• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #pragma once
7 
8 #include <gtest/gtest.h>
9 
10 #include <algorithm>
11 #include <cassert>
12 #include <cmath>
13 #include <cstddef>
14 #include <cstdlib>
15 #include <functional>
16 #include <random>
17 #include <vector>
18 
19 #include <fp16.h>
20 
21 #include <xnnpack.h>
22 #include <xnnpack/AlignedAllocator.h>
23 #include <xnnpack/params-init.h>
24 #include <xnnpack/params.h>
25 
26 
is_fp16_zero(uint16_t x)27 static inline bool is_fp16_zero(uint16_t x) {
28   const uint16_t two_x = x + x;
29   return two_x == 0;
30 }
31 
32 class SpMMMicrokernelTester {
33  public:
34   enum class Variant {
35     Native,
36     Scalar,
37   };
38 
mr(size_t mr)39   inline SpMMMicrokernelTester& mr(size_t mr) {
40     this->mr_ = mr;
41     return *this;
42   }
43 
mr()44   inline size_t mr() const {
45     return this->mr_;
46   }
47 
nr(size_t nr)48   inline SpMMMicrokernelTester& nr(size_t nr) {
49     this->nr_ = nr;
50     return *this;
51   }
52 
nr()53   inline size_t nr() const {
54     return this->nr_;
55   }
56 
m(size_t m)57   inline SpMMMicrokernelTester& m(size_t m) {
58     this->m_ = m;
59     return *this;
60   }
61 
m()62   inline size_t m() const {
63     return this->m_;
64   }
65 
n(size_t n)66   inline SpMMMicrokernelTester& n(size_t n) {
67     this->n_ = n;
68     return *this;
69   }
70 
n()71   inline size_t n() const {
72     return this->n_;
73   }
74 
k(size_t k)75   inline SpMMMicrokernelTester& k(size_t k) {
76     this->k_ = k;
77     return *this;
78   }
79 
k()80   inline size_t k() const {
81     return this->k_;
82   }
83 
output_stride(size_t output_stride)84   inline SpMMMicrokernelTester& output_stride(size_t output_stride) {
85     assert(output_stride != 0);
86     this->output_stride_ = output_stride;
87     return *this;
88   }
89 
output_stride()90   inline size_t output_stride() const {
91     if (this->output_stride_ == 0) {
92       return m();
93     } else {
94       assert(this->output_stride_ >= m());
95       return this->output_stride_;
96     }
97   }
98 
sparsity(float sparsity)99   inline SpMMMicrokernelTester& sparsity(float sparsity) {
100     this->sparsity_ = sparsity;
101     return *this;
102   }
103 
sparsity()104   inline float sparsity() const {
105     return this->sparsity_;
106   }
107 
qmin(uint8_t qmin)108   inline SpMMMicrokernelTester& qmin(uint8_t qmin) {
109     this->qmin_ = qmin;
110     return *this;
111   }
112 
qmin()113   inline uint8_t qmin() const {
114     return this->qmin_;
115   }
116 
qmax(uint8_t qmax)117   inline SpMMMicrokernelTester& qmax(uint8_t qmax) {
118     this->qmax_ = qmax;
119     return *this;
120   }
121 
qmax()122   inline uint8_t qmax() const {
123     return this->qmax_;
124   }
125 
iterations(size_t iterations)126   inline SpMMMicrokernelTester& iterations(size_t iterations) {
127     this->iterations_ = iterations;
128     return *this;
129   }
130 
iterations()131   inline size_t iterations() const {
132     return this->iterations_;
133   }
134 
135   void Test(xnn_f32_spmm_minmax_ukernel_function spmm, Variant variant = Variant::Native) const {
136     ASSERT_GE(m(), 1);
137     ASSERT_GE(n(), 1);
138     ASSERT_GE(k(), 1);
139 
140     std::random_device random_device;
141     auto rng = std::mt19937(random_device());
142     auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
143     auto prng = std::bind(std::uniform_real_distribution<float>(), rng);
144 
145     std::vector<float, AlignedAllocator<float, 64>> input(k() * m());
146     // Think of b as (n/nr + n % nr) x k, expansion happens later.
147     const size_t ncols = n() / nr() + n() % nr();
148     std::vector<float> b(ncols * k());
149     std::vector<float> bias(n());
150     // Number of non-zero weights per N (output channel).
151     std::vector<uint32_t> nmap(n());
152     // Mapping from index of non-zero weight to increment of K (input channel) following this index.
153     std::vector<int32_t> dmap(n() * k());
154     std::vector<float> w(n() * k() + n());
155     std::vector<float> output((n() - 1) * output_stride() + m());
156     std::vector<float> output_ref(n() * m());
157 
158     for (size_t iteration = 0; iteration < iterations(); iteration++) {
159       std::generate(input.begin(), input.end(), std::ref(f32rng));
160       std::generate(b.begin(), b.end(), std::ref(f32rng));
161       std::generate(bias.begin(), bias.end(), std::ref(f32rng));
162       std::fill(output.begin(), output.end(), nanf(""));
163       std::fill(output_ref.begin(), output_ref.end(), 0.0f);
164       std::fill(nmap.begin(), nmap.end(), 0);
165       std::fill(dmap.begin(), dmap.end(), 0);
166       std::fill(w.begin(), w.end(), 0.0f);
167 
168       for (float& b_value : b) {
169         if (prng() <= sparsity()) {
170           b_value = 0.0f;
171         }
172       }
173 
174       uint32_t nnz = 0;
175       uint32_t wcnt = 0;
176       size_t last_kk = 0;
177       bool first_nzz = true;
178       size_t first_kk = 0;
179       for (size_t nn = 0; nn < n() / nr(); nn++) {
180         for (size_t i = 0; i < nr(); ++i)
181           w[wcnt++] = bias[nr() * nn + i];
182         for (size_t kk = 0; kk < k(); kk++) {
183           if (b[nn * k() + kk] != 0.0f) {
184             // Every non-zero actually corresponds to nr adjacent non-zeros.
185             for (size_t i = 0; i < nr(); ++i)
186               w[wcnt++] = b[nn * k() + kk] + static_cast<float>(i);
187             // Skip the very first non-zero weight as we record only the difference.
188             if (first_nzz) {
189               first_kk = kk;
190             } else {
191               const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(float));
192               dmap[nnz++] = increment;
193             }
194             last_kk = kk;
195             first_nzz = false;
196             nmap[nn] += 1;
197           }
198         }
199       }
200 
201       // now we've constructed the matrix for the blocked part and switch to the
202       // leftovers, which we do as nr=1 always.
203       for (size_t nn = n() / nr(); nn < ncols; nn++) {
204         w[wcnt++] = bias[(n() / nr()) * nr() + (nn - n() / nr())];
205         for (size_t kk = 0; kk < k(); kk++) {
206           if (b[nn * k() + kk] != 0.0f) {
207             // Every non-zero actually corresponds to nr adjacent non-zeros.
208             w[wcnt++] = b[nn * k() + kk];
209             // Skip the very first non-zero weight as we record only the difference.
210             if (first_nzz) {
211               first_kk = kk;
212             } else {
213               const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(float));
214               dmap[nnz++] = increment;
215             }
216             last_kk = kk;
217             first_nzz = false;
218             nmap[nn] += 1;
219           }
220         }
221       }
222       // In the end, we must return input pointer to the initial value.
223       const int64_t increment = int32_t(first_kk - last_kk) * int32_t(m() * sizeof(float));
224       dmap[nnz++] = increment;
225 
226       // Generate expanded b which will be used in reference calculation.
227       // Everywhere there is input non-zero in the original we copy it and add an
228       // adjacent non-zero with incremented weight value.
229       std::vector<float> b_full(n() * k());
230       if (nr() == 1) {
231          b_full = b;
232       }
233       else {
234         for (size_t nn = 0; nn < n() / nr(); nn++) {
235           for (size_t kk = 0; kk < k(); kk++) {
236             if (b[nn * k() + kk] != 0.0f) {
237               for (size_t i = 0; i < nr(); ++i)
238                 b_full[nr() * nn * k() + i * k() + kk] = b[nn * k() + kk] + static_cast<float>(i);
239             }
240           }
241         }
242         for (size_t nn = n() / nr(); nn < ncols; nn++) {
243           for (size_t kk = 0; kk < k(); kk++) {
244             if (b[nn * k() + kk] != 0.0f) {
245               b_full[nr() * (n() / nr()) * k() + (nn - n() / nr()) * k() + kk] = b[nn * k() + kk];
246             }
247           }
248         }
249       }
250 
251       for (size_t oc = 0; oc < n(); oc++) {
252         for (size_t pxb = 0; pxb < m(); pxb++) {
253           output_ref[oc * m() + pxb] = bias[oc];
254           for (size_t ic = 0; ic < k(); ic++) {
255             output_ref[oc * m() + pxb] += input[ic * m() + pxb] * b_full[oc * k() + ic];
256           }
257         }
258       }
259 
260       // Micro-kernel can access one element beyond w and dmap for software pipelining.
261       w.resize(wcnt + 1);
262       dmap.resize(nnz + 1);
263 
264       // Compute clamping parameters.
265       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
266       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
267       const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
268       const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
269 
270       // Clamp reference results.
271       for (float& output_value : output_ref) {
272         output_value = std::min(std::max(output_value, output_min), output_max);
273       }
274 
275       // Prepare parameters.
276       xnn_f32_minmax_params params = { };
277       switch (variant) {
278         case Variant::Native:
279           params = xnn_init_f32_minmax_params(output_min, output_max);
280           break;
281         case Variant::Scalar:
282           params = xnn_init_scalar_f32_minmax_params(output_min, output_max);
283           break;
284       }
285 
286       spmm(m() * sizeof(float), n(),
287         input.data() + first_kk * m(),
288         w.data(), dmap.data(), nmap.data(),
289         output.data(), output_stride() * sizeof(float),
290         &params);
291 
292       // Validate micro-kernel outputs.
293       for (size_t i = 0; i < m(); i++) {
294         for (size_t j = 0; j < n(); j++) {
295           ASSERT_NEAR(
296               output[j * output_stride() + i],
297               output_ref[j * m() + i],
298               std::abs(output_ref[j * m() + i]) * 1.0e-6f)
299             << "at M index " << i << " / " << m() << " (tile " << mr() << ")"
300             << ", N index " << j << " / " << n() << " (tile " << nr() << ")"
301             << ", K = " << k();
302         }
303       }
304     }
305   }
306 
Test(xnn_f16_spmm_minmax_ukernel_function spmm)307   void Test(xnn_f16_spmm_minmax_ukernel_function spmm) const {
308     ASSERT_GE(m(), 1);
309     ASSERT_GE(n(), 1);
310     ASSERT_GE(k(), 1);
311 
312     std::random_device random_device;
313     auto rng = std::mt19937(random_device());
314     auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
315     auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
316     auto prng = std::bind(std::uniform_real_distribution<float>(), rng);
317 
318     std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> input(k() * m());
319     // Think of b as (n/nr + n % nr) x k, expansion happens later.
320     const size_t ncols = n() / nr() + n() % nr();
321     std::vector<uint16_t> b(ncols * k());
322     std::vector<uint16_t> bias(n());
323     // Number of non-zero weights per N (output channel).
324     std::vector<uint32_t> nmap(n());
325     // Mapping from index of non-zero weight to increment of K (input channel) following this index.
326     std::vector<int32_t> dmap(n() * k());
327     std::vector<uint16_t> w(n() * k() + n());
328     std::vector<uint16_t> output((n() - 1) * output_stride() + m());
329     std::vector<float> output_ref(n() * m());
330 
331     for (size_t iteration = 0; iteration < iterations(); iteration++) {
332       std::generate(input.begin(), input.end(), std::ref(f16rng));
333       std::generate(b.begin(), b.end(), std::ref(f16rng));
334       std::generate(bias.begin(), bias.end(), std::ref(f16rng));
335       std::fill(output.begin(), output.end(), 0xC000);
336       std::fill(output_ref.begin(), output_ref.end(), 0.0f);
337       std::fill(nmap.begin(), nmap.end(), 0);
338       std::fill(dmap.begin(), dmap.end(), 0);
339       std::fill(w.begin(), w.end(), 0);
340 
341       for (uint16_t& b_value : b) {
342         if (prng() <= sparsity()) {
343           b_value = 0;
344         }
345       }
346 
347       uint32_t nnz = 0;
348       uint32_t wcnt = 0;
349       size_t last_kk = 0;
350       bool first_nzz = true;
351       size_t first_kk = 0;
352       for (size_t nn = 0; nn < n() / nr(); nn++) {
353         for (size_t i = 0; i < nr(); ++i)
354           w[wcnt++] = bias[nr() * nn + i];
355         for (size_t kk = 0; kk < k(); kk++) {
356           if (!is_fp16_zero(b[nn * k() + kk])) {
357             // Every non-zero actually corresponds to nr adjacent non-zeros.
358             for (size_t i = 0; i < nr(); ++i)
359               w[wcnt++] = fp16_ieee_from_fp32_value(fp16_ieee_to_fp32_value(b[nn * k() + kk]) + static_cast<float>(i));
360             // Skip the very first non-zero weight as we record only the difference.
361             if (first_nzz) {
362               first_kk = kk;
363             } else {
364               const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(uint16_t));
365               dmap[nnz++] = increment;
366             }
367             last_kk = kk;
368             first_nzz = false;
369             nmap[nn] += 1;
370           }
371         }
372       }
373 
374       // now we've constructed the matrix for the blocked part and switch to the
375       // leftovers, which we do as nr=1 always.
376       for (size_t nn = n() / nr(); nn < ncols; nn++) {
377         w[wcnt++] = bias[(n() / nr()) * nr() + (nn - n() / nr())];
378         for (size_t kk = 0; kk < k(); kk++) {
379           if (!is_fp16_zero(b[nn * k() + kk])) {
380             // Every non-zero actually corresponds to nr adjacent non-zeros.
381             w[wcnt++] = b[nn * k() + kk];
382             // Skip the very first non-zero weight as we record only the difference.
383             if (first_nzz) {
384               first_kk = kk;
385             } else {
386               const int32_t increment = int32_t(kk - last_kk) * int32_t(m() * sizeof(uint16_t));
387               dmap[nnz++] = increment;
388             }
389             last_kk = kk;
390             first_nzz = false;
391             nmap[nn] += 1;
392           }
393         }
394       }
395       // In the end, we must return input pointer to the initial value.
396       const int64_t increment = int32_t(first_kk - last_kk) * int32_t(m() * sizeof(uint16_t));
397       dmap[nnz++] = increment;
398 
399       // Generate expanded b which will be used in reference calculation.
400       // Everywhere there is input non-zero in the original we copy it and add an
401       // adjacent non-zero with incremented weight value.
402       std::vector<uint16_t> b_full(n() * k());
403       if (nr() == 1) {
404          b_full = b;
405       }
406       else {
407         for (size_t nn = 0; nn < n() / nr(); nn++) {
408           for (size_t kk = 0; kk < k(); kk++) {
409             if (b[nn * k() + kk] != 0.0f) {
410               for (size_t i = 0; i < nr(); ++i)
411                 b_full[nr() * nn * k() + i * k() + kk] = fp16_ieee_from_fp32_value(
412                   fp16_ieee_to_fp32_value(b[nn * k() + kk]) + static_cast<float>(i));
413             }
414           }
415         }
416         for (size_t nn = n() / nr(); nn < ncols; nn++) {
417           for (size_t kk = 0; kk < k(); kk++) {
418             if (b[nn * k() + kk] != 0.0f) {
419               b_full[nr() * (n() / nr()) * k() + (nn - n() / nr()) * k() + kk] = b[nn * k() + kk];
420             }
421           }
422         }
423       }
424 
425       for (size_t oc = 0; oc < n(); oc++) {
426         for (size_t pxb = 0; pxb < m(); pxb++) {
427           output_ref[oc * m() + pxb] = fp16_ieee_to_fp32_value(bias[oc]);
428           for (size_t ic = 0; ic < k(); ic++) {
429             output_ref[oc * m() + pxb] += fp16_ieee_to_fp32_value(input[ic * m() + pxb]) * fp16_ieee_to_fp32_value(b_full[oc * k() + ic]);
430           }
431         }
432       }
433 
434       // Micro-kernel can access one element beyond w and dmap for software pipelining.
435       w.resize(wcnt + 1);
436       dmap.resize(nnz + 1);
437 
438       // Compute clamping parameters.
439       const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
440       const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
441       const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
442       const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
443 
444       // Clamp reference results.
445       for (float& output_value : output_ref) {
446         output_value = std::min(std::max(output_value, output_min), output_max);
447       }
448 
449       // Prepare parameters.
450       xnn_f16_scaleminmax_params params;
451       params.scale = UINT16_C(0x3C00) /* 1.0 */;
452       params.max = fp16_ieee_from_fp32_value(output_max);
453       params.min = fp16_ieee_from_fp32_value(output_min);
454 
455       spmm(m() * sizeof(uint16_t), n(),
456         input.data() + first_kk * m(),
457         w.data(), dmap.data(), nmap.data(),
458         output.data(), output_stride() * sizeof(uint16_t),
459         &params);
460 
461       // Validate micro-kernel outputs.
462       for (size_t i = 0; i < m(); i++) {
463         for (size_t j = 0; j < n(); j++) {
464           ASSERT_NEAR(
465               fp16_ieee_to_fp32_value(output[j * output_stride() + i]),
466               output_ref[j * m() + i],
467               std::max(1.0e-4f, std::abs(output_ref[j * m() + i]) * 1.0e-2f))
468             << "at M index " << i << " / " << m() << " (tile " << mr() << ")"
469             << ", N index " << j << " / " << n() << " (tile " << nr() << ")"
470             << ", K = " << k();
471         }
472       }
473     }
474   }
475 
476  private:
477   size_t mr_{1};
478   size_t nr_{1};
479   size_t m_{1};
480   size_t n_{1};
481   size_t k_{1};
482   size_t output_stride_{0};
483   float sparsity_{0.5f};
484   uint8_t qmin_{0};
485   uint8_t qmax_{255};
486   size_t iterations_{1};
487 };
488