1 /* Copyright (c) 2019 The Khronos Group Inc. 2 * Copyright (c) 2019 Valve Corporation 3 * Copyright (c) 2019 LunarG, Inc. 4 * Copyright (C) 2019 Google Inc. 5 * 6 * Licensed under the Apache License, Version 2.0 (the "License"); 7 * you may not use this file except in compliance with the License. 8 * You may obtain a copy of the License at 9 * 10 * http://www.apache.org/licenses/LICENSE-2.0 11 * 12 * Unless required by applicable law or agreed to in writing, software 13 * distributed under the License is distributed on an "AS IS" BASIS, 14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 15 * See the License for the specific language governing permissions and 16 * limitations under the License. 17 * 18 * John Zulauf <jzulauf@lunarg.com> 19 * 20 */ 21 #ifndef SPARSE_CONTAINERS_H_ 22 #define SPARSE_CONTAINERS_H_ 23 #define NOMINMAX 24 #include <cassert> 25 #include <memory> 26 #include <unordered_map> 27 #include <vector> 28 29 namespace sparse_container { 30 // SparseVector: 31 // 32 // Defines a sparse single-dimensional container which is targeted for three distinct use cases 33 // 1) Large range of indices sparsely populated ("Sparse access" below) 34 // 2) Large range of indices where all values are the same ("Sparse access" below) 35 // 3) Large range of values densely populated (more that 1/4 full) ("Dense access" below) 36 // 4) Small range of values where direct access is most efficient ("Dense access" below) 37 // 38 // To update semantics are supported bases on kSetReplaces: 39 // true -- updates to already set (valid) indices replace current value 40 // false -- updates to already set (valid) indicies are ignored. 41 // 42 // Theory of operation: 43 // 44 // When created, a sparse vector is created (based on size relative to 45 // the kSparseThreshold) in either Sparse or Dense access mode. 46 // 47 // In "Sparse access" mode individual values are stored in a map keyed 48 // by the index. A "full range" value (if set) defines the value of all 49 // entries not present in the map. Setting a full range value via 50 // 51 // SetRange(range_min, range_max, full_range_value ) 52 // 53 // either clears the map (kSetReplaces==true) or prevents further 54 // updates to the vector (kSetReplaces==false). If the map becomes 55 // more than // 1/kConversionThreshold (4) full, the SparseVector is 56 // converted into "Dense access" mode. Entries are copied from map, 57 // with non-present indices set to the default value (kDefaultValue) 58 // or the full range value (if present). 59 // 60 // In "Dense access" mode, values are stored in a vector the size of 61 // the valid range indexed by the incoming index value minus range_min_. 62 // The same upate semantic applies bases on kSetReplaces. 63 // 64 // Note that when kSparseThreshold 65 // 66 // Access: 67 // 68 // NOTE all "end" indices (in construction or access) are *exclusive*. 69 // 70 // Given the variable semantics and effective compression of Sparse 71 // access mode, all access is through Get, Set, and SetRange functions 72 // and a constant iterator. Get return either the value found (using 73 // the current access mode) or the kDefaultValue. Set and SetRange 74 // return whether or not state was updated, in order to support dirty 75 // bit updates for any dependent state. 76 // 77 // The iterator ConstIterator provides basic, "by value" access. The 78 // "by value" nature of the access reflect the compressed nature 79 // operators *, ++, ==, and != are provided, with the latter two only 80 // suitable for comparisons vs. cend. The iterator skips all 81 // kDefaultValue entries in either access mode, returning a std::pair 82 // containing {IndexType, ValueType}. The multiple access modes give 83 // the iterator a bit more complexity than is optimal, but hides the 84 // underlying complexity from the callers. 85 // 86 // TODO: Update iterator to use a reference (likely using 87 // reference_wrapper...) 88 89 template <typename IndexType_, typename T, bool kSetReplaces, T kDefaultValue = T(), size_t kSparseThreshold = 16> 90 class SparseVector { 91 public: 92 typedef IndexType_ IndexType; 93 typedef T value_type; 94 typedef value_type ValueType; 95 typedef std::unordered_map<IndexType, ValueType> SparseType; 96 typedef std::vector<ValueType> DenseType; 97 SparseVector(IndexType start,IndexType end)98 SparseVector(IndexType start, IndexType end) 99 : range_min_(start), range_max_(end), threshold_((end - start) / kConversionThreshold) { 100 assert(end > start); 101 Reset(); 102 } 103 104 // Initial access mode is set based on range size vs. kSparseThreshold. Either sparse_ or dense_ is always set, but only 105 // ever one at a time Reset()106 void Reset() { 107 has_full_range_value_ = false; 108 full_range_value_ = kDefaultValue; 109 size_t count = range_max_ - range_min_; 110 if (kSparseThreshold && (count > kSparseThreshold)) { 111 sparse_.reset(new SparseType()); 112 dense_.reset(); 113 } else { 114 sparse_.reset(); 115 dense_.reset(new DenseType(count, kDefaultValue)); 116 } 117 } 118 Get(const IndexType index)119 const ValueType &Get(const IndexType index) const { 120 // Note that here (and similarly below, the 'IsSparse' clause is 121 // eliminated as dead code in release builds if kSparseThreshold==0 122 if (IsSparse()) { 123 if (!sparse_->empty()) { // Don't attempt lookup in empty map 124 auto it = sparse_->find(index); 125 if (it != sparse_->cend()) { 126 return it->second; 127 } 128 } 129 // If there is a full_range_value, return it, but there isn't a full_range_value_, it's set to kDefaultValue 130 // so it's still the correct this to return 131 return full_range_value_; 132 } else { 133 // Direct access 134 assert(dense_.get()); 135 const ValueType &value = (*dense_)[index - range_min_]; 136 return value; 137 } 138 } 139 140 // Set a indexes value, based on the access mode, update semantics are enforced within the access mode specific function Set(const IndexType index,const ValueType & value)141 bool Set(const IndexType index, const ValueType &value) { 142 bool updated = false; 143 if (IsSparse()) { 144 updated = SetSparse(index, value); 145 } else { 146 assert(dense_.get()); 147 updated = SetDense(index, value); 148 } 149 return updated; 150 } 151 152 // Set a range of values based on access mode, with some update semantics applied a the range level SetRange(const IndexType start,IndexType end,ValueType value)153 bool SetRange(const IndexType start, IndexType end, ValueType value) { 154 bool updated = false; 155 if (IsSparse()) { 156 if (!kSetReplaces && HasFullRange()) return false; // We have full coverage, we can change this no more 157 158 bool is_full_range = IsFullRange(start, end); 159 if (kSetReplaces && is_full_range) { 160 updated = value != full_range_value_; 161 full_range_value_ = value; 162 if (HasSparseSubranges()) { 163 updated = true; 164 sparse_->clear(); // full range replaces all subranges 165 } 166 // has_full_range_value_ state of the full_range_value_ to avoid ValueType comparisons 167 has_full_range_value_ = value != kDefaultValue; 168 } else if (!kSetReplaces && (value != kDefaultValue) && is_full_range && !HasFullRange()) { 169 // With the update only invalid semantics, the value becomes the fallback, and will prevent other updates 170 full_range_value_ = value; 171 has_full_range_value_ = true; 172 updated = true; 173 // Clean up the sparse map a bit 174 for (auto it = sparse_->begin(); it != sparse_->end();) { // no increment clause because of erase below 175 if (it->second == value) { 176 it = sparse_->erase(it); // remove redundant entries 177 } else { 178 ++it; 179 } 180 } 181 } else { 182 for (IndexType index = start; index < end; ++index) { 183 // NOTE: We can't use SetSparse here, because this may be converted to dense access mid update 184 updated |= Set(index, value); 185 } 186 } 187 } else { 188 // Note that "Dense Access" does away with the full_range_value_ logic, storing empty entries using kDefaultValue 189 assert(dense_); 190 for (IndexType index = start; index < end; ++index) { 191 updated = SetDense(index, value); 192 } 193 } 194 return updated; 195 } 196 197 // Set only the non-default values from another sparse vector Merge(const SparseVector & from)198 bool Merge(const SparseVector &from) { 199 // Must not set from Sparse arracy with larger bounds... 200 assert((range_min_ <= from.range_min_) && (range_max_ >= from.range_max_)); 201 bool updated = false; 202 if (from.IsSparse()) { 203 if (from.HasFullRange() && !from.HasSparseSubranges()) { 204 // Short cut to copy a full range if that's all we have 205 updated |= SetRange(from.range_min_, from.range_max_, from.full_range_value_); 206 } else { 207 // Have to do it the complete (potentially) slow way 208 // TODO add sorted keys to iterator to reduce hash lookups 209 for (auto it = from.cbegin(); it != from.cend(); ++it) { 210 const IndexType index = (*it).first; 211 const ValueType &value = (*it).second; 212 Set(index, value); 213 } 214 } 215 } else { 216 assert(from.dense_); 217 DenseType &ray = *from.dense_; 218 for (IndexType entry = from.range_min_; entry < from.range_max_; ++entry) { 219 IndexType index = entry - from.range_min_; 220 if (ray[index] != kDefaultValue) { 221 updated |= Set(entry, ray[index]); 222 } 223 } 224 } 225 return updated; 226 } 227 228 friend class ConstIterator; 229 class ConstIterator { 230 public: 231 using SparseType = typename SparseVector::SparseType; 232 using SparseIterator = typename SparseType::const_iterator; 233 using IndexType = typename SparseVector::IndexType; 234 using ValueType = typename SparseVector::ValueType; 235 using IteratorValueType = std::pair<IndexType, ValueType>; 236 const IteratorValueType &operator*() const { return current_value_; } 237 238 ConstIterator &operator++() { 239 if (delegated_) { // implies sparse 240 ++it_sparse_; 241 if (it_sparse_ == vec_->sparse_->cend()) { 242 the_end_ = true; 243 current_value_.first = vec_->range_max_; 244 current_value_.second = SparseVector::DefaultValue(); 245 } else { 246 current_value_.first = it_sparse_->first; 247 current_value_.second = it_sparse_->second; 248 } 249 } else { 250 index_++; 251 SetCurrentValue(); 252 } 253 return *this; 254 } 255 bool operator!=(const ConstIterator &rhs) const { 256 return (the_end_ != rhs.the_end_); // Just good enough for cend checks 257 } 258 259 bool operator==(const ConstIterator &rhs) const { 260 return (the_end_ == rhs.the_end_); // Just good enough for cend checks 261 } 262 263 // The iterator has two modes: 264 // delegated: 265 // where we are in sparse access mode and have no full_range_value 266 // and thus can delegate our iteration to underlying map 267 // non-delegated: 268 // either dense mode or we have a full range value and thus 269 // must iterate over the whole range ConstIterator(const SparseVector & vec)270 ConstIterator(const SparseVector &vec) : vec_(&vec) { 271 if (!vec_->IsSparse() || vec_->HasFullRange()) { 272 // Must iterated over entire ranges skipping (in the case of dense access), invalid entries 273 delegated_ = false; 274 index_ = vec_->range_min_; 275 SetCurrentValue(); // Skips invalid and sets the_end_ 276 } else if (vec_->HasSparseSubranges()) { 277 // The subranges store the non-default values... and their is no full range value 278 delegated_ = true; 279 it_sparse_ = vec_->sparse_->cbegin(); 280 current_value_.first = it_sparse_->first; 281 current_value_.second = it_sparse_->second; 282 the_end_ = false; // the sparse map is non-empty (per HasSparseSubranges() above) 283 } else { 284 // Sparse, but with no subranges 285 the_end_ = true; 286 } 287 } 288 ConstIterator()289 ConstIterator() : vec_(nullptr), the_end_(true) {} 290 291 protected: 292 const SparseVector *vec_; 293 bool the_end_; 294 SparseIterator it_sparse_; 295 bool delegated_; 296 IndexType index_; 297 ValueType value_; 298 299 IteratorValueType current_value_; 300 301 // in the non-delegated case we use normal accessors and skip default values. SetCurrentValue()302 void SetCurrentValue() { 303 the_end_ = true; 304 while (index_ < vec_->range_max_) { 305 value_ = vec_->Get(index_); 306 if (value_ != SparseVector::DefaultValue()) { 307 the_end_ = false; 308 current_value_ = IteratorValueType(index_, value_); 309 break; 310 } 311 index_++; 312 } 313 } 314 }; 315 typedef ConstIterator const_iterator; 316 cbegin()317 ConstIterator cbegin() const { return ConstIterator(*this); } cend()318 ConstIterator cend() const { return ConstIterator(); } 319 RangeMax()320 IndexType RangeMax() const { return range_max_; } RangeMin()321 IndexType RangeMin() const { return range_min_; } 322 323 static const unsigned kConversionThreshold = 4; 324 const IndexType range_min_; // exclusive 325 const IndexType range_max_; // exclusive 326 const IndexType threshold_; // exclusive 327 328 // Data for sparse mode 329 // We have a short cut for full range values when in sparse mode 330 bool has_full_range_value_; 331 ValueType full_range_value_; 332 std::unique_ptr<SparseType> sparse_; 333 334 // Data for dense mode 335 std::unique_ptr<DenseType> dense_; 336 DefaultValue()337 static const ValueType &DefaultValue() { 338 static ValueType value = kDefaultValue; 339 return value; 340 } 341 // Note that IsSparse is compile-time reducible if kSparseThreshold is zero... IsSparse()342 inline bool IsSparse() const { return kSparseThreshold && sparse_.get(); } IsFullRange(IndexType start,IndexType end)343 bool IsFullRange(IndexType start, IndexType end) const { return (start == range_min_) && (end == range_max_); } IsFullRangeValue(const ValueType & value)344 bool IsFullRangeValue(const ValueType &value) const { return has_full_range_value_ && (value == full_range_value_); } HasFullRange()345 bool HasFullRange() const { return IsSparse() && has_full_range_value_; } HasSparseSubranges()346 bool HasSparseSubranges() const { return IsSparse() && !sparse_->empty(); } 347 348 // This is called unconditionally, to encapsulate the conversion criteria and logic here SparseToDenseConversion()349 void SparseToDenseConversion() { 350 // If we're using more threshold of the sparse range, convert to dense_ 351 if (IsSparse() && (sparse_->size() > threshold_)) { 352 ValueType default_value = HasFullRange() ? full_range_value_ : kDefaultValue; 353 dense_.reset(new DenseType((range_max_ - range_min_), default_value)); 354 DenseType &ray = *dense_; 355 for (auto const &item : *sparse_) { 356 ray[item.first - range_min_] = item.second; 357 } 358 sparse_.reset(); 359 has_full_range_value_ = false; 360 } 361 } 362 363 // Dense access mode setter with update semantics implemented SetDense(IndexType index,const ValueType & value)364 bool SetDense(IndexType index, const ValueType &value) { 365 bool updated = false; 366 ValueType ¤t_value = (*dense_)[index - range_min_]; 367 if ((kSetReplaces || current_value == kDefaultValue) && (value != current_value)) { 368 current_value = value; 369 updated = true; 370 } 371 return updated; 372 } 373 374 // Sparse access mode setter with update full range and update semantics implemented SetSparse(IndexType index,const ValueType & value)375 bool SetSparse(IndexType index, const ValueType &value) { 376 if (!kSetReplaces && HasFullRange()) { 377 return false; // We have full coverage, we can change this no more 378 } 379 380 if (kSetReplaces && IsFullRangeValue(value) && HasSparseSubranges()) { 381 auto erasure = sparse_->erase(index); // Remove duplicate record from map 382 return erasure > 0; 383 } 384 385 // Use insert to reduce the number of hash lookups 386 auto map_pair = std::make_pair(index, value); 387 auto insert_pair = sparse_->insert(map_pair); 388 auto &it = insert_pair.first; // use references to avoid nested pair accesses 389 const bool inserted = insert_pair.second; 390 bool updated = false; 391 if (inserted) { 392 updated = true; 393 SparseToDenseConversion(); 394 } else if (kSetReplaces && value != it->second) { 395 // Only replace value if semantics allow it and it has changed. 396 it->second = value; 397 updated = true; 398 } 399 return updated; 400 } 401 }; 402 403 } // namespace sparse_container 404 #endif 405