• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1;
2; jquant.asm - sample data conversion and quantization (MMX)
3;
4; Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
5; Copyright (C) 2016, D. R. Commander.
6;
7; Based on the x86 SIMD extension for IJG JPEG library
8; Copyright (C) 1999-2006, MIYASAKA Masaru.
9; For conditions of distribution and use, see copyright notice in jsimdext.inc
10;
11; This file should be assembled with NASM (Netwide Assembler),
12; can *not* be assembled with Microsoft's MASM or any compatible
13; assembler (including Borland's Turbo Assembler).
14; NASM is available from http://nasm.sourceforge.net/ or
15; http://sourceforge.net/project/showfiles.php?group_id=6208
16
17%include "jsimdext.inc"
18%include "jdct.inc"
19
20; --------------------------------------------------------------------------
21    SECTION     SEG_TEXT
22    BITS        32
23;
24; Load data into workspace, applying unsigned->signed conversion
25;
26; GLOBAL(void)
27; jsimd_convsamp_mmx(JSAMPARRAY sample_data, JDIMENSION start_col,
28;                    DCTELEM *workspace);
29;
30
31%define sample_data  ebp + 8            ; JSAMPARRAY sample_data
32%define start_col    ebp + 12           ; JDIMENSION start_col
33%define workspace    ebp + 16           ; DCTELEM *workspace
34
35    align       32
36    GLOBAL_FUNCTION(jsimd_convsamp_mmx)
37
38EXTN(jsimd_convsamp_mmx):
39    push        ebp
40    mov         ebp, esp
41    push        ebx
42;   push        ecx                     ; need not be preserved
43;   push        edx                     ; need not be preserved
44    push        esi
45    push        edi
46
47    pxor        mm6, mm6                ; mm6=(all 0's)
48    pcmpeqw     mm7, mm7
49    psllw       mm7, 7                  ; mm7={0xFF80 0xFF80 0xFF80 0xFF80}
50
51    mov         esi, JSAMPARRAY [sample_data]  ; (JSAMPROW *)
52    mov         eax, JDIMENSION [start_col]
53    mov         edi, POINTER [workspace]       ; (DCTELEM *)
54    mov         ecx, DCTSIZE/4
55    alignx      16, 7
56.convloop:
57    mov         ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW]  ; (JSAMPLE *)
58    mov         edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW]  ; (JSAMPLE *)
59
60    movq        mm0, MMWORD [ebx+eax*SIZEOF_JSAMPLE]   ; mm0=(01234567)
61    movq        mm1, MMWORD [edx+eax*SIZEOF_JSAMPLE]   ; mm1=(89ABCDEF)
62
63    mov         ebx, JSAMPROW [esi+2*SIZEOF_JSAMPROW]  ; (JSAMPLE *)
64    mov         edx, JSAMPROW [esi+3*SIZEOF_JSAMPROW]  ; (JSAMPLE *)
65
66    movq        mm2, MMWORD [ebx+eax*SIZEOF_JSAMPLE]   ; mm2=(GHIJKLMN)
67    movq        mm3, MMWORD [edx+eax*SIZEOF_JSAMPLE]   ; mm3=(OPQRSTUV)
68
69    movq        mm4, mm0
70    punpcklbw   mm0, mm6                ; mm0=(0123)
71    punpckhbw   mm4, mm6                ; mm4=(4567)
72    movq        mm5, mm1
73    punpcklbw   mm1, mm6                ; mm1=(89AB)
74    punpckhbw   mm5, mm6                ; mm5=(CDEF)
75
76    paddw       mm0, mm7
77    paddw       mm4, mm7
78    paddw       mm1, mm7
79    paddw       mm5, mm7
80
81    movq        MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0
82    movq        MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm4
83    movq        MMWORD [MMBLOCK(1,0,edi,SIZEOF_DCTELEM)], mm1
84    movq        MMWORD [MMBLOCK(1,1,edi,SIZEOF_DCTELEM)], mm5
85
86    movq        mm0, mm2
87    punpcklbw   mm2, mm6                ; mm2=(GHIJ)
88    punpckhbw   mm0, mm6                ; mm0=(KLMN)
89    movq        mm4, mm3
90    punpcklbw   mm3, mm6                ; mm3=(OPQR)
91    punpckhbw   mm4, mm6                ; mm4=(STUV)
92
93    paddw       mm2, mm7
94    paddw       mm0, mm7
95    paddw       mm3, mm7
96    paddw       mm4, mm7
97
98    movq        MMWORD [MMBLOCK(2,0,edi,SIZEOF_DCTELEM)], mm2
99    movq        MMWORD [MMBLOCK(2,1,edi,SIZEOF_DCTELEM)], mm0
100    movq        MMWORD [MMBLOCK(3,0,edi,SIZEOF_DCTELEM)], mm3
101    movq        MMWORD [MMBLOCK(3,1,edi,SIZEOF_DCTELEM)], mm4
102
103    add         esi, byte 4*SIZEOF_JSAMPROW
104    add         edi, byte 4*DCTSIZE*SIZEOF_DCTELEM
105    dec         ecx
106    jnz         short .convloop
107
108    emms                                ; empty MMX state
109
110    pop         edi
111    pop         esi
112;   pop         edx                     ; need not be preserved
113;   pop         ecx                     ; need not be preserved
114    pop         ebx
115    pop         ebp
116    ret
117
118; --------------------------------------------------------------------------
119;
120; Quantize/descale the coefficients, and store into coef_block
121;
122; This implementation is based on an algorithm described in
123;   "How to optimize for the Pentium family of microprocessors"
124;   (http://www.agner.org/assem/).
125;
126; GLOBAL(void)
127; jsimd_quantize_mmx(JCOEFPTR coef_block, DCTELEM *divisors,
128;                    DCTELEM *workspace);
129;
130
131%define RECIPROCAL(m, n, b) \
132  MMBLOCK(DCTSIZE * 0 + (m), (n), (b), SIZEOF_DCTELEM)
133%define CORRECTION(m, n, b) \
134  MMBLOCK(DCTSIZE * 1 + (m), (n), (b), SIZEOF_DCTELEM)
135%define SCALE(m, n, b) \
136  MMBLOCK(DCTSIZE * 2 + (m), (n), (b), SIZEOF_DCTELEM)
137%define SHIFT(m, n, b) \
138  MMBLOCK(DCTSIZE * 3 + (m), (n), (b), SIZEOF_DCTELEM)
139
140%define coef_block  ebp + 8             ; JCOEFPTR coef_block
141%define divisors    ebp + 12            ; DCTELEM *divisors
142%define workspace   ebp + 16            ; DCTELEM *workspace
143
144    align       32
145    GLOBAL_FUNCTION(jsimd_quantize_mmx)
146
147EXTN(jsimd_quantize_mmx):
148    push        ebp
149    mov         ebp, esp
150;   push        ebx                     ; unused
151;   push        ecx                     ; unused
152;   push        edx                     ; need not be preserved
153    push        esi
154    push        edi
155
156    mov         esi, POINTER [workspace]
157    mov         edx, POINTER [divisors]
158    mov         edi, JCOEFPTR [coef_block]
159    mov         ah, 2
160    alignx      16, 7
161.quantloop1:
162    mov         al, DCTSIZE2/8/2
163    alignx      16, 7
164.quantloop2:
165    movq        mm2, MMWORD [MMBLOCK(0,0,esi,SIZEOF_DCTELEM)]
166    movq        mm3, MMWORD [MMBLOCK(0,1,esi,SIZEOF_DCTELEM)]
167
168    movq        mm0, mm2
169    movq        mm1, mm3
170
171    psraw       mm2, (WORD_BIT-1)       ; -1 if value < 0, 0 otherwise
172    psraw       mm3, (WORD_BIT-1)
173
174    pxor        mm0, mm2                ; val = -val
175    pxor        mm1, mm3
176    psubw       mm0, mm2
177    psubw       mm1, mm3
178
179    ;
180    ; MMX is an annoyingly crappy instruction set. It has two
181    ; misfeatures that are causing problems here:
182    ;
183    ; - All multiplications are signed.
184    ;
185    ; - The second operand for the shifts is not treated as packed.
186    ;
187    ;
188    ; We work around the first problem by implementing this algorithm:
189    ;
190    ; unsigned long unsigned_multiply(unsigned short x, unsigned short y)
191    ; {
192    ;   enum { SHORT_BIT = 16 };
193    ;   signed short sx = (signed short)x;
194    ;   signed short sy = (signed short)y;
195    ;   signed long sz;
196    ;
197    ;   sz = (long)sx * (long)sy;    /* signed multiply */
198    ;
199    ;   if (sx < 0) sz += (long)sy << SHORT_BIT;
200    ;   if (sy < 0) sz += (long)sx << SHORT_BIT;
201    ;
202    ;   return (unsigned long)sz;
203    ; }
204    ;
205    ; (note that a negative sx adds _sy_ and vice versa)
206    ;
207    ; For the second problem, we replace the shift by a multiplication.
208    ; Unfortunately that means we have to deal with the signed issue again.
209    ;
210
211    paddw       mm0, MMWORD [CORRECTION(0,0,edx)]  ; correction + roundfactor
212    paddw       mm1, MMWORD [CORRECTION(0,1,edx)]
213
214    movq        mm4, mm0                ; store current value for later
215    movq        mm5, mm1
216    pmulhw      mm0, MMWORD [RECIPROCAL(0,0,edx)]  ; reciprocal
217    pmulhw      mm1, MMWORD [RECIPROCAL(0,1,edx)]
218    paddw       mm0, mm4  ; reciprocal is always negative (MSB=1),
219    paddw       mm1, mm5  ; so we always need to add the initial value
220                          ; (input value is never negative as we
221                          ; inverted it at the start of this routine)
222
223    ; here it gets a bit tricky as both scale
224    ; and mm0/mm1 can be negative
225    movq        mm6, MMWORD [SCALE(0,0,edx)]  ; scale
226    movq        mm7, MMWORD [SCALE(0,1,edx)]
227    movq        mm4, mm0
228    movq        mm5, mm1
229    pmulhw      mm0, mm6
230    pmulhw      mm1, mm7
231
232    psraw       mm6, (WORD_BIT-1)       ; determine if scale is negative
233    psraw       mm7, (WORD_BIT-1)
234
235    pand        mm6, mm4                ; and add input if it is
236    pand        mm7, mm5
237    paddw       mm0, mm6
238    paddw       mm1, mm7
239
240    psraw       mm4, (WORD_BIT-1)       ; then check if negative input
241    psraw       mm5, (WORD_BIT-1)
242
243    pand        mm4, MMWORD [SCALE(0,0,edx)]  ; and add scale if it is
244    pand        mm5, MMWORD [SCALE(0,1,edx)]
245    paddw       mm0, mm4
246    paddw       mm1, mm5
247
248    pxor        mm0, mm2                ; val = -val
249    pxor        mm1, mm3
250    psubw       mm0, mm2
251    psubw       mm1, mm3
252
253    movq        MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0
254    movq        MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm1
255
256    add         esi, byte 8*SIZEOF_DCTELEM
257    add         edx, byte 8*SIZEOF_DCTELEM
258    add         edi, byte 8*SIZEOF_JCOEF
259    dec         al
260    jnz         near .quantloop2
261    dec         ah
262    jnz         near .quantloop1        ; to avoid branch misprediction
263
264    emms                                ; empty MMX state
265
266    pop         edi
267    pop         esi
268;   pop         edx                     ; need not be preserved
269;   pop         ecx                     ; unused
270;   pop         ebx                     ; unused
271    pop         ebp
272    ret
273
274; For some reason, the OS X linker does not honor the request to align the
275; segment unless we do this.
276    align       32
277