4=(42 52 62 72) 347 unpckhps2 xmm3, xmm2 ; xmm3=(43 53 63 73) 348 349 movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm5 350 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm6 351 movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm4 352 movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3 353 354.nextcolumn: 355 add esi, byte 4*SIZEOF_JCOEF ; coef_block 356 add edx, byte 4*SIZEOF_FLOAT_MULT_TYPE ; quantptr 357 add edi, 4*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr 358 dec ecx ; ctr 359 jnz near .columnloop 360 361 ; -- Prefetch the next coefficient block 362 363 prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32] 364 prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32] 365 prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32] 366 prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32] 367 368 ; ---- Pass 2: process rows from work array, store into output array. 369 370 mov eax, [original_ebp] 371 lea esi, [workspace] ; FAST_FLOAT *wsptr 372 mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) 373 mov eax, JDIMENSION [output_col(eax)] 374 mov ecx, DCTSIZE/4 ; ctr 375 alignx 16, 7 376.rowloop: 377 378 ; -- Even part 379 380 movaps xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] 381 movaps xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_FAST_FLOAT)] 382 movaps xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_FAST_FLOAT)] 383 movaps xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_FAST_FLOAT)] 384 385 movaps xmm4, xmm0 386 movaps xmm5, xmm1 387 subps xmm0, xmm2 ; xmm0=tmp11 388 subps xmm1, xmm3 389 addps xmm4, xmm2 ; xmm4=tmp10 390 addps xmm5, xmm3 ; xmm5=tmp13 391 392 mulps xmm1, [GOTOFF(ebx,PD_1_414)] 393 subps xmm1, xmm5 ; xmm1=tmp12 394 395 movaps xmm6, xmm4 396 movaps xmm7, xmm0 397 subps xmm4, xmm5 ; xmm4=tmp3 398 subps xmm0, xmm1 ; xmm0=tmp2 399 addps xmm6, xmm5 ; xmm6=tmp0 400 addps xmm7, xmm1 ; xmm7=tmp1 401 402 movaps XMMWORD [wk(1)], xmm4 ; tmp3 403 movaps XMMWORD [wk(0)], xmm0 ; tmp2 404 405 ; -- Odd part 406 407 movaps xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] 408 movaps xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_FAST_FLOAT)] 409 movaps xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_FAST_FLOAT)] 410 movaps xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_FAST_FLOAT)] 411 412 movaps xmm4, xmm2 413 movaps xmm0, xmm5 414 addps xmm2, xmm1 ; xmm2=z11 415 addps xmm5, xmm3 ; xmm5=z13 416 subps xmm4, xmm1 ; xmm4=z12 417 subps xmm0, xmm3 ; xmm0=z10 418 419 movaps xmm1, xmm2 420 subps xmm2, xmm5 421 addps xmm1, xmm5 ; xmm1=tmp7 422 423 mulps xmm2, [GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11 424 425 movaps xmm3, xmm0 426 addps xmm0, xmm4 427 mulps xmm0, [GOTOFF(ebx,PD_1_847)] ; xmm0=z5 428 mulps xmm3, [GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930) 429 mulps xmm4, [GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200) 430 addps xmm3, xmm0 ; xmm3=tmp12 431 subps xmm4, xmm0 ; xmm4=tmp10 432 433 ; -- Final output stage 434 435 subps xmm3, xmm1 ; xmm3=tmp6 436 movaps xmm5, xmm6 437 movaps xmm0, xmm7 438 addps xmm6, xmm1 ; xmm6=data0=(00 10 20 30) 439 addps xmm7, xmm3 ; xmm7=data1=(01 11 21 31) 440 subps xmm5, xmm1 ; xmm5=data7=(07 17 27 37) 441 subps xmm0, xmm3 ; xmm0=data6=(06 16 26 36) 442 subps xmm2, xmm3 ; xmm2=tmp5 443 444 movaps xmm1, [GOTOFF(ebx,PD_0_125)] ; xmm1=[PD_0_125] 445 446 mulps xmm6, xmm1 ; descale(1/8) 447 mulps xmm7, xmm1 ; descale(1/8) 448 mulps xmm5, xmm1 ; descale(1/8) 449 mulps xmm0, xmm1 ; descale(1/8) 450 451 movhlps xmm3, xmm6 452 movhlps xmm1, xmm7 453 cvtps2pi mm0, xmm6 ; round to int32, mm0=data0L=(00 10) 454 cvtps2pi mm1, xmm7 ; round to int32, mm1=data1L=(01 11) 455 cvtps2pi mm2, xmm3 ; round to int32, mm2=data0H=(20 30) 456 cvtps2pi mm3, xmm1 ; round to int32, mm3=data1H=(21 31) 457 packssdw mm0, mm2 ; mm0=data0=(00 10 20 30) 458 packssdw mm1, mm3 ; mm1=data1=(01 11 21 31) 459 460 movhlps xmm6, xmm5 461 movhlps xmm7, xmm0 462 cvtps2pi mm4, xmm5 ; round to int32, mm4=data7L=(07 17) 463 cvtps2pi mm5, xmm0 ; round to int32, mm5=data6L=(06 16) 464 cvtps2pi mm6, xmm6 ; round to int32, mm6=data7H=(27 37) 465 cvtps2pi mm7, xmm7 ; round to int32, mm7=data6H=(26 36) 466 packssdw mm4, mm6 ; mm4=data7=(07 17 27 37) 467 packssdw mm5, mm7 ; mm5=data6=(06 16 26 36) 468 469 packsswb mm0, mm5 ; mm0=(00 10 20 30 06 16 26 36) 470 packsswb mm1, mm4 ; mm1=(01 11 21 31 07 17 27 37) 471 472 movaps xmm3, XMMWORD [wk(0)] ; xmm3=tmp2 473 movaps xmm1, XMMWORD [wk(1)] ; xmm1=tmp3 474 475 movaps xmm6, [GOTOFF(ebx,PD_0_125)] ; xmm6=[PD_0_125] 476 477 addps xmm4, xmm2 ; xmm4=tmp4 478 movaps xmm5, xmm3 479 movaps xmm0, xmm1 480 addps xmm3, xmm2 ; xmm3=data2=(02 12 22 32) 481 addps xmm1, xmm4 ; xmm1=data4=(04 14 24 34) 482 subps xmm5, xmm2 ; xmm5=data5=(05 15 25 35) 483 subps xmm0, xmm4 ; xmm0=data3=(03 13 23 33) 484 485 mulps xmm3, xmm6 ; descale(1/8) 486 mulps xmm1, xmm6 ; descale(1/8) 487 mulps xmm5, xmm6 ; descale(1/8) 488 mulps xmm0, xmm6 ; descale(1/8) 489 490 movhlps xmm7, xmm3 491 movhlps xmm2, xmm1 492 cvtps2pi mm2, xmm3 ; round to int32, mm2=data2L=(02 12) 493 cvtps2pi mm3, xmm1 ; round to int32, mm3=data4L=(04 14) 494 cvtps2pi mm6, xmm7 ; round to int32, mm6=data2H=(22 32) 495 cvtps2pi mm7, xmm2 ; round to int32, mm7=data4H=(24 34) 496 packssdw mm2, mm6 ; mm2=data2=(02 12 22 32) 497 packssdw mm3, mm7 ; mm3=data4=(04 14 24 34) 498 499 movhlps xmm4, xmm5 500 movhlps xmm6, xmm0 501 cvtps2pi mm5, xmm5 ; round to int32, mm5=data5L=(05 15) 502 cvtps2pi mm4, xmm0 ; round to int32, mm4=data3L=(03 13) 503 cvtps2pi mm6, xmm4 ; round to int32, mm6=data5H=(25 35) 504 cvtps2pi mm7, xmm6 ; round to int32, mm7=data3H=(23 33) 505 packssdw mm5, mm6 ; mm5=data5=(05 15 25 35) 506 packssdw mm4, mm7 ; mm4=data3=(03 13 23 33) 507 508 movq mm6, [GOTOFF(ebx,PB_CENTERJSAMP)] ; mm6=[PB_CENTERJSAMP] 509 510 packsswb mm2, mm3 ; mm2=(02 12 22 32 04 14 24 34) 511 packsswb mm4, mm5 ; mm4=(03 13 23 33 05 15 25 35) 512 513 paddb mm0, mm6 514 paddb mm1, mm6 515 paddb mm2, mm6 516 paddb mm4, mm6 517 518 movq mm7, mm0 ; transpose coefficients(phase 1) 519 punpcklbw mm0, mm1 ; mm0=(00 01 10 11 20 21 30 31) 520 punpckhbw mm7, mm1 ; mm7=(06 07 16 17 26 27 36 37) 521 movq mm3, mm2 ; transpose coefficients(phase 1) 522 punpcklbw mm2, mm4 ; mm2=(02 03 12 13 22 23 32 33) 523 punpckhbw mm3, mm4 ; mm3=(04 05 14 15 24 25 34 35) 524 525 movq mm5, mm0 ; transpose coefficients(phase 2) 526 punpcklwd mm0, mm2 ; mm0=(00 01 02 03 10 11 12 13) 527 punpckhwd mm5, mm2 ; mm5=(20 21 22 23 30 31 32 33) 528 movq mm6, mm3 ; transpose coefficients(phase 2) 529 punpcklwd mm3, mm7 ; mm3=(04 05 06 07 14 15 16 17) 530 punpckhwd mm6, mm7 ; mm6=(24 25 26 27 34 35 36 37) 531 532 movq mm1, mm0 ; transpose coefficients(phase 3) 533 punpckldq mm0, mm3 ; mm0=(00 01 02 03 04 05 06 07) 534 punpckhdq mm1, mm3 ; mm1=(10 11 12 13 14 15 16 17) 535 movq mm4, mm5 ; transpose coefficients(phase 3) 536 punpckldq mm5, mm6 ; mm5=(20 21 22 23 24 25 26 27) 537 punpckhdq mm4, mm6 ; mm4=(30 31 32 33 34 35 36 37) 538 539 pushpic ebx ; save GOT address 540 541 mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] 542 mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] 543 movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm0 544 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1 545 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] 546 mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW] 547 movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5 548 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm4 549 550 poppic ebx ; restore GOT address 551 552 add esi, byte 4*SIZEOF_FAST_FLOAT ; wsptr 553 add edi, byte 4*SIZEOF_JSAMPROW 554 dec ecx ; ctr 555 jnz near .rowloop 556 557 emms ; empty MMX state 558 559 pop edi 560 pop esi 561; pop edx ; need not be preserved 562; pop ecx ; need not be preserved 563 pop ebx 564 mov esp, ebp ; esp <- aligned ebp 565 pop esp ; esp <- original ebp 566 pop ebp 567 ret 568 569; For some reason, the OS X linker does not honor the request to align the 570; segment unless we do this. 571 align 32 572