1 R"********( 2 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 3 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of version 2 of the GNU General Public 7 * License as published by the Free Software Foundation. 8 */ 9 #ifndef _UAPI__LINUX_BPF_H__ 10 #define _UAPI__LINUX_BPF_H__ 11 12 #include <linux/types.h> 13 #include <linux/bpf_common.h> 14 15 /* Extended instruction set based on top of classic BPF */ 16 17 /* instruction classes */ 18 #define BPF_ALU64 0x07 /* alu mode in double word width */ 19 20 /* ld/ldx fields */ 21 #define BPF_DW 0x18 /* double word (64-bit) */ 22 #define BPF_XADD 0xc0 /* exclusive add */ 23 24 /* alu/jmp fields */ 25 #define BPF_MOV 0xb0 /* mov reg to reg */ 26 #define BPF_ARSH 0xc0 /* sign extending arithmetic shift right */ 27 28 /* change endianness of a register */ 29 #define BPF_END 0xd0 /* flags for endianness conversion: */ 30 #define BPF_TO_LE 0x00 /* convert to little-endian */ 31 #define BPF_TO_BE 0x08 /* convert to big-endian */ 32 #define BPF_FROM_LE BPF_TO_LE 33 #define BPF_FROM_BE BPF_TO_BE 34 35 /* jmp encodings */ 36 #define BPF_JNE 0x50 /* jump != */ 37 #define BPF_JLT 0xa0 /* LT is unsigned, '<' */ 38 #define BPF_JLE 0xb0 /* LE is unsigned, '<=' */ 39 #define BPF_JSGT 0x60 /* SGT is signed '>', GT in x86 */ 40 #define BPF_JSGE 0x70 /* SGE is signed '>=', GE in x86 */ 41 #define BPF_JSLT 0xc0 /* SLT is signed, '<' */ 42 #define BPF_JSLE 0xd0 /* SLE is signed, '<=' */ 43 #define BPF_CALL 0x80 /* function call */ 44 #define BPF_EXIT 0x90 /* function return */ 45 46 /* Register numbers */ 47 enum { 48 BPF_REG_0 = 0, 49 BPF_REG_1, 50 BPF_REG_2, 51 BPF_REG_3, 52 BPF_REG_4, 53 BPF_REG_5, 54 BPF_REG_6, 55 BPF_REG_7, 56 BPF_REG_8, 57 BPF_REG_9, 58 BPF_REG_10, 59 __MAX_BPF_REG, 60 }; 61 62 /* BPF has 10 general purpose 64-bit registers and stack frame. */ 63 #define MAX_BPF_REG __MAX_BPF_REG 64 65 struct bpf_insn { 66 __u8 code; /* opcode */ 67 __u8 dst_reg:4; /* dest register */ 68 __u8 src_reg:4; /* source register */ 69 __s16 off; /* signed offset */ 70 __s32 imm; /* signed immediate constant */ 71 }; 72 73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */ 74 struct bpf_lpm_trie_key { 75 __u32 prefixlen; /* up to 32 for AF_INET, 128 for AF_INET6 */ 76 __u8 data[0]; /* Arbitrary size */ 77 }; 78 79 struct bpf_cgroup_storage_key { 80 __u64 cgroup_inode_id; /* cgroup inode id */ 81 __u32 attach_type; /* program attach type */ 82 }; 83 84 /* BPF syscall commands, see bpf(2) man-page for details. */ 85 enum bpf_cmd { 86 BPF_MAP_CREATE, 87 BPF_MAP_LOOKUP_ELEM, 88 BPF_MAP_UPDATE_ELEM, 89 BPF_MAP_DELETE_ELEM, 90 BPF_MAP_GET_NEXT_KEY, 91 BPF_PROG_LOAD, 92 BPF_OBJ_PIN, 93 BPF_OBJ_GET, 94 BPF_PROG_ATTACH, 95 BPF_PROG_DETACH, 96 BPF_PROG_TEST_RUN, 97 BPF_PROG_GET_NEXT_ID, 98 BPF_MAP_GET_NEXT_ID, 99 BPF_PROG_GET_FD_BY_ID, 100 BPF_MAP_GET_FD_BY_ID, 101 BPF_OBJ_GET_INFO_BY_FD, 102 BPF_PROG_QUERY, 103 BPF_RAW_TRACEPOINT_OPEN, 104 BPF_BTF_LOAD, 105 BPF_BTF_GET_FD_BY_ID, 106 BPF_TASK_FD_QUERY, 107 BPF_MAP_LOOKUP_AND_DELETE_ELEM, 108 }; 109 110 enum bpf_map_type { 111 BPF_MAP_TYPE_UNSPEC, 112 BPF_MAP_TYPE_HASH, 113 BPF_MAP_TYPE_ARRAY, 114 BPF_MAP_TYPE_PROG_ARRAY, 115 BPF_MAP_TYPE_PERF_EVENT_ARRAY, 116 BPF_MAP_TYPE_PERCPU_HASH, 117 BPF_MAP_TYPE_PERCPU_ARRAY, 118 BPF_MAP_TYPE_STACK_TRACE, 119 BPF_MAP_TYPE_CGROUP_ARRAY, 120 BPF_MAP_TYPE_LRU_HASH, 121 BPF_MAP_TYPE_LRU_PERCPU_HASH, 122 BPF_MAP_TYPE_LPM_TRIE, 123 BPF_MAP_TYPE_ARRAY_OF_MAPS, 124 BPF_MAP_TYPE_HASH_OF_MAPS, 125 BPF_MAP_TYPE_DEVMAP, 126 BPF_MAP_TYPE_SOCKMAP, 127 BPF_MAP_TYPE_CPUMAP, 128 BPF_MAP_TYPE_XSKMAP, 129 BPF_MAP_TYPE_SOCKHASH, 130 BPF_MAP_TYPE_CGROUP_STORAGE, 131 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, 132 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE, 133 BPF_MAP_TYPE_QUEUE, 134 BPF_MAP_TYPE_STACK, 135 }; 136 137 /* Note that tracing related programs such as 138 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT} 139 * are not subject to a stable API since kernel internal data 140 * structures can change from release to release and may 141 * therefore break existing tracing BPF programs. Tracing BPF 142 * programs correspond to /a/ specific kernel which is to be 143 * analyzed, and not /a/ specific kernel /and/ all future ones. 144 */ 145 enum bpf_prog_type { 146 BPF_PROG_TYPE_UNSPEC, 147 BPF_PROG_TYPE_SOCKET_FILTER, 148 BPF_PROG_TYPE_KPROBE, 149 BPF_PROG_TYPE_SCHED_CLS, 150 BPF_PROG_TYPE_SCHED_ACT, 151 BPF_PROG_TYPE_TRACEPOINT, 152 BPF_PROG_TYPE_XDP, 153 BPF_PROG_TYPE_PERF_EVENT, 154 BPF_PROG_TYPE_CGROUP_SKB, 155 BPF_PROG_TYPE_CGROUP_SOCK, 156 BPF_PROG_TYPE_LWT_IN, 157 BPF_PROG_TYPE_LWT_OUT, 158 BPF_PROG_TYPE_LWT_XMIT, 159 BPF_PROG_TYPE_SOCK_OPS, 160 BPF_PROG_TYPE_SK_SKB, 161 BPF_PROG_TYPE_CGROUP_DEVICE, 162 BPF_PROG_TYPE_SK_MSG, 163 BPF_PROG_TYPE_RAW_TRACEPOINT, 164 BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 165 BPF_PROG_TYPE_LWT_SEG6LOCAL, 166 BPF_PROG_TYPE_LIRC_MODE2, 167 BPF_PROG_TYPE_SK_REUSEPORT, 168 BPF_PROG_TYPE_FLOW_DISSECTOR, 169 }; 170 171 enum bpf_attach_type { 172 BPF_CGROUP_INET_INGRESS, 173 BPF_CGROUP_INET_EGRESS, 174 BPF_CGROUP_INET_SOCK_CREATE, 175 BPF_CGROUP_SOCK_OPS, 176 BPF_SK_SKB_STREAM_PARSER, 177 BPF_SK_SKB_STREAM_VERDICT, 178 BPF_CGROUP_DEVICE, 179 BPF_SK_MSG_VERDICT, 180 BPF_CGROUP_INET4_BIND, 181 BPF_CGROUP_INET6_BIND, 182 BPF_CGROUP_INET4_CONNECT, 183 BPF_CGROUP_INET6_CONNECT, 184 BPF_CGROUP_INET4_POST_BIND, 185 BPF_CGROUP_INET6_POST_BIND, 186 BPF_CGROUP_UDP4_SENDMSG, 187 BPF_CGROUP_UDP6_SENDMSG, 188 BPF_LIRC_MODE2, 189 BPF_FLOW_DISSECTOR, 190 __MAX_BPF_ATTACH_TYPE 191 }; 192 193 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE 194 195 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command 196 * 197 * NONE(default): No further bpf programs allowed in the subtree. 198 * 199 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program, 200 * the program in this cgroup yields to sub-cgroup program. 201 * 202 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program, 203 * that cgroup program gets run in addition to the program in this cgroup. 204 * 205 * Only one program is allowed to be attached to a cgroup with 206 * NONE or BPF_F_ALLOW_OVERRIDE flag. 207 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will 208 * release old program and attach the new one. Attach flags has to match. 209 * 210 * Multiple programs are allowed to be attached to a cgroup with 211 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order 212 * (those that were attached first, run first) 213 * The programs of sub-cgroup are executed first, then programs of 214 * this cgroup and then programs of parent cgroup. 215 * When children program makes decision (like picking TCP CA or sock bind) 216 * parent program has a chance to override it. 217 * 218 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups. 219 * A cgroup with NONE doesn't allow any programs in sub-cgroups. 220 * Ex1: 221 * cgrp1 (MULTI progs A, B) -> 222 * cgrp2 (OVERRIDE prog C) -> 223 * cgrp3 (MULTI prog D) -> 224 * cgrp4 (OVERRIDE prog E) -> 225 * cgrp5 (NONE prog F) 226 * the event in cgrp5 triggers execution of F,D,A,B in that order. 227 * if prog F is detached, the execution is E,D,A,B 228 * if prog F and D are detached, the execution is E,A,B 229 * if prog F, E and D are detached, the execution is C,A,B 230 * 231 * All eligible programs are executed regardless of return code from 232 * earlier programs. 233 */ 234 #define BPF_F_ALLOW_OVERRIDE (1U << 0) 235 #define BPF_F_ALLOW_MULTI (1U << 1) 236 237 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the 238 * verifier will perform strict alignment checking as if the kernel 239 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set, 240 * and NET_IP_ALIGN defined to 2. 241 */ 242 #define BPF_F_STRICT_ALIGNMENT (1U << 0) 243 244 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the 245 * verifier will allow any alignment whatsoever. On platforms 246 * with strict alignment requirements for loads ands stores (such 247 * as sparc and mips) the verifier validates that all loads and 248 * stores provably follow this requirement. This flag turns that 249 * checking and enforcement off. 250 * 251 * It is mostly used for testing when we want to validate the 252 * context and memory access aspects of the verifier, but because 253 * of an unaligned access the alignment check would trigger before 254 * the one we are interested in. 255 */ 256 #define BPF_F_ANY_ALIGNMENT (1U << 1) 257 258 /* when bpf_ldimm64->src_reg == BPF_PSEUDO_MAP_FD, bpf_ldimm64->imm == fd */ 259 #define BPF_PSEUDO_MAP_FD 1 260 261 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative 262 * offset to another bpf function 263 */ 264 #define BPF_PSEUDO_CALL 1 265 266 /* flags for BPF_MAP_UPDATE_ELEM command */ 267 #define BPF_ANY 0 /* create new element or update existing */ 268 #define BPF_NOEXIST 1 /* create new element if it didn't exist */ 269 #define BPF_EXIST 2 /* update existing element */ 270 271 /* flags for BPF_MAP_CREATE command */ 272 #define BPF_F_NO_PREALLOC (1U << 0) 273 /* Instead of having one common LRU list in the 274 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list 275 * which can scale and perform better. 276 * Note, the LRU nodes (including free nodes) cannot be moved 277 * across different LRU lists. 278 */ 279 #define BPF_F_NO_COMMON_LRU (1U << 1) 280 /* Specify numa node during map creation */ 281 #define BPF_F_NUMA_NODE (1U << 2) 282 283 #define BPF_OBJ_NAME_LEN 16U 284 285 /* Flags for accessing BPF object */ 286 #define BPF_F_RDONLY (1U << 3) 287 #define BPF_F_WRONLY (1U << 4) 288 289 /* Flag for stack_map, store build_id+offset instead of pointer */ 290 #define BPF_F_STACK_BUILD_ID (1U << 5) 291 292 /* Zero-initialize hash function seed. This should only be used for testing. */ 293 #define BPF_F_ZERO_SEED (1U << 6) 294 295 /* flags for BPF_PROG_QUERY */ 296 #define BPF_F_QUERY_EFFECTIVE (1U << 0) 297 298 enum bpf_stack_build_id_status { 299 /* user space need an empty entry to identify end of a trace */ 300 BPF_STACK_BUILD_ID_EMPTY = 0, 301 /* with valid build_id and offset */ 302 BPF_STACK_BUILD_ID_VALID = 1, 303 /* couldn't get build_id, fallback to ip */ 304 BPF_STACK_BUILD_ID_IP = 2, 305 }; 306 307 #define BPF_BUILD_ID_SIZE 20 308 struct bpf_stack_build_id { 309 __s32 status; 310 unsigned char build_id[BPF_BUILD_ID_SIZE]; 311 union { 312 __u64 offset; 313 __u64 ip; 314 }; 315 }; 316 317 union bpf_attr { 318 struct { /* anonymous struct used by BPF_MAP_CREATE command */ 319 __u32 map_type; /* one of enum bpf_map_type */ 320 __u32 key_size; /* size of key in bytes */ 321 __u32 value_size; /* size of value in bytes */ 322 __u32 max_entries; /* max number of entries in a map */ 323 __u32 map_flags; /* BPF_MAP_CREATE related 324 * flags defined above. 325 */ 326 __u32 inner_map_fd; /* fd pointing to the inner map */ 327 __u32 numa_node; /* numa node (effective only if 328 * BPF_F_NUMA_NODE is set). 329 */ 330 char map_name[BPF_OBJ_NAME_LEN]; 331 __u32 map_ifindex; /* ifindex of netdev to create on */ 332 __u32 btf_fd; /* fd pointing to a BTF type data */ 333 __u32 btf_key_type_id; /* BTF type_id of the key */ 334 __u32 btf_value_type_id; /* BTF type_id of the value */ 335 }; 336 337 struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */ 338 __u32 map_fd; 339 __aligned_u64 key; 340 union { 341 __aligned_u64 value; 342 __aligned_u64 next_key; 343 }; 344 __u64 flags; 345 }; 346 347 struct { /* anonymous struct used by BPF_PROG_LOAD command */ 348 __u32 prog_type; /* one of enum bpf_prog_type */ 349 __u32 insn_cnt; 350 __aligned_u64 insns; 351 __aligned_u64 license; 352 __u32 log_level; /* verbosity level of verifier */ 353 __u32 log_size; /* size of user buffer */ 354 __aligned_u64 log_buf; /* user supplied buffer */ 355 __u32 kern_version; /* not used */ 356 __u32 prog_flags; 357 char prog_name[BPF_OBJ_NAME_LEN]; 358 __u32 prog_ifindex; /* ifindex of netdev to prep for */ 359 /* For some prog types expected attach type must be known at 360 * load time to verify attach type specific parts of prog 361 * (context accesses, allowed helpers, etc). 362 */ 363 __u32 expected_attach_type; 364 __u32 prog_btf_fd; /* fd pointing to BTF type data */ 365 __u32 func_info_rec_size; /* userspace bpf_func_info size */ 366 __aligned_u64 func_info; /* func info */ 367 __u32 func_info_cnt; /* number of bpf_func_info records */ 368 __u32 line_info_rec_size; /* userspace bpf_line_info size */ 369 __aligned_u64 line_info; /* line info */ 370 __u32 line_info_cnt; /* number of bpf_line_info records */ 371 }; 372 373 struct { /* anonymous struct used by BPF_OBJ_* commands */ 374 __aligned_u64 pathname; 375 __u32 bpf_fd; 376 __u32 file_flags; 377 }; 378 379 struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */ 380 __u32 target_fd; /* container object to attach to */ 381 __u32 attach_bpf_fd; /* eBPF program to attach */ 382 __u32 attach_type; 383 __u32 attach_flags; 384 }; 385 386 struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */ 387 __u32 prog_fd; 388 __u32 retval; 389 __u32 data_size_in; /* input: len of data_in */ 390 __u32 data_size_out; /* input/output: len of data_out 391 * returns ENOSPC if data_out 392 * is too small. 393 */ 394 __aligned_u64 data_in; 395 __aligned_u64 data_out; 396 __u32 repeat; 397 __u32 duration; 398 } test; 399 400 struct { /* anonymous struct used by BPF_*_GET_*_ID */ 401 union { 402 __u32 start_id; 403 __u32 prog_id; 404 __u32 map_id; 405 __u32 btf_id; 406 }; 407 __u32 next_id; 408 __u32 open_flags; 409 }; 410 411 struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */ 412 __u32 bpf_fd; 413 __u32 info_len; 414 __aligned_u64 info; 415 } info; 416 417 struct { /* anonymous struct used by BPF_PROG_QUERY command */ 418 __u32 target_fd; /* container object to query */ 419 __u32 attach_type; 420 __u32 query_flags; 421 __u32 attach_flags; 422 __aligned_u64 prog_ids; 423 __u32 prog_cnt; 424 } query; 425 426 struct { 427 __u64 name; 428 __u32 prog_fd; 429 } raw_tracepoint; 430 431 struct { /* anonymous struct for BPF_BTF_LOAD */ 432 __aligned_u64 btf; 433 __aligned_u64 btf_log_buf; 434 __u32 btf_size; 435 __u32 btf_log_size; 436 __u32 btf_log_level; 437 }; 438 439 struct { 440 __u32 pid; /* input: pid */ 441 __u32 fd; /* input: fd */ 442 __u32 flags; /* input: flags */ 443 __u32 buf_len; /* input/output: buf len */ 444 __aligned_u64 buf; /* input/output: 445 * tp_name for tracepoint 446 * symbol for kprobe 447 * filename for uprobe 448 */ 449 __u32 prog_id; /* output: prod_id */ 450 __u32 fd_type; /* output: BPF_FD_TYPE_* */ 451 __u64 probe_offset; /* output: probe_offset */ 452 __u64 probe_addr; /* output: probe_addr */ 453 } task_fd_query; 454 } __attribute__((aligned(8))); 455 456 /* The description below is an attempt at providing documentation to eBPF 457 * developers about the multiple available eBPF helper functions. It can be 458 * parsed and used to produce a manual page. The workflow is the following, 459 * and requires the rst2man utility: 460 * 461 * $ ./scripts/bpf_helpers_doc.py \ 462 * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst 463 * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7 464 * $ man /tmp/bpf-helpers.7 465 * 466 * Note that in order to produce this external documentation, some RST 467 * formatting is used in the descriptions to get "bold" and "italics" in 468 * manual pages. Also note that the few trailing white spaces are 469 * intentional, removing them would break paragraphs for rst2man. 470 * 471 * Start of BPF helper function descriptions: 472 * 473 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key) 474 * Description 475 * Perform a lookup in *map* for an entry associated to *key*. 476 * Return 477 * Map value associated to *key*, or **NULL** if no entry was 478 * found. 479 * 480 * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags) 481 * Description 482 * Add or update the value of the entry associated to *key* in 483 * *map* with *value*. *flags* is one of: 484 * 485 * **BPF_NOEXIST** 486 * The entry for *key* must not exist in the map. 487 * **BPF_EXIST** 488 * The entry for *key* must already exist in the map. 489 * **BPF_ANY** 490 * No condition on the existence of the entry for *key*. 491 * 492 * Flag value **BPF_NOEXIST** cannot be used for maps of types 493 * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all 494 * elements always exist), the helper would return an error. 495 * Return 496 * 0 on success, or a negative error in case of failure. 497 * 498 * int bpf_map_delete_elem(struct bpf_map *map, const void *key) 499 * Description 500 * Delete entry with *key* from *map*. 501 * Return 502 * 0 on success, or a negative error in case of failure. 503 * 504 * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags) 505 * Description 506 * Push an element *value* in *map*. *flags* is one of: 507 * 508 * **BPF_EXIST** 509 * If the queue/stack is full, the oldest element is removed to 510 * make room for this. 511 * Return 512 * 0 on success, or a negative error in case of failure. 513 * 514 * int bpf_probe_read(void *dst, u32 size, const void *src) 515 * Description 516 * For tracing programs, safely attempt to read *size* bytes from 517 * address *src* and store the data in *dst*. 518 * Return 519 * 0 on success, or a negative error in case of failure. 520 * 521 * u64 bpf_ktime_get_ns(void) 522 * Description 523 * Return the time elapsed since system boot, in nanoseconds. 524 * Return 525 * Current *ktime*. 526 * 527 * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...) 528 * Description 529 * This helper is a "printk()-like" facility for debugging. It 530 * prints a message defined by format *fmt* (of size *fmt_size*) 531 * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if 532 * available. It can take up to three additional **u64** 533 * arguments (as an eBPF helpers, the total number of arguments is 534 * limited to five). 535 * 536 * Each time the helper is called, it appends a line to the trace. 537 * The format of the trace is customizable, and the exact output 538 * one will get depends on the options set in 539 * *\/sys/kernel/debug/tracing/trace_options* (see also the 540 * *README* file under the same directory). However, it usually 541 * defaults to something like: 542 * 543 * :: 544 * 545 * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg> 546 * 547 * In the above: 548 * 549 * * ``telnet`` is the name of the current task. 550 * * ``470`` is the PID of the current task. 551 * * ``001`` is the CPU number on which the task is 552 * running. 553 * * In ``.N..``, each character refers to a set of 554 * options (whether irqs are enabled, scheduling 555 * options, whether hard/softirqs are running, level of 556 * preempt_disabled respectively). **N** means that 557 * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED** 558 * are set. 559 * * ``419421.045894`` is a timestamp. 560 * * ``0x00000001`` is a fake value used by BPF for the 561 * instruction pointer register. 562 * * ``<formatted msg>`` is the message formatted with 563 * *fmt*. 564 * 565 * The conversion specifiers supported by *fmt* are similar, but 566 * more limited than for printk(). They are **%d**, **%i**, 567 * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**, 568 * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size 569 * of field, padding with zeroes, etc.) is available, and the 570 * helper will return **-EINVAL** (but print nothing) if it 571 * encounters an unknown specifier. 572 * 573 * Also, note that **bpf_trace_printk**\ () is slow, and should 574 * only be used for debugging purposes. For this reason, a notice 575 * bloc (spanning several lines) is printed to kernel logs and 576 * states that the helper should not be used "for production use" 577 * the first time this helper is used (or more precisely, when 578 * **trace_printk**\ () buffers are allocated). For passing values 579 * to user space, perf events should be preferred. 580 * Return 581 * The number of bytes written to the buffer, or a negative error 582 * in case of failure. 583 * 584 * u32 bpf_get_prandom_u32(void) 585 * Description 586 * Get a pseudo-random number. 587 * 588 * From a security point of view, this helper uses its own 589 * pseudo-random internal state, and cannot be used to infer the 590 * seed of other random functions in the kernel. However, it is 591 * essential to note that the generator used by the helper is not 592 * cryptographically secure. 593 * Return 594 * A random 32-bit unsigned value. 595 * 596 * u32 bpf_get_smp_processor_id(void) 597 * Description 598 * Get the SMP (symmetric multiprocessing) processor id. Note that 599 * all programs run with preemption disabled, which means that the 600 * SMP processor id is stable during all the execution of the 601 * program. 602 * Return 603 * The SMP id of the processor running the program. 604 * 605 * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags) 606 * Description 607 * Store *len* bytes from address *from* into the packet 608 * associated to *skb*, at *offset*. *flags* are a combination of 609 * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the 610 * checksum for the packet after storing the bytes) and 611 * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\ 612 * **->swhash** and *skb*\ **->l4hash** to 0). 613 * 614 * A call to this helper is susceptible to change the underlaying 615 * packet buffer. Therefore, at load time, all checks on pointers 616 * previously done by the verifier are invalidated and must be 617 * performed again, if the helper is used in combination with 618 * direct packet access. 619 * Return 620 * 0 on success, or a negative error in case of failure. 621 * 622 * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size) 623 * Description 624 * Recompute the layer 3 (e.g. IP) checksum for the packet 625 * associated to *skb*. Computation is incremental, so the helper 626 * must know the former value of the header field that was 627 * modified (*from*), the new value of this field (*to*), and the 628 * number of bytes (2 or 4) for this field, stored in *size*. 629 * Alternatively, it is possible to store the difference between 630 * the previous and the new values of the header field in *to*, by 631 * setting *from* and *size* to 0. For both methods, *offset* 632 * indicates the location of the IP checksum within the packet. 633 * 634 * This helper works in combination with **bpf_csum_diff**\ (), 635 * which does not update the checksum in-place, but offers more 636 * flexibility and can handle sizes larger than 2 or 4 for the 637 * checksum to update. 638 * 639 * A call to this helper is susceptible to change the underlaying 640 * packet buffer. Therefore, at load time, all checks on pointers 641 * previously done by the verifier are invalidated and must be 642 * performed again, if the helper is used in combination with 643 * direct packet access. 644 * Return 645 * 0 on success, or a negative error in case of failure. 646 * 647 * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags) 648 * Description 649 * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the 650 * packet associated to *skb*. Computation is incremental, so the 651 * helper must know the former value of the header field that was 652 * modified (*from*), the new value of this field (*to*), and the 653 * number of bytes (2 or 4) for this field, stored on the lowest 654 * four bits of *flags*. Alternatively, it is possible to store 655 * the difference between the previous and the new values of the 656 * header field in *to*, by setting *from* and the four lowest 657 * bits of *flags* to 0. For both methods, *offset* indicates the 658 * location of the IP checksum within the packet. In addition to 659 * the size of the field, *flags* can be added (bitwise OR) actual 660 * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left 661 * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and 662 * for updates resulting in a null checksum the value is set to 663 * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates 664 * the checksum is to be computed against a pseudo-header. 665 * 666 * This helper works in combination with **bpf_csum_diff**\ (), 667 * which does not update the checksum in-place, but offers more 668 * flexibility and can handle sizes larger than 2 or 4 for the 669 * checksum to update. 670 * 671 * A call to this helper is susceptible to change the underlaying 672 * packet buffer. Therefore, at load time, all checks on pointers 673 * previously done by the verifier are invalidated and must be 674 * performed again, if the helper is used in combination with 675 * direct packet access. 676 * Return 677 * 0 on success, or a negative error in case of failure. 678 * 679 * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index) 680 * Description 681 * This special helper is used to trigger a "tail call", or in 682 * other words, to jump into another eBPF program. The same stack 683 * frame is used (but values on stack and in registers for the 684 * caller are not accessible to the callee). This mechanism allows 685 * for program chaining, either for raising the maximum number of 686 * available eBPF instructions, or to execute given programs in 687 * conditional blocks. For security reasons, there is an upper 688 * limit to the number of successive tail calls that can be 689 * performed. 690 * 691 * Upon call of this helper, the program attempts to jump into a 692 * program referenced at index *index* in *prog_array_map*, a 693 * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes 694 * *ctx*, a pointer to the context. 695 * 696 * If the call succeeds, the kernel immediately runs the first 697 * instruction of the new program. This is not a function call, 698 * and it never returns to the previous program. If the call 699 * fails, then the helper has no effect, and the caller continues 700 * to run its subsequent instructions. A call can fail if the 701 * destination program for the jump does not exist (i.e. *index* 702 * is superior to the number of entries in *prog_array_map*), or 703 * if the maximum number of tail calls has been reached for this 704 * chain of programs. This limit is defined in the kernel by the 705 * macro **MAX_TAIL_CALL_CNT** (not accessible to user space), 706 * which is currently set to 32. 707 * Return 708 * 0 on success, or a negative error in case of failure. 709 * 710 * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags) 711 * Description 712 * Clone and redirect the packet associated to *skb* to another 713 * net device of index *ifindex*. Both ingress and egress 714 * interfaces can be used for redirection. The **BPF_F_INGRESS** 715 * value in *flags* is used to make the distinction (ingress path 716 * is selected if the flag is present, egress path otherwise). 717 * This is the only flag supported for now. 718 * 719 * In comparison with **bpf_redirect**\ () helper, 720 * **bpf_clone_redirect**\ () has the associated cost of 721 * duplicating the packet buffer, but this can be executed out of 722 * the eBPF program. Conversely, **bpf_redirect**\ () is more 723 * efficient, but it is handled through an action code where the 724 * redirection happens only after the eBPF program has returned. 725 * 726 * A call to this helper is susceptible to change the underlaying 727 * packet buffer. Therefore, at load time, all checks on pointers 728 * previously done by the verifier are invalidated and must be 729 * performed again, if the helper is used in combination with 730 * direct packet access. 731 * Return 732 * 0 on success, or a negative error in case of failure. 733 * 734 * u64 bpf_get_current_pid_tgid(void) 735 * Return 736 * A 64-bit integer containing the current tgid and pid, and 737 * created as such: 738 * *current_task*\ **->tgid << 32 \|** 739 * *current_task*\ **->pid**. 740 * 741 * u64 bpf_get_current_uid_gid(void) 742 * Return 743 * A 64-bit integer containing the current GID and UID, and 744 * created as such: *current_gid* **<< 32 \|** *current_uid*. 745 * 746 * int bpf_get_current_comm(char *buf, u32 size_of_buf) 747 * Description 748 * Copy the **comm** attribute of the current task into *buf* of 749 * *size_of_buf*. The **comm** attribute contains the name of 750 * the executable (excluding the path) for the current task. The 751 * *size_of_buf* must be strictly positive. On success, the 752 * helper makes sure that the *buf* is NUL-terminated. On failure, 753 * it is filled with zeroes. 754 * Return 755 * 0 on success, or a negative error in case of failure. 756 * 757 * u32 bpf_get_cgroup_classid(struct sk_buff *skb) 758 * Description 759 * Retrieve the classid for the current task, i.e. for the net_cls 760 * cgroup to which *skb* belongs. 761 * 762 * This helper can be used on TC egress path, but not on ingress. 763 * 764 * The net_cls cgroup provides an interface to tag network packets 765 * based on a user-provided identifier for all traffic coming from 766 * the tasks belonging to the related cgroup. See also the related 767 * kernel documentation, available from the Linux sources in file 768 * *Documentation/cgroup-v1/net_cls.txt*. 769 * 770 * The Linux kernel has two versions for cgroups: there are 771 * cgroups v1 and cgroups v2. Both are available to users, who can 772 * use a mixture of them, but note that the net_cls cgroup is for 773 * cgroup v1 only. This makes it incompatible with BPF programs 774 * run on cgroups, which is a cgroup-v2-only feature (a socket can 775 * only hold data for one version of cgroups at a time). 776 * 777 * This helper is only available is the kernel was compiled with 778 * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to 779 * "**y**" or to "**m**". 780 * Return 781 * The classid, or 0 for the default unconfigured classid. 782 * 783 * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 784 * Description 785 * Push a *vlan_tci* (VLAN tag control information) of protocol 786 * *vlan_proto* to the packet associated to *skb*, then update 787 * the checksum. Note that if *vlan_proto* is different from 788 * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to 789 * be **ETH_P_8021Q**. 790 * 791 * A call to this helper is susceptible to change the underlaying 792 * packet buffer. Therefore, at load time, all checks on pointers 793 * previously done by the verifier are invalidated and must be 794 * performed again, if the helper is used in combination with 795 * direct packet access. 796 * Return 797 * 0 on success, or a negative error in case of failure. 798 * 799 * int bpf_skb_vlan_pop(struct sk_buff *skb) 800 * Description 801 * Pop a VLAN header from the packet associated to *skb*. 802 * 803 * A call to this helper is susceptible to change the underlaying 804 * packet buffer. Therefore, at load time, all checks on pointers 805 * previously done by the verifier are invalidated and must be 806 * performed again, if the helper is used in combination with 807 * direct packet access. 808 * Return 809 * 0 on success, or a negative error in case of failure. 810 * 811 * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 812 * Description 813 * Get tunnel metadata. This helper takes a pointer *key* to an 814 * empty **struct bpf_tunnel_key** of **size**, that will be 815 * filled with tunnel metadata for the packet associated to *skb*. 816 * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which 817 * indicates that the tunnel is based on IPv6 protocol instead of 818 * IPv4. 819 * 820 * The **struct bpf_tunnel_key** is an object that generalizes the 821 * principal parameters used by various tunneling protocols into a 822 * single struct. This way, it can be used to easily make a 823 * decision based on the contents of the encapsulation header, 824 * "summarized" in this struct. In particular, it holds the IP 825 * address of the remote end (IPv4 or IPv6, depending on the case) 826 * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also, 827 * this struct exposes the *key*\ **->tunnel_id**, which is 828 * generally mapped to a VNI (Virtual Network Identifier), making 829 * it programmable together with the **bpf_skb_set_tunnel_key**\ 830 * () helper. 831 * 832 * Let's imagine that the following code is part of a program 833 * attached to the TC ingress interface, on one end of a GRE 834 * tunnel, and is supposed to filter out all messages coming from 835 * remote ends with IPv4 address other than 10.0.0.1: 836 * 837 * :: 838 * 839 * int ret; 840 * struct bpf_tunnel_key key = {}; 841 * 842 * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0); 843 * if (ret < 0) 844 * return TC_ACT_SHOT; // drop packet 845 * 846 * if (key.remote_ipv4 != 0x0a000001) 847 * return TC_ACT_SHOT; // drop packet 848 * 849 * return TC_ACT_OK; // accept packet 850 * 851 * This interface can also be used with all encapsulation devices 852 * that can operate in "collect metadata" mode: instead of having 853 * one network device per specific configuration, the "collect 854 * metadata" mode only requires a single device where the 855 * configuration can be extracted from this helper. 856 * 857 * This can be used together with various tunnels such as VXLan, 858 * Geneve, GRE or IP in IP (IPIP). 859 * Return 860 * 0 on success, or a negative error in case of failure. 861 * 862 * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags) 863 * Description 864 * Populate tunnel metadata for packet associated to *skb.* The 865 * tunnel metadata is set to the contents of *key*, of *size*. The 866 * *flags* can be set to a combination of the following values: 867 * 868 * **BPF_F_TUNINFO_IPV6** 869 * Indicate that the tunnel is based on IPv6 protocol 870 * instead of IPv4. 871 * **BPF_F_ZERO_CSUM_TX** 872 * For IPv4 packets, add a flag to tunnel metadata 873 * indicating that checksum computation should be skipped 874 * and checksum set to zeroes. 875 * **BPF_F_DONT_FRAGMENT** 876 * Add a flag to tunnel metadata indicating that the 877 * packet should not be fragmented. 878 * **BPF_F_SEQ_NUMBER** 879 * Add a flag to tunnel metadata indicating that a 880 * sequence number should be added to tunnel header before 881 * sending the packet. This flag was added for GRE 882 * encapsulation, but might be used with other protocols 883 * as well in the future. 884 * 885 * Here is a typical usage on the transmit path: 886 * 887 * :: 888 * 889 * struct bpf_tunnel_key key; 890 * populate key ... 891 * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0); 892 * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0); 893 * 894 * See also the description of the **bpf_skb_get_tunnel_key**\ () 895 * helper for additional information. 896 * Return 897 * 0 on success, or a negative error in case of failure. 898 * 899 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags) 900 * Description 901 * Read the value of a perf event counter. This helper relies on a 902 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of 903 * the perf event counter is selected when *map* is updated with 904 * perf event file descriptors. The *map* is an array whose size 905 * is the number of available CPUs, and each cell contains a value 906 * relative to one CPU. The value to retrieve is indicated by 907 * *flags*, that contains the index of the CPU to look up, masked 908 * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 909 * **BPF_F_CURRENT_CPU** to indicate that the value for the 910 * current CPU should be retrieved. 911 * 912 * Note that before Linux 4.13, only hardware perf event can be 913 * retrieved. 914 * 915 * Also, be aware that the newer helper 916 * **bpf_perf_event_read_value**\ () is recommended over 917 * **bpf_perf_event_read**\ () in general. The latter has some ABI 918 * quirks where error and counter value are used as a return code 919 * (which is wrong to do since ranges may overlap). This issue is 920 * fixed with **bpf_perf_event_read_value**\ (), which at the same 921 * time provides more features over the **bpf_perf_event_read**\ 922 * () interface. Please refer to the description of 923 * **bpf_perf_event_read_value**\ () for details. 924 * Return 925 * The value of the perf event counter read from the map, or a 926 * negative error code in case of failure. 927 * 928 * int bpf_redirect(u32 ifindex, u64 flags) 929 * Description 930 * Redirect the packet to another net device of index *ifindex*. 931 * This helper is somewhat similar to **bpf_clone_redirect**\ 932 * (), except that the packet is not cloned, which provides 933 * increased performance. 934 * 935 * Except for XDP, both ingress and egress interfaces can be used 936 * for redirection. The **BPF_F_INGRESS** value in *flags* is used 937 * to make the distinction (ingress path is selected if the flag 938 * is present, egress path otherwise). Currently, XDP only 939 * supports redirection to the egress interface, and accepts no 940 * flag at all. 941 * 942 * The same effect can be attained with the more generic 943 * **bpf_redirect_map**\ (), which requires specific maps to be 944 * used but offers better performance. 945 * Return 946 * For XDP, the helper returns **XDP_REDIRECT** on success or 947 * **XDP_ABORTED** on error. For other program types, the values 948 * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on 949 * error. 950 * 951 * u32 bpf_get_route_realm(struct sk_buff *skb) 952 * Description 953 * Retrieve the realm or the route, that is to say the 954 * **tclassid** field of the destination for the *skb*. The 955 * indentifier retrieved is a user-provided tag, similar to the 956 * one used with the net_cls cgroup (see description for 957 * **bpf_get_cgroup_classid**\ () helper), but here this tag is 958 * held by a route (a destination entry), not by a task. 959 * 960 * Retrieving this identifier works with the clsact TC egress hook 961 * (see also **tc-bpf(8)**), or alternatively on conventional 962 * classful egress qdiscs, but not on TC ingress path. In case of 963 * clsact TC egress hook, this has the advantage that, internally, 964 * the destination entry has not been dropped yet in the transmit 965 * path. Therefore, the destination entry does not need to be 966 * artificially held via **netif_keep_dst**\ () for a classful 967 * qdisc until the *skb* is freed. 968 * 969 * This helper is available only if the kernel was compiled with 970 * **CONFIG_IP_ROUTE_CLASSID** configuration option. 971 * Return 972 * The realm of the route for the packet associated to *skb*, or 0 973 * if none was found. 974 * 975 * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size) 976 * Description 977 * Write raw *data* blob into a special BPF perf event held by 978 * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf 979 * event must have the following attributes: **PERF_SAMPLE_RAW** 980 * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and 981 * **PERF_COUNT_SW_BPF_OUTPUT** as **config**. 982 * 983 * The *flags* are used to indicate the index in *map* for which 984 * the value must be put, masked with **BPF_F_INDEX_MASK**. 985 * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU** 986 * to indicate that the index of the current CPU core should be 987 * used. 988 * 989 * The value to write, of *size*, is passed through eBPF stack and 990 * pointed by *data*. 991 * 992 * The context of the program *ctx* needs also be passed to the 993 * helper. 994 * 995 * On user space, a program willing to read the values needs to 996 * call **perf_event_open**\ () on the perf event (either for 997 * one or for all CPUs) and to store the file descriptor into the 998 * *map*. This must be done before the eBPF program can send data 999 * into it. An example is available in file 1000 * *samples/bpf/trace_output_user.c* in the Linux kernel source 1001 * tree (the eBPF program counterpart is in 1002 * *samples/bpf/trace_output_kern.c*). 1003 * 1004 * **bpf_perf_event_output**\ () achieves better performance 1005 * than **bpf_trace_printk**\ () for sharing data with user 1006 * space, and is much better suitable for streaming data from eBPF 1007 * programs. 1008 * 1009 * Note that this helper is not restricted to tracing use cases 1010 * and can be used with programs attached to TC or XDP as well, 1011 * where it allows for passing data to user space listeners. Data 1012 * can be: 1013 * 1014 * * Only custom structs, 1015 * * Only the packet payload, or 1016 * * A combination of both. 1017 * Return 1018 * 0 on success, or a negative error in case of failure. 1019 * 1020 * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len) 1021 * Description 1022 * This helper was provided as an easy way to load data from a 1023 * packet. It can be used to load *len* bytes from *offset* from 1024 * the packet associated to *skb*, into the buffer pointed by 1025 * *to*. 1026 * 1027 * Since Linux 4.7, usage of this helper has mostly been replaced 1028 * by "direct packet access", enabling packet data to be 1029 * manipulated with *skb*\ **->data** and *skb*\ **->data_end** 1030 * pointing respectively to the first byte of packet data and to 1031 * the byte after the last byte of packet data. However, it 1032 * remains useful if one wishes to read large quantities of data 1033 * at once from a packet into the eBPF stack. 1034 * Return 1035 * 0 on success, or a negative error in case of failure. 1036 * 1037 * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags) 1038 * Description 1039 * Walk a user or a kernel stack and return its id. To achieve 1040 * this, the helper needs *ctx*, which is a pointer to the context 1041 * on which the tracing program is executed, and a pointer to a 1042 * *map* of type **BPF_MAP_TYPE_STACK_TRACE**. 1043 * 1044 * The last argument, *flags*, holds the number of stack frames to 1045 * skip (from 0 to 255), masked with 1046 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1047 * a combination of the following flags: 1048 * 1049 * **BPF_F_USER_STACK** 1050 * Collect a user space stack instead of a kernel stack. 1051 * **BPF_F_FAST_STACK_CMP** 1052 * Compare stacks by hash only. 1053 * **BPF_F_REUSE_STACKID** 1054 * If two different stacks hash into the same *stackid*, 1055 * discard the old one. 1056 * 1057 * The stack id retrieved is a 32 bit long integer handle which 1058 * can be further combined with other data (including other stack 1059 * ids) and used as a key into maps. This can be useful for 1060 * generating a variety of graphs (such as flame graphs or off-cpu 1061 * graphs). 1062 * 1063 * For walking a stack, this helper is an improvement over 1064 * **bpf_probe_read**\ (), which can be used with unrolled loops 1065 * but is not efficient and consumes a lot of eBPF instructions. 1066 * Instead, **bpf_get_stackid**\ () can collect up to 1067 * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that 1068 * this limit can be controlled with the **sysctl** program, and 1069 * that it should be manually increased in order to profile long 1070 * user stacks (such as stacks for Java programs). To do so, use: 1071 * 1072 * :: 1073 * 1074 * # sysctl kernel.perf_event_max_stack=<new value> 1075 * Return 1076 * The positive or null stack id on success, or a negative error 1077 * in case of failure. 1078 * 1079 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed) 1080 * Description 1081 * Compute a checksum difference, from the raw buffer pointed by 1082 * *from*, of length *from_size* (that must be a multiple of 4), 1083 * towards the raw buffer pointed by *to*, of size *to_size* 1084 * (same remark). An optional *seed* can be added to the value 1085 * (this can be cascaded, the seed may come from a previous call 1086 * to the helper). 1087 * 1088 * This is flexible enough to be used in several ways: 1089 * 1090 * * With *from_size* == 0, *to_size* > 0 and *seed* set to 1091 * checksum, it can be used when pushing new data. 1092 * * With *from_size* > 0, *to_size* == 0 and *seed* set to 1093 * checksum, it can be used when removing data from a packet. 1094 * * With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it 1095 * can be used to compute a diff. Note that *from_size* and 1096 * *to_size* do not need to be equal. 1097 * 1098 * This helper can be used in combination with 1099 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to 1100 * which one can feed in the difference computed with 1101 * **bpf_csum_diff**\ (). 1102 * Return 1103 * The checksum result, or a negative error code in case of 1104 * failure. 1105 * 1106 * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1107 * Description 1108 * Retrieve tunnel options metadata for the packet associated to 1109 * *skb*, and store the raw tunnel option data to the buffer *opt* 1110 * of *size*. 1111 * 1112 * This helper can be used with encapsulation devices that can 1113 * operate in "collect metadata" mode (please refer to the related 1114 * note in the description of **bpf_skb_get_tunnel_key**\ () for 1115 * more details). A particular example where this can be used is 1116 * in combination with the Geneve encapsulation protocol, where it 1117 * allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper) 1118 * and retrieving arbitrary TLVs (Type-Length-Value headers) from 1119 * the eBPF program. This allows for full customization of these 1120 * headers. 1121 * Return 1122 * The size of the option data retrieved. 1123 * 1124 * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size) 1125 * Description 1126 * Set tunnel options metadata for the packet associated to *skb* 1127 * to the option data contained in the raw buffer *opt* of *size*. 1128 * 1129 * See also the description of the **bpf_skb_get_tunnel_opt**\ () 1130 * helper for additional information. 1131 * Return 1132 * 0 on success, or a negative error in case of failure. 1133 * 1134 * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags) 1135 * Description 1136 * Change the protocol of the *skb* to *proto*. Currently 1137 * supported are transition from IPv4 to IPv6, and from IPv6 to 1138 * IPv4. The helper takes care of the groundwork for the 1139 * transition, including resizing the socket buffer. The eBPF 1140 * program is expected to fill the new headers, if any, via 1141 * **skb_store_bytes**\ () and to recompute the checksums with 1142 * **bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ 1143 * (). The main case for this helper is to perform NAT64 1144 * operations out of an eBPF program. 1145 * 1146 * Internally, the GSO type is marked as dodgy so that headers are 1147 * checked and segments are recalculated by the GSO/GRO engine. 1148 * The size for GSO target is adapted as well. 1149 * 1150 * All values for *flags* are reserved for future usage, and must 1151 * be left at zero. 1152 * 1153 * A call to this helper is susceptible to change the underlaying 1154 * packet buffer. Therefore, at load time, all checks on pointers 1155 * previously done by the verifier are invalidated and must be 1156 * performed again, if the helper is used in combination with 1157 * direct packet access. 1158 * Return 1159 * 0 on success, or a negative error in case of failure. 1160 * 1161 * int bpf_skb_change_type(struct sk_buff *skb, u32 type) 1162 * Description 1163 * Change the packet type for the packet associated to *skb*. This 1164 * comes down to setting *skb*\ **->pkt_type** to *type*, except 1165 * the eBPF program does not have a write access to *skb*\ 1166 * **->pkt_type** beside this helper. Using a helper here allows 1167 * for graceful handling of errors. 1168 * 1169 * The major use case is to change incoming *skb*s to 1170 * **PACKET_HOST** in a programmatic way instead of having to 1171 * recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for 1172 * example. 1173 * 1174 * Note that *type* only allows certain values. At this time, they 1175 * are: 1176 * 1177 * **PACKET_HOST** 1178 * Packet is for us. 1179 * **PACKET_BROADCAST** 1180 * Send packet to all. 1181 * **PACKET_MULTICAST** 1182 * Send packet to group. 1183 * **PACKET_OTHERHOST** 1184 * Send packet to someone else. 1185 * Return 1186 * 0 on success, or a negative error in case of failure. 1187 * 1188 * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index) 1189 * Description 1190 * Check whether *skb* is a descendant of the cgroup2 held by 1191 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1192 * Return 1193 * The return value depends on the result of the test, and can be: 1194 * 1195 * * 0, if the *skb* failed the cgroup2 descendant test. 1196 * * 1, if the *skb* succeeded the cgroup2 descendant test. 1197 * * A negative error code, if an error occurred. 1198 * 1199 * u32 bpf_get_hash_recalc(struct sk_buff *skb) 1200 * Description 1201 * Retrieve the hash of the packet, *skb*\ **->hash**. If it is 1202 * not set, in particular if the hash was cleared due to mangling, 1203 * recompute this hash. Later accesses to the hash can be done 1204 * directly with *skb*\ **->hash**. 1205 * 1206 * Calling **bpf_set_hash_invalid**\ (), changing a packet 1207 * prototype with **bpf_skb_change_proto**\ (), or calling 1208 * **bpf_skb_store_bytes**\ () with the 1209 * **BPF_F_INVALIDATE_HASH** are actions susceptible to clear 1210 * the hash and to trigger a new computation for the next call to 1211 * **bpf_get_hash_recalc**\ (). 1212 * Return 1213 * The 32-bit hash. 1214 * 1215 * u64 bpf_get_current_task(void) 1216 * Return 1217 * A pointer to the current task struct. 1218 * 1219 * int bpf_probe_write_user(void *dst, const void *src, u32 len) 1220 * Description 1221 * Attempt in a safe way to write *len* bytes from the buffer 1222 * *src* to *dst* in memory. It only works for threads that are in 1223 * user context, and *dst* must be a valid user space address. 1224 * 1225 * This helper should not be used to implement any kind of 1226 * security mechanism because of TOC-TOU attacks, but rather to 1227 * debug, divert, and manipulate execution of semi-cooperative 1228 * processes. 1229 * 1230 * Keep in mind that this feature is meant for experiments, and it 1231 * has a risk of crashing the system and running programs. 1232 * Therefore, when an eBPF program using this helper is attached, 1233 * a warning including PID and process name is printed to kernel 1234 * logs. 1235 * Return 1236 * 0 on success, or a negative error in case of failure. 1237 * 1238 * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index) 1239 * Description 1240 * Check whether the probe is being run is the context of a given 1241 * subset of the cgroup2 hierarchy. The cgroup2 to test is held by 1242 * *map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*. 1243 * Return 1244 * The return value depends on the result of the test, and can be: 1245 * 1246 * * 0, if the *skb* task belongs to the cgroup2. 1247 * * 1, if the *skb* task does not belong to the cgroup2. 1248 * * A negative error code, if an error occurred. 1249 * 1250 * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags) 1251 * Description 1252 * Resize (trim or grow) the packet associated to *skb* to the 1253 * new *len*. The *flags* are reserved for future usage, and must 1254 * be left at zero. 1255 * 1256 * The basic idea is that the helper performs the needed work to 1257 * change the size of the packet, then the eBPF program rewrites 1258 * the rest via helpers like **bpf_skb_store_bytes**\ (), 1259 * **bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ () 1260 * and others. This helper is a slow path utility intended for 1261 * replies with control messages. And because it is targeted for 1262 * slow path, the helper itself can afford to be slow: it 1263 * implicitly linearizes, unclones and drops offloads from the 1264 * *skb*. 1265 * 1266 * A call to this helper is susceptible to change the underlaying 1267 * packet buffer. Therefore, at load time, all checks on pointers 1268 * previously done by the verifier are invalidated and must be 1269 * performed again, if the helper is used in combination with 1270 * direct packet access. 1271 * Return 1272 * 0 on success, or a negative error in case of failure. 1273 * 1274 * int bpf_skb_pull_data(struct sk_buff *skb, u32 len) 1275 * Description 1276 * Pull in non-linear data in case the *skb* is non-linear and not 1277 * all of *len* are part of the linear section. Make *len* bytes 1278 * from *skb* readable and writable. If a zero value is passed for 1279 * *len*, then the whole length of the *skb* is pulled. 1280 * 1281 * This helper is only needed for reading and writing with direct 1282 * packet access. 1283 * 1284 * For direct packet access, testing that offsets to access 1285 * are within packet boundaries (test on *skb*\ **->data_end**) is 1286 * susceptible to fail if offsets are invalid, or if the requested 1287 * data is in non-linear parts of the *skb*. On failure the 1288 * program can just bail out, or in the case of a non-linear 1289 * buffer, use a helper to make the data available. The 1290 * **bpf_skb_load_bytes**\ () helper is a first solution to access 1291 * the data. Another one consists in using **bpf_skb_pull_data** 1292 * to pull in once the non-linear parts, then retesting and 1293 * eventually access the data. 1294 * 1295 * At the same time, this also makes sure the *skb* is uncloned, 1296 * which is a necessary condition for direct write. As this needs 1297 * to be an invariant for the write part only, the verifier 1298 * detects writes and adds a prologue that is calling 1299 * **bpf_skb_pull_data()** to effectively unclone the *skb* from 1300 * the very beginning in case it is indeed cloned. 1301 * 1302 * A call to this helper is susceptible to change the underlaying 1303 * packet buffer. Therefore, at load time, all checks on pointers 1304 * previously done by the verifier are invalidated and must be 1305 * performed again, if the helper is used in combination with 1306 * direct packet access. 1307 * Return 1308 * 0 on success, or a negative error in case of failure. 1309 * 1310 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum) 1311 * Description 1312 * Add the checksum *csum* into *skb*\ **->csum** in case the 1313 * driver has supplied a checksum for the entire packet into that 1314 * field. Return an error otherwise. This helper is intended to be 1315 * used in combination with **bpf_csum_diff**\ (), in particular 1316 * when the checksum needs to be updated after data has been 1317 * written into the packet through direct packet access. 1318 * Return 1319 * The checksum on success, or a negative error code in case of 1320 * failure. 1321 * 1322 * void bpf_set_hash_invalid(struct sk_buff *skb) 1323 * Description 1324 * Invalidate the current *skb*\ **->hash**. It can be used after 1325 * mangling on headers through direct packet access, in order to 1326 * indicate that the hash is outdated and to trigger a 1327 * recalculation the next time the kernel tries to access this 1328 * hash or when the **bpf_get_hash_recalc**\ () helper is called. 1329 * 1330 * int bpf_get_numa_node_id(void) 1331 * Description 1332 * Return the id of the current NUMA node. The primary use case 1333 * for this helper is the selection of sockets for the local NUMA 1334 * node, when the program is attached to sockets using the 1335 * **SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**), 1336 * but the helper is also available to other eBPF program types, 1337 * similarly to **bpf_get_smp_processor_id**\ (). 1338 * Return 1339 * The id of current NUMA node. 1340 * 1341 * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags) 1342 * Description 1343 * Grows headroom of packet associated to *skb* and adjusts the 1344 * offset of the MAC header accordingly, adding *len* bytes of 1345 * space. It automatically extends and reallocates memory as 1346 * required. 1347 * 1348 * This helper can be used on a layer 3 *skb* to push a MAC header 1349 * for redirection into a layer 2 device. 1350 * 1351 * All values for *flags* are reserved for future usage, and must 1352 * be left at zero. 1353 * 1354 * A call to this helper is susceptible to change the underlaying 1355 * packet buffer. Therefore, at load time, all checks on pointers 1356 * previously done by the verifier are invalidated and must be 1357 * performed again, if the helper is used in combination with 1358 * direct packet access. 1359 * Return 1360 * 0 on success, or a negative error in case of failure. 1361 * 1362 * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta) 1363 * Description 1364 * Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that 1365 * it is possible to use a negative value for *delta*. This helper 1366 * can be used to prepare the packet for pushing or popping 1367 * headers. 1368 * 1369 * A call to this helper is susceptible to change the underlaying 1370 * packet buffer. Therefore, at load time, all checks on pointers 1371 * previously done by the verifier are invalidated and must be 1372 * performed again, if the helper is used in combination with 1373 * direct packet access. 1374 * Return 1375 * 0 on success, or a negative error in case of failure. 1376 * 1377 * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr) 1378 * Description 1379 * Copy a NUL terminated string from an unsafe address 1380 * *unsafe_ptr* to *dst*. The *size* should include the 1381 * terminating NUL byte. In case the string length is smaller than 1382 * *size*, the target is not padded with further NUL bytes. If the 1383 * string length is larger than *size*, just *size*-1 bytes are 1384 * copied and the last byte is set to NUL. 1385 * 1386 * On success, the length of the copied string is returned. This 1387 * makes this helper useful in tracing programs for reading 1388 * strings, and more importantly to get its length at runtime. See 1389 * the following snippet: 1390 * 1391 * :: 1392 * 1393 * SEC("kprobe/sys_open") 1394 * void bpf_sys_open(struct pt_regs *ctx) 1395 * { 1396 * char buf[PATHLEN]; // PATHLEN is defined to 256 1397 * int res = bpf_probe_read_str(buf, sizeof(buf), 1398 * ctx->di); 1399 * 1400 * // Consume buf, for example push it to 1401 * // userspace via bpf_perf_event_output(); we 1402 * // can use res (the string length) as event 1403 * // size, after checking its boundaries. 1404 * } 1405 * 1406 * In comparison, using **bpf_probe_read()** helper here instead 1407 * to read the string would require to estimate the length at 1408 * compile time, and would often result in copying more memory 1409 * than necessary. 1410 * 1411 * Another useful use case is when parsing individual process 1412 * arguments or individual environment variables navigating 1413 * *current*\ **->mm->arg_start** and *current*\ 1414 * **->mm->env_start**: using this helper and the return value, 1415 * one can quickly iterate at the right offset of the memory area. 1416 * Return 1417 * On success, the strictly positive length of the string, 1418 * including the trailing NUL character. On error, a negative 1419 * value. 1420 * 1421 * u64 bpf_get_socket_cookie(struct sk_buff *skb) 1422 * Description 1423 * If the **struct sk_buff** pointed by *skb* has a known socket, 1424 * retrieve the cookie (generated by the kernel) of this socket. 1425 * If no cookie has been set yet, generate a new cookie. Once 1426 * generated, the socket cookie remains stable for the life of the 1427 * socket. This helper can be useful for monitoring per socket 1428 * networking traffic statistics as it provides a unique socket 1429 * identifier per namespace. 1430 * Return 1431 * A 8-byte long non-decreasing number on success, or 0 if the 1432 * socket field is missing inside *skb*. 1433 * 1434 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx) 1435 * Description 1436 * Equivalent to bpf_get_socket_cookie() helper that accepts 1437 * *skb*, but gets socket from **struct bpf_sock_addr** contex. 1438 * Return 1439 * A 8-byte long non-decreasing number. 1440 * 1441 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx) 1442 * Description 1443 * Equivalent to bpf_get_socket_cookie() helper that accepts 1444 * *skb*, but gets socket from **struct bpf_sock_ops** contex. 1445 * Return 1446 * A 8-byte long non-decreasing number. 1447 * 1448 * u32 bpf_get_socket_uid(struct sk_buff *skb) 1449 * Return 1450 * The owner UID of the socket associated to *skb*. If the socket 1451 * is **NULL**, or if it is not a full socket (i.e. if it is a 1452 * time-wait or a request socket instead), **overflowuid** value 1453 * is returned (note that **overflowuid** might also be the actual 1454 * UID value for the socket). 1455 * 1456 * u32 bpf_set_hash(struct sk_buff *skb, u32 hash) 1457 * Description 1458 * Set the full hash for *skb* (set the field *skb*\ **->hash**) 1459 * to value *hash*. 1460 * Return 1461 * 0 1462 * 1463 * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1464 * Description 1465 * Emulate a call to **setsockopt()** on the socket associated to 1466 * *bpf_socket*, which must be a full socket. The *level* at 1467 * which the option resides and the name *optname* of the option 1468 * must be specified, see **setsockopt(2)** for more information. 1469 * The option value of length *optlen* is pointed by *optval*. 1470 * 1471 * This helper actually implements a subset of **setsockopt()**. 1472 * It supports the following *level*\ s: 1473 * 1474 * * **SOL_SOCKET**, which supports the following *optname*\ s: 1475 * **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**, 1476 * **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**. 1477 * * **IPPROTO_TCP**, which supports the following *optname*\ s: 1478 * **TCP_CONGESTION**, **TCP_BPF_IW**, 1479 * **TCP_BPF_SNDCWND_CLAMP**. 1480 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1481 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1482 * Return 1483 * 0 on success, or a negative error in case of failure. 1484 * 1485 * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags) 1486 * Description 1487 * Grow or shrink the room for data in the packet associated to 1488 * *skb* by *len_diff*, and according to the selected *mode*. 1489 * 1490 * There is a single supported mode at this time: 1491 * 1492 * * **BPF_ADJ_ROOM_NET**: Adjust room at the network layer 1493 * (room space is added or removed below the layer 3 header). 1494 * 1495 * All values for *flags* are reserved for future usage, and must 1496 * be left at zero. 1497 * 1498 * A call to this helper is susceptible to change the underlaying 1499 * packet buffer. Therefore, at load time, all checks on pointers 1500 * previously done by the verifier are invalidated and must be 1501 * performed again, if the helper is used in combination with 1502 * direct packet access. 1503 * Return 1504 * 0 on success, or a negative error in case of failure. 1505 * 1506 * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1507 * Description 1508 * Redirect the packet to the endpoint referenced by *map* at 1509 * index *key*. Depending on its type, this *map* can contain 1510 * references to net devices (for forwarding packets through other 1511 * ports), or to CPUs (for redirecting XDP frames to another CPU; 1512 * but this is only implemented for native XDP (with driver 1513 * support) as of this writing). 1514 * 1515 * All values for *flags* are reserved for future usage, and must 1516 * be left at zero. 1517 * 1518 * When used to redirect packets to net devices, this helper 1519 * provides a high performance increase over **bpf_redirect**\ (). 1520 * This is due to various implementation details of the underlying 1521 * mechanisms, one of which is the fact that **bpf_redirect_map**\ 1522 * () tries to send packet as a "bulk" to the device. 1523 * Return 1524 * **XDP_REDIRECT** on success, or **XDP_ABORTED** on error. 1525 * 1526 * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags) 1527 * Description 1528 * Redirect the packet to the socket referenced by *map* (of type 1529 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1530 * egress interfaces can be used for redirection. The 1531 * **BPF_F_INGRESS** value in *flags* is used to make the 1532 * distinction (ingress path is selected if the flag is present, 1533 * egress path otherwise). This is the only flag supported for now. 1534 * Return 1535 * **SK_PASS** on success, or **SK_DROP** on error. 1536 * 1537 * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags) 1538 * Description 1539 * Add an entry to, or update a *map* referencing sockets. The 1540 * *skops* is used as a new value for the entry associated to 1541 * *key*. *flags* is one of: 1542 * 1543 * **BPF_NOEXIST** 1544 * The entry for *key* must not exist in the map. 1545 * **BPF_EXIST** 1546 * The entry for *key* must already exist in the map. 1547 * **BPF_ANY** 1548 * No condition on the existence of the entry for *key*. 1549 * 1550 * If the *map* has eBPF programs (parser and verdict), those will 1551 * be inherited by the socket being added. If the socket is 1552 * already attached to eBPF programs, this results in an error. 1553 * Return 1554 * 0 on success, or a negative error in case of failure. 1555 * 1556 * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta) 1557 * Description 1558 * Adjust the address pointed by *xdp_md*\ **->data_meta** by 1559 * *delta* (which can be positive or negative). Note that this 1560 * operation modifies the address stored in *xdp_md*\ **->data**, 1561 * so the latter must be loaded only after the helper has been 1562 * called. 1563 * 1564 * The use of *xdp_md*\ **->data_meta** is optional and programs 1565 * are not required to use it. The rationale is that when the 1566 * packet is processed with XDP (e.g. as DoS filter), it is 1567 * possible to push further meta data along with it before passing 1568 * to the stack, and to give the guarantee that an ingress eBPF 1569 * program attached as a TC classifier on the same device can pick 1570 * this up for further post-processing. Since TC works with socket 1571 * buffers, it remains possible to set from XDP the **mark** or 1572 * **priority** pointers, or other pointers for the socket buffer. 1573 * Having this scratch space generic and programmable allows for 1574 * more flexibility as the user is free to store whatever meta 1575 * data they need. 1576 * 1577 * A call to this helper is susceptible to change the underlaying 1578 * packet buffer. Therefore, at load time, all checks on pointers 1579 * previously done by the verifier are invalidated and must be 1580 * performed again, if the helper is used in combination with 1581 * direct packet access. 1582 * Return 1583 * 0 on success, or a negative error in case of failure. 1584 * 1585 * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size) 1586 * Description 1587 * Read the value of a perf event counter, and store it into *buf* 1588 * of size *buf_size*. This helper relies on a *map* of type 1589 * **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event 1590 * counter is selected when *map* is updated with perf event file 1591 * descriptors. The *map* is an array whose size is the number of 1592 * available CPUs, and each cell contains a value relative to one 1593 * CPU. The value to retrieve is indicated by *flags*, that 1594 * contains the index of the CPU to look up, masked with 1595 * **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to 1596 * **BPF_F_CURRENT_CPU** to indicate that the value for the 1597 * current CPU should be retrieved. 1598 * 1599 * This helper behaves in a way close to 1600 * **bpf_perf_event_read**\ () helper, save that instead of 1601 * just returning the value observed, it fills the *buf* 1602 * structure. This allows for additional data to be retrieved: in 1603 * particular, the enabled and running times (in *buf*\ 1604 * **->enabled** and *buf*\ **->running**, respectively) are 1605 * copied. In general, **bpf_perf_event_read_value**\ () is 1606 * recommended over **bpf_perf_event_read**\ (), which has some 1607 * ABI issues and provides fewer functionalities. 1608 * 1609 * These values are interesting, because hardware PMU (Performance 1610 * Monitoring Unit) counters are limited resources. When there are 1611 * more PMU based perf events opened than available counters, 1612 * kernel will multiplex these events so each event gets certain 1613 * percentage (but not all) of the PMU time. In case that 1614 * multiplexing happens, the number of samples or counter value 1615 * will not reflect the case compared to when no multiplexing 1616 * occurs. This makes comparison between different runs difficult. 1617 * Typically, the counter value should be normalized before 1618 * comparing to other experiments. The usual normalization is done 1619 * as follows. 1620 * 1621 * :: 1622 * 1623 * normalized_counter = counter * t_enabled / t_running 1624 * 1625 * Where t_enabled is the time enabled for event and t_running is 1626 * the time running for event since last normalization. The 1627 * enabled and running times are accumulated since the perf event 1628 * open. To achieve scaling factor between two invocations of an 1629 * eBPF program, users can can use CPU id as the key (which is 1630 * typical for perf array usage model) to remember the previous 1631 * value and do the calculation inside the eBPF program. 1632 * Return 1633 * 0 on success, or a negative error in case of failure. 1634 * 1635 * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size) 1636 * Description 1637 * For en eBPF program attached to a perf event, retrieve the 1638 * value of the event counter associated to *ctx* and store it in 1639 * the structure pointed by *buf* and of size *buf_size*. Enabled 1640 * and running times are also stored in the structure (see 1641 * description of helper **bpf_perf_event_read_value**\ () for 1642 * more details). 1643 * Return 1644 * 0 on success, or a negative error in case of failure. 1645 * 1646 * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen) 1647 * Description 1648 * Emulate a call to **getsockopt()** on the socket associated to 1649 * *bpf_socket*, which must be a full socket. The *level* at 1650 * which the option resides and the name *optname* of the option 1651 * must be specified, see **getsockopt(2)** for more information. 1652 * The retrieved value is stored in the structure pointed by 1653 * *opval* and of length *optlen*. 1654 * 1655 * This helper actually implements a subset of **getsockopt()**. 1656 * It supports the following *level*\ s: 1657 * 1658 * * **IPPROTO_TCP**, which supports *optname* 1659 * **TCP_CONGESTION**. 1660 * * **IPPROTO_IP**, which supports *optname* **IP_TOS**. 1661 * * **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**. 1662 * Return 1663 * 0 on success, or a negative error in case of failure. 1664 * 1665 * int bpf_override_return(struct pt_reg *regs, u64 rc) 1666 * Description 1667 * Used for error injection, this helper uses kprobes to override 1668 * the return value of the probed function, and to set it to *rc*. 1669 * The first argument is the context *regs* on which the kprobe 1670 * works. 1671 * 1672 * This helper works by setting setting the PC (program counter) 1673 * to an override function which is run in place of the original 1674 * probed function. This means the probed function is not run at 1675 * all. The replacement function just returns with the required 1676 * value. 1677 * 1678 * This helper has security implications, and thus is subject to 1679 * restrictions. It is only available if the kernel was compiled 1680 * with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration 1681 * option, and in this case it only works on functions tagged with 1682 * **ALLOW_ERROR_INJECTION** in the kernel code. 1683 * 1684 * Also, the helper is only available for the architectures having 1685 * the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing, 1686 * x86 architecture is the only one to support this feature. 1687 * Return 1688 * 0 1689 * 1690 * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval) 1691 * Description 1692 * Attempt to set the value of the **bpf_sock_ops_cb_flags** field 1693 * for the full TCP socket associated to *bpf_sock_ops* to 1694 * *argval*. 1695 * 1696 * The primary use of this field is to determine if there should 1697 * be calls to eBPF programs of type 1698 * **BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP 1699 * code. A program of the same type can change its value, per 1700 * connection and as necessary, when the connection is 1701 * established. This field is directly accessible for reading, but 1702 * this helper must be used for updates in order to return an 1703 * error if an eBPF program tries to set a callback that is not 1704 * supported in the current kernel. 1705 * 1706 * The supported callback values that *argval* can combine are: 1707 * 1708 * * **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out) 1709 * * **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission) 1710 * * **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change) 1711 * 1712 * Here are some examples of where one could call such eBPF 1713 * program: 1714 * 1715 * * When RTO fires. 1716 * * When a packet is retransmitted. 1717 * * When the connection terminates. 1718 * * When a packet is sent. 1719 * * When a packet is received. 1720 * Return 1721 * Code **-EINVAL** if the socket is not a full TCP socket; 1722 * otherwise, a positive number containing the bits that could not 1723 * be set is returned (which comes down to 0 if all bits were set 1724 * as required). 1725 * 1726 * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags) 1727 * Description 1728 * This helper is used in programs implementing policies at the 1729 * socket level. If the message *msg* is allowed to pass (i.e. if 1730 * the verdict eBPF program returns **SK_PASS**), redirect it to 1731 * the socket referenced by *map* (of type 1732 * **BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and 1733 * egress interfaces can be used for redirection. The 1734 * **BPF_F_INGRESS** value in *flags* is used to make the 1735 * distinction (ingress path is selected if the flag is present, 1736 * egress path otherwise). This is the only flag supported for now. 1737 * Return 1738 * **SK_PASS** on success, or **SK_DROP** on error. 1739 * 1740 * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes) 1741 * Description 1742 * For socket policies, apply the verdict of the eBPF program to 1743 * the next *bytes* (number of bytes) of message *msg*. 1744 * 1745 * For example, this helper can be used in the following cases: 1746 * 1747 * * A single **sendmsg**\ () or **sendfile**\ () system call 1748 * contains multiple logical messages that the eBPF program is 1749 * supposed to read and for which it should apply a verdict. 1750 * * An eBPF program only cares to read the first *bytes* of a 1751 * *msg*. If the message has a large payload, then setting up 1752 * and calling the eBPF program repeatedly for all bytes, even 1753 * though the verdict is already known, would create unnecessary 1754 * overhead. 1755 * 1756 * When called from within an eBPF program, the helper sets a 1757 * counter internal to the BPF infrastructure, that is used to 1758 * apply the last verdict to the next *bytes*. If *bytes* is 1759 * smaller than the current data being processed from a 1760 * **sendmsg**\ () or **sendfile**\ () system call, the first 1761 * *bytes* will be sent and the eBPF program will be re-run with 1762 * the pointer for start of data pointing to byte number *bytes* 1763 * **+ 1**. If *bytes* is larger than the current data being 1764 * processed, then the eBPF verdict will be applied to multiple 1765 * **sendmsg**\ () or **sendfile**\ () calls until *bytes* are 1766 * consumed. 1767 * 1768 * Note that if a socket closes with the internal counter holding 1769 * a non-zero value, this is not a problem because data is not 1770 * being buffered for *bytes* and is sent as it is received. 1771 * Return 1772 * 0 1773 * 1774 * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes) 1775 * Description 1776 * For socket policies, prevent the execution of the verdict eBPF 1777 * program for message *msg* until *bytes* (byte number) have been 1778 * accumulated. 1779 * 1780 * This can be used when one needs a specific number of bytes 1781 * before a verdict can be assigned, even if the data spans 1782 * multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme 1783 * case would be a user calling **sendmsg**\ () repeatedly with 1784 * 1-byte long message segments. Obviously, this is bad for 1785 * performance, but it is still valid. If the eBPF program needs 1786 * *bytes* bytes to validate a header, this helper can be used to 1787 * prevent the eBPF program to be called again until *bytes* have 1788 * been accumulated. 1789 * Return 1790 * 0 1791 * 1792 * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags) 1793 * Description 1794 * For socket policies, pull in non-linear data from user space 1795 * for *msg* and set pointers *msg*\ **->data** and *msg*\ 1796 * **->data_end** to *start* and *end* bytes offsets into *msg*, 1797 * respectively. 1798 * 1799 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 1800 * *msg* it can only parse data that the (**data**, **data_end**) 1801 * pointers have already consumed. For **sendmsg**\ () hooks this 1802 * is likely the first scatterlist element. But for calls relying 1803 * on the **sendpage** handler (e.g. **sendfile**\ ()) this will 1804 * be the range (**0**, **0**) because the data is shared with 1805 * user space and by default the objective is to avoid allowing 1806 * user space to modify data while (or after) eBPF verdict is 1807 * being decided. This helper can be used to pull in data and to 1808 * set the start and end pointer to given values. Data will be 1809 * copied if necessary (i.e. if data was not linear and if start 1810 * and end pointers do not point to the same chunk). 1811 * 1812 * A call to this helper is susceptible to change the underlaying 1813 * packet buffer. Therefore, at load time, all checks on pointers 1814 * previously done by the verifier are invalidated and must be 1815 * performed again, if the helper is used in combination with 1816 * direct packet access. 1817 * 1818 * All values for *flags* are reserved for future usage, and must 1819 * be left at zero. 1820 * Return 1821 * 0 on success, or a negative error in case of failure. 1822 * 1823 * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len) 1824 * Description 1825 * Bind the socket associated to *ctx* to the address pointed by 1826 * *addr*, of length *addr_len*. This allows for making outgoing 1827 * connection from the desired IP address, which can be useful for 1828 * example when all processes inside a cgroup should use one 1829 * single IP address on a host that has multiple IP configured. 1830 * 1831 * This helper works for IPv4 and IPv6, TCP and UDP sockets. The 1832 * domain (*addr*\ **->sa_family**) must be **AF_INET** (or 1833 * **AF_INET6**). Looking for a free port to bind to can be 1834 * expensive, therefore binding to port is not permitted by the 1835 * helper: *addr*\ **->sin_port** (or **sin6_port**, respectively) 1836 * must be set to zero. 1837 * Return 1838 * 0 on success, or a negative error in case of failure. 1839 * 1840 * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta) 1841 * Description 1842 * Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is 1843 * only possible to shrink the packet as of this writing, 1844 * therefore *delta* must be a negative integer. 1845 * 1846 * A call to this helper is susceptible to change the underlaying 1847 * packet buffer. Therefore, at load time, all checks on pointers 1848 * previously done by the verifier are invalidated and must be 1849 * performed again, if the helper is used in combination with 1850 * direct packet access. 1851 * Return 1852 * 0 on success, or a negative error in case of failure. 1853 * 1854 * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags) 1855 * Description 1856 * Retrieve the XFRM state (IP transform framework, see also 1857 * **ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*. 1858 * 1859 * The retrieved value is stored in the **struct bpf_xfrm_state** 1860 * pointed by *xfrm_state* and of length *size*. 1861 * 1862 * All values for *flags* are reserved for future usage, and must 1863 * be left at zero. 1864 * 1865 * This helper is available only if the kernel was compiled with 1866 * **CONFIG_XFRM** configuration option. 1867 * Return 1868 * 0 on success, or a negative error in case of failure. 1869 * 1870 * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags) 1871 * Description 1872 * Return a user or a kernel stack in bpf program provided buffer. 1873 * To achieve this, the helper needs *ctx*, which is a pointer 1874 * to the context on which the tracing program is executed. 1875 * To store the stacktrace, the bpf program provides *buf* with 1876 * a nonnegative *size*. 1877 * 1878 * The last argument, *flags*, holds the number of stack frames to 1879 * skip (from 0 to 255), masked with 1880 * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set 1881 * the following flags: 1882 * 1883 * **BPF_F_USER_STACK** 1884 * Collect a user space stack instead of a kernel stack. 1885 * **BPF_F_USER_BUILD_ID** 1886 * Collect buildid+offset instead of ips for user stack, 1887 * only valid if **BPF_F_USER_STACK** is also specified. 1888 * 1889 * **bpf_get_stack**\ () can collect up to 1890 * **PERF_MAX_STACK_DEPTH** both kernel and user frames, subject 1891 * to sufficient large buffer size. Note that 1892 * this limit can be controlled with the **sysctl** program, and 1893 * that it should be manually increased in order to profile long 1894 * user stacks (such as stacks for Java programs). To do so, use: 1895 * 1896 * :: 1897 * 1898 * # sysctl kernel.perf_event_max_stack=<new value> 1899 * Return 1900 * A non-negative value equal to or less than *size* on success, 1901 * or a negative error in case of failure. 1902 * 1903 * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header) 1904 * Description 1905 * This helper is similar to **bpf_skb_load_bytes**\ () in that 1906 * it provides an easy way to load *len* bytes from *offset* 1907 * from the packet associated to *skb*, into the buffer pointed 1908 * by *to*. The difference to **bpf_skb_load_bytes**\ () is that 1909 * a fifth argument *start_header* exists in order to select a 1910 * base offset to start from. *start_header* can be one of: 1911 * 1912 * **BPF_HDR_START_MAC** 1913 * Base offset to load data from is *skb*'s mac header. 1914 * **BPF_HDR_START_NET** 1915 * Base offset to load data from is *skb*'s network header. 1916 * 1917 * In general, "direct packet access" is the preferred method to 1918 * access packet data, however, this helper is in particular useful 1919 * in socket filters where *skb*\ **->data** does not always point 1920 * to the start of the mac header and where "direct packet access" 1921 * is not available. 1922 * Return 1923 * 0 on success, or a negative error in case of failure. 1924 * 1925 * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags) 1926 * Description 1927 * Do FIB lookup in kernel tables using parameters in *params*. 1928 * If lookup is successful and result shows packet is to be 1929 * forwarded, the neighbor tables are searched for the nexthop. 1930 * If successful (ie., FIB lookup shows forwarding and nexthop 1931 * is resolved), the nexthop address is returned in ipv4_dst 1932 * or ipv6_dst based on family, smac is set to mac address of 1933 * egress device, dmac is set to nexthop mac address, rt_metric 1934 * is set to metric from route (IPv4/IPv6 only), and ifindex 1935 * is set to the device index of the nexthop from the FIB lookup. 1936 * 1937 * *plen* argument is the size of the passed in struct. 1938 * *flags* argument can be a combination of one or more of the 1939 * following values: 1940 * 1941 * **BPF_FIB_LOOKUP_DIRECT** 1942 * Do a direct table lookup vs full lookup using FIB 1943 * rules. 1944 * **BPF_FIB_LOOKUP_OUTPUT** 1945 * Perform lookup from an egress perspective (default is 1946 * ingress). 1947 * 1948 * *ctx* is either **struct xdp_md** for XDP programs or 1949 * **struct sk_buff** tc cls_act programs. 1950 * Return 1951 * * < 0 if any input argument is invalid 1952 * * 0 on success (packet is forwarded, nexthop neighbor exists) 1953 * * > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the 1954 * packet is not forwarded or needs assist from full stack 1955 * 1956 * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags) 1957 * Description 1958 * Add an entry to, or update a sockhash *map* referencing sockets. 1959 * The *skops* is used as a new value for the entry associated to 1960 * *key*. *flags* is one of: 1961 * 1962 * **BPF_NOEXIST** 1963 * The entry for *key* must not exist in the map. 1964 * **BPF_EXIST** 1965 * The entry for *key* must already exist in the map. 1966 * **BPF_ANY** 1967 * No condition on the existence of the entry for *key*. 1968 * 1969 * If the *map* has eBPF programs (parser and verdict), those will 1970 * be inherited by the socket being added. If the socket is 1971 * already attached to eBPF programs, this results in an error. 1972 * Return 1973 * 0 on success, or a negative error in case of failure. 1974 * 1975 * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags) 1976 * Description 1977 * This helper is used in programs implementing policies at the 1978 * socket level. If the message *msg* is allowed to pass (i.e. if 1979 * the verdict eBPF program returns **SK_PASS**), redirect it to 1980 * the socket referenced by *map* (of type 1981 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 1982 * egress interfaces can be used for redirection. The 1983 * **BPF_F_INGRESS** value in *flags* is used to make the 1984 * distinction (ingress path is selected if the flag is present, 1985 * egress path otherwise). This is the only flag supported for now. 1986 * Return 1987 * **SK_PASS** on success, or **SK_DROP** on error. 1988 * 1989 * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags) 1990 * Description 1991 * This helper is used in programs implementing policies at the 1992 * skb socket level. If the sk_buff *skb* is allowed to pass (i.e. 1993 * if the verdeict eBPF program returns **SK_PASS**), redirect it 1994 * to the socket referenced by *map* (of type 1995 * **BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and 1996 * egress interfaces can be used for redirection. The 1997 * **BPF_F_INGRESS** value in *flags* is used to make the 1998 * distinction (ingress path is selected if the flag is present, 1999 * egress otherwise). This is the only flag supported for now. 2000 * Return 2001 * **SK_PASS** on success, or **SK_DROP** on error. 2002 * 2003 * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) 2004 * Description 2005 * Encapsulate the packet associated to *skb* within a Layer 3 2006 * protocol header. This header is provided in the buffer at 2007 * address *hdr*, with *len* its size in bytes. *type* indicates 2008 * the protocol of the header and can be one of: 2009 * 2010 * **BPF_LWT_ENCAP_SEG6** 2011 * IPv6 encapsulation with Segment Routing Header 2012 * (**struct ipv6_sr_hdr**). *hdr* only contains the SRH, 2013 * the IPv6 header is computed by the kernel. 2014 * **BPF_LWT_ENCAP_SEG6_INLINE** 2015 * Only works if *skb* contains an IPv6 packet. Insert a 2016 * Segment Routing Header (**struct ipv6_sr_hdr**) inside 2017 * the IPv6 header. 2018 * 2019 * A call to this helper is susceptible to change the underlaying 2020 * packet buffer. Therefore, at load time, all checks on pointers 2021 * previously done by the verifier are invalidated and must be 2022 * performed again, if the helper is used in combination with 2023 * direct packet access. 2024 * Return 2025 * 0 on success, or a negative error in case of failure. 2026 * 2027 * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len) 2028 * Description 2029 * Store *len* bytes from address *from* into the packet 2030 * associated to *skb*, at *offset*. Only the flags, tag and TLVs 2031 * inside the outermost IPv6 Segment Routing Header can be 2032 * modified through this helper. 2033 * 2034 * A call to this helper is susceptible to change the underlaying 2035 * packet buffer. Therefore, at load time, all checks on pointers 2036 * previously done by the verifier are invalidated and must be 2037 * performed again, if the helper is used in combination with 2038 * direct packet access. 2039 * Return 2040 * 0 on success, or a negative error in case of failure. 2041 * 2042 * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta) 2043 * Description 2044 * Adjust the size allocated to TLVs in the outermost IPv6 2045 * Segment Routing Header contained in the packet associated to 2046 * *skb*, at position *offset* by *delta* bytes. Only offsets 2047 * after the segments are accepted. *delta* can be as well 2048 * positive (growing) as negative (shrinking). 2049 * 2050 * A call to this helper is susceptible to change the underlaying 2051 * packet buffer. Therefore, at load time, all checks on pointers 2052 * previously done by the verifier are invalidated and must be 2053 * performed again, if the helper is used in combination with 2054 * direct packet access. 2055 * Return 2056 * 0 on success, or a negative error in case of failure. 2057 * 2058 * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len) 2059 * Description 2060 * Apply an IPv6 Segment Routing action of type *action* to the 2061 * packet associated to *skb*. Each action takes a parameter 2062 * contained at address *param*, and of length *param_len* bytes. 2063 * *action* can be one of: 2064 * 2065 * **SEG6_LOCAL_ACTION_END_X** 2066 * End.X action: Endpoint with Layer-3 cross-connect. 2067 * Type of *param*: **struct in6_addr**. 2068 * **SEG6_LOCAL_ACTION_END_T** 2069 * End.T action: Endpoint with specific IPv6 table lookup. 2070 * Type of *param*: **int**. 2071 * **SEG6_LOCAL_ACTION_END_B6** 2072 * End.B6 action: Endpoint bound to an SRv6 policy. 2073 * Type of param: **struct ipv6_sr_hdr**. 2074 * **SEG6_LOCAL_ACTION_END_B6_ENCAP** 2075 * End.B6.Encap action: Endpoint bound to an SRv6 2076 * encapsulation policy. 2077 * Type of param: **struct ipv6_sr_hdr**. 2078 * 2079 * A call to this helper is susceptible to change the underlaying 2080 * packet buffer. Therefore, at load time, all checks on pointers 2081 * previously done by the verifier are invalidated and must be 2082 * performed again, if the helper is used in combination with 2083 * direct packet access. 2084 * Return 2085 * 0 on success, or a negative error in case of failure. 2086 * 2087 * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle) 2088 * Description 2089 * This helper is used in programs implementing IR decoding, to 2090 * report a successfully decoded key press with *scancode*, 2091 * *toggle* value in the given *protocol*. The scancode will be 2092 * translated to a keycode using the rc keymap, and reported as 2093 * an input key down event. After a period a key up event is 2094 * generated. This period can be extended by calling either 2095 * **bpf_rc_keydown**\ () again with the same values, or calling 2096 * **bpf_rc_repeat**\ (). 2097 * 2098 * Some protocols include a toggle bit, in case the button was 2099 * released and pressed again between consecutive scancodes. 2100 * 2101 * The *ctx* should point to the lirc sample as passed into 2102 * the program. 2103 * 2104 * The *protocol* is the decoded protocol number (see 2105 * **enum rc_proto** for some predefined values). 2106 * 2107 * This helper is only available is the kernel was compiled with 2108 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2109 * "**y**". 2110 * Return 2111 * 0 2112 * 2113 * int bpf_rc_repeat(void *ctx) 2114 * Description 2115 * This helper is used in programs implementing IR decoding, to 2116 * report a successfully decoded repeat key message. This delays 2117 * the generation of a key up event for previously generated 2118 * key down event. 2119 * 2120 * Some IR protocols like NEC have a special IR message for 2121 * repeating last button, for when a button is held down. 2122 * 2123 * The *ctx* should point to the lirc sample as passed into 2124 * the program. 2125 * 2126 * This helper is only available is the kernel was compiled with 2127 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2128 * "**y**". 2129 * Return 2130 * 0 2131 * 2132 * uint64_t bpf_skb_cgroup_id(struct sk_buff *skb) 2133 * Description 2134 * Return the cgroup v2 id of the socket associated with the *skb*. 2135 * This is roughly similar to the **bpf_get_cgroup_classid**\ () 2136 * helper for cgroup v1 by providing a tag resp. identifier that 2137 * can be matched on or used for map lookups e.g. to implement 2138 * policy. The cgroup v2 id of a given path in the hierarchy is 2139 * exposed in user space through the f_handle API in order to get 2140 * to the same 64-bit id. 2141 * 2142 * This helper can be used on TC egress path, but not on ingress, 2143 * and is available only if the kernel was compiled with the 2144 * **CONFIG_SOCK_CGROUP_DATA** configuration option. 2145 * Return 2146 * The id is returned or 0 in case the id could not be retrieved. 2147 * 2148 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level) 2149 * Description 2150 * Return id of cgroup v2 that is ancestor of cgroup associated 2151 * with the *skb* at the *ancestor_level*. The root cgroup is at 2152 * *ancestor_level* zero and each step down the hierarchy 2153 * increments the level. If *ancestor_level* == level of cgroup 2154 * associated with *skb*, then return value will be same as that 2155 * of **bpf_skb_cgroup_id**\ (). 2156 * 2157 * The helper is useful to implement policies based on cgroups 2158 * that are upper in hierarchy than immediate cgroup associated 2159 * with *skb*. 2160 * 2161 * The format of returned id and helper limitations are same as in 2162 * **bpf_skb_cgroup_id**\ (). 2163 * Return 2164 * The id is returned or 0 in case the id could not be retrieved. 2165 * 2166 * u64 bpf_get_current_cgroup_id(void) 2167 * Return 2168 * A 64-bit integer containing the current cgroup id based 2169 * on the cgroup within which the current task is running. 2170 * 2171 * void* get_local_storage(void *map, u64 flags) 2172 * Description 2173 * Get the pointer to the local storage area. 2174 * The type and the size of the local storage is defined 2175 * by the *map* argument. 2176 * The *flags* meaning is specific for each map type, 2177 * and has to be 0 for cgroup local storage. 2178 * 2179 * Depending on the BPF program type, a local storage area 2180 * can be shared between multiple instances of the BPF program, 2181 * running simultaneously. 2182 * 2183 * A user should care about the synchronization by himself. 2184 * For example, by using the **BPF_STX_XADD** instruction to alter 2185 * the shared data. 2186 * Return 2187 * A pointer to the local storage area. 2188 * 2189 * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags) 2190 * Description 2191 * Select a **SO_REUSEPORT** socket from a 2192 * **BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*. 2193 * It checks the selected socket is matching the incoming 2194 * request in the socket buffer. 2195 * Return 2196 * 0 on success, or a negative error in case of failure. 2197 * 2198 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2199 * Description 2200 * Look for TCP socket matching *tuple*, optionally in a child 2201 * network namespace *netns*. The return value must be checked, 2202 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2203 * 2204 * The *ctx* should point to the context of the program, such as 2205 * the skb or socket (depending on the hook in use). This is used 2206 * to determine the base network namespace for the lookup. 2207 * 2208 * *tuple_size* must be one of: 2209 * 2210 * **sizeof**\ (*tuple*\ **->ipv4**) 2211 * Look for an IPv4 socket. 2212 * **sizeof**\ (*tuple*\ **->ipv6**) 2213 * Look for an IPv6 socket. 2214 * 2215 * If the *netns* is a negative signed 32-bit integer, then the 2216 * socket lookup table in the netns associated with the *ctx* will 2217 * will be used. For the TC hooks, this is the netns of the device 2218 * in the skb. For socket hooks, this is the netns of the socket. 2219 * If *netns* is any other signed 32-bit value greater than or 2220 * equal to zero then it specifies the ID of the netns relative to 2221 * the netns associated with the *ctx*. *netns* values beyond the 2222 * range of 32-bit integers are reserved for future use. 2223 * 2224 * All values for *flags* are reserved for future usage, and must 2225 * be left at zero. 2226 * 2227 * This helper is available only if the kernel was compiled with 2228 * **CONFIG_NET** configuration option. 2229 * Return 2230 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2231 * For sockets with reuseport option, the **struct bpf_sock** 2232 * result is from **reuse->socks**\ [] using the hash of the tuple. 2233 * 2234 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags) 2235 * Description 2236 * Look for UDP socket matching *tuple*, optionally in a child 2237 * network namespace *netns*. The return value must be checked, 2238 * and if non-**NULL**, released via **bpf_sk_release**\ (). 2239 * 2240 * The *ctx* should point to the context of the program, such as 2241 * the skb or socket (depending on the hook in use). This is used 2242 * to determine the base network namespace for the lookup. 2243 * 2244 * *tuple_size* must be one of: 2245 * 2246 * **sizeof**\ (*tuple*\ **->ipv4**) 2247 * Look for an IPv4 socket. 2248 * **sizeof**\ (*tuple*\ **->ipv6**) 2249 * Look for an IPv6 socket. 2250 * 2251 * If the *netns* is a negative signed 32-bit integer, then the 2252 * socket lookup table in the netns associated with the *ctx* will 2253 * will be used. For the TC hooks, this is the netns of the device 2254 * in the skb. For socket hooks, this is the netns of the socket. 2255 * If *netns* is any other signed 32-bit value greater than or 2256 * equal to zero then it specifies the ID of the netns relative to 2257 * the netns associated with the *ctx*. *netns* values beyond the 2258 * range of 32-bit integers are reserved for future use. 2259 * 2260 * All values for *flags* are reserved for future usage, and must 2261 * be left at zero. 2262 * 2263 * This helper is available only if the kernel was compiled with 2264 * **CONFIG_NET** configuration option. 2265 * Return 2266 * Pointer to **struct bpf_sock**, or **NULL** in case of failure. 2267 * For sockets with reuseport option, the **struct bpf_sock** 2268 * result is from **reuse->socks**\ [] using the hash of the tuple. 2269 * 2270 * int bpf_sk_release(struct bpf_sock *sock) 2271 * Description 2272 * Release the reference held by *sock*. *sock* must be a 2273 * non-**NULL** pointer that was returned from 2274 * **bpf_sk_lookup_xxx**\ (). 2275 * Return 2276 * 0 on success, or a negative error in case of failure. 2277 * 2278 * int bpf_map_pop_elem(struct bpf_map *map, void *value) 2279 * Description 2280 * Pop an element from *map*. 2281 * Return 2282 * 0 on success, or a negative error in case of failure. 2283 * 2284 * int bpf_map_peek_elem(struct bpf_map *map, void *value) 2285 * Description 2286 * Get an element from *map* without removing it. 2287 * Return 2288 * 0 on success, or a negative error in case of failure. 2289 * 2290 * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags) 2291 * Description 2292 * For socket policies, insert *len* bytes into *msg* at offset 2293 * *start*. 2294 * 2295 * If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a 2296 * *msg* it may want to insert metadata or options into the *msg*. 2297 * This can later be read and used by any of the lower layer BPF 2298 * hooks. 2299 * 2300 * This helper may fail if under memory pressure (a malloc 2301 * fails) in these cases BPF programs will get an appropriate 2302 * error and BPF programs will need to handle them. 2303 * Return 2304 * 0 on success, or a negative error in case of failure. 2305 * 2306 * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 pop, u64 flags) 2307 * Description 2308 * Will remove *pop* bytes from a *msg* starting at byte *start*. 2309 * This may result in **ENOMEM** errors under certain situations if 2310 * an allocation and copy are required due to a full ring buffer. 2311 * However, the helper will try to avoid doing the allocation 2312 * if possible. Other errors can occur if input parameters are 2313 * invalid either due to *start* byte not being valid part of *msg* 2314 * payload and/or *pop* value being to large. 2315 * Return 2316 * 0 on success, or a negative error in case of failure. 2317 * 2318 * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y) 2319 * Description 2320 * This helper is used in programs implementing IR decoding, to 2321 * report a successfully decoded pointer movement. 2322 * 2323 * The *ctx* should point to the lirc sample as passed into 2324 * the program. 2325 * 2326 * This helper is only available is the kernel was compiled with 2327 * the **CONFIG_BPF_LIRC_MODE2** configuration option set to 2328 * "**y**". 2329 * Return 2330 * 0 2331 */ 2332 #define __BPF_FUNC_MAPPER(FN) \ 2333 FN(unspec), \ 2334 FN(map_lookup_elem), \ 2335 FN(map_update_elem), \ 2336 FN(map_delete_elem), \ 2337 FN(probe_read), \ 2338 FN(ktime_get_ns), \ 2339 FN(trace_printk), \ 2340 FN(get_prandom_u32), \ 2341 FN(get_smp_processor_id), \ 2342 FN(skb_store_bytes), \ 2343 FN(l3_csum_replace), \ 2344 FN(l4_csum_replace), \ 2345 FN(tail_call), \ 2346 FN(clone_redirect), \ 2347 FN(get_current_pid_tgid), \ 2348 FN(get_current_uid_gid), \ 2349 FN(get_current_comm), \ 2350 FN(get_cgroup_classid), \ 2351 FN(skb_vlan_push), \ 2352 FN(skb_vlan_pop), \ 2353 FN(skb_get_tunnel_key), \ 2354 FN(skb_set_tunnel_key), \ 2355 FN(perf_event_read), \ 2356 FN(redirect), \ 2357 FN(get_route_realm), \ 2358 FN(perf_event_output), \ 2359 FN(skb_load_bytes), \ 2360 FN(get_stackid), \ 2361 FN(csum_diff), \ 2362 FN(skb_get_tunnel_opt), \ 2363 FN(skb_set_tunnel_opt), \ 2364 FN(skb_change_proto), \ 2365 FN(skb_change_type), \ 2366 FN(skb_under_cgroup), \ 2367 FN(get_hash_recalc), \ 2368 FN(get_current_task), \ 2369 FN(probe_write_user), \ 2370 FN(current_task_under_cgroup), \ 2371 FN(skb_change_tail), \ 2372 FN(skb_pull_data), \ 2373 FN(csum_update), \ 2374 FN(set_hash_invalid), \ 2375 FN(get_numa_node_id), \ 2376 FN(skb_change_head), \ 2377 FN(xdp_adjust_head), \ 2378 FN(probe_read_str), \ 2379 FN(get_socket_cookie), \ 2380 FN(get_socket_uid), \ 2381 FN(set_hash), \ 2382 FN(setsockopt), \ 2383 FN(skb_adjust_room), \ 2384 FN(redirect_map), \ 2385 FN(sk_redirect_map), \ 2386 FN(sock_map_update), \ 2387 FN(xdp_adjust_meta), \ 2388 FN(perf_event_read_value), \ 2389 FN(perf_prog_read_value), \ 2390 FN(getsockopt), \ 2391 FN(override_return), \ 2392 FN(sock_ops_cb_flags_set), \ 2393 FN(msg_redirect_map), \ 2394 FN(msg_apply_bytes), \ 2395 FN(msg_cork_bytes), \ 2396 FN(msg_pull_data), \ 2397 FN(bind), \ 2398 FN(xdp_adjust_tail), \ 2399 FN(skb_get_xfrm_state), \ 2400 FN(get_stack), \ 2401 FN(skb_load_bytes_relative), \ 2402 FN(fib_lookup), \ 2403 FN(sock_hash_update), \ 2404 FN(msg_redirect_hash), \ 2405 FN(sk_redirect_hash), \ 2406 FN(lwt_push_encap), \ 2407 FN(lwt_seg6_store_bytes), \ 2408 FN(lwt_seg6_adjust_srh), \ 2409 FN(lwt_seg6_action), \ 2410 FN(rc_repeat), \ 2411 FN(rc_keydown), \ 2412 FN(skb_cgroup_id), \ 2413 FN(get_current_cgroup_id), \ 2414 FN(get_local_storage), \ 2415 FN(sk_select_reuseport), \ 2416 FN(skb_ancestor_cgroup_id), \ 2417 FN(sk_lookup_tcp), \ 2418 FN(sk_lookup_udp), \ 2419 FN(sk_release), \ 2420 FN(map_push_elem), \ 2421 FN(map_pop_elem), \ 2422 FN(map_peek_elem), \ 2423 FN(msg_push_data), \ 2424 FN(msg_pop_data), \ 2425 FN(rc_pointer_rel), 2426 2427 /* integer value in 'imm' field of BPF_CALL instruction selects which helper 2428 * function eBPF program intends to call 2429 */ 2430 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x 2431 enum bpf_func_id { 2432 __BPF_FUNC_MAPPER(__BPF_ENUM_FN) 2433 __BPF_FUNC_MAX_ID, 2434 }; 2435 #undef __BPF_ENUM_FN 2436 2437 /* All flags used by eBPF helper functions, placed here. */ 2438 2439 /* BPF_FUNC_skb_store_bytes flags. */ 2440 #define BPF_F_RECOMPUTE_CSUM (1ULL << 0) 2441 #define BPF_F_INVALIDATE_HASH (1ULL << 1) 2442 2443 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags. 2444 * First 4 bits are for passing the header field size. 2445 */ 2446 #define BPF_F_HDR_FIELD_MASK 0xfULL 2447 2448 /* BPF_FUNC_l4_csum_replace flags. */ 2449 #define BPF_F_PSEUDO_HDR (1ULL << 4) 2450 #define BPF_F_MARK_MANGLED_0 (1ULL << 5) 2451 #define BPF_F_MARK_ENFORCE (1ULL << 6) 2452 2453 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */ 2454 #define BPF_F_INGRESS (1ULL << 0) 2455 2456 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */ 2457 #define BPF_F_TUNINFO_IPV6 (1ULL << 0) 2458 2459 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */ 2460 #define BPF_F_SKIP_FIELD_MASK 0xffULL 2461 #define BPF_F_USER_STACK (1ULL << 8) 2462 /* flags used by BPF_FUNC_get_stackid only. */ 2463 #define BPF_F_FAST_STACK_CMP (1ULL << 9) 2464 #define BPF_F_REUSE_STACKID (1ULL << 10) 2465 /* flags used by BPF_FUNC_get_stack only. */ 2466 #define BPF_F_USER_BUILD_ID (1ULL << 11) 2467 2468 /* BPF_FUNC_skb_set_tunnel_key flags. */ 2469 #define BPF_F_ZERO_CSUM_TX (1ULL << 1) 2470 #define BPF_F_DONT_FRAGMENT (1ULL << 2) 2471 #define BPF_F_SEQ_NUMBER (1ULL << 3) 2472 2473 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and 2474 * BPF_FUNC_perf_event_read_value flags. 2475 */ 2476 #define BPF_F_INDEX_MASK 0xffffffffULL 2477 #define BPF_F_CURRENT_CPU BPF_F_INDEX_MASK 2478 /* BPF_FUNC_perf_event_output for sk_buff input context. */ 2479 #define BPF_F_CTXLEN_MASK (0xfffffULL << 32) 2480 2481 /* Current network namespace */ 2482 #define BPF_F_CURRENT_NETNS (-1L) 2483 2484 /* Mode for BPF_FUNC_skb_adjust_room helper. */ 2485 enum bpf_adj_room_mode { 2486 BPF_ADJ_ROOM_NET, 2487 }; 2488 2489 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */ 2490 enum bpf_hdr_start_off { 2491 BPF_HDR_START_MAC, 2492 BPF_HDR_START_NET, 2493 }; 2494 2495 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */ 2496 enum bpf_lwt_encap_mode { 2497 BPF_LWT_ENCAP_SEG6, 2498 BPF_LWT_ENCAP_SEG6_INLINE 2499 }; 2500 2501 #define __bpf_md_ptr(type, name) \ 2502 union { \ 2503 type name; \ 2504 __u64 :64; \ 2505 } __attribute__((aligned(8))) 2506 2507 /* user accessible mirror of in-kernel sk_buff. 2508 * new fields can only be added to the end of this structure 2509 */ 2510 struct __sk_buff { 2511 __u32 len; 2512 __u32 pkt_type; 2513 __u32 mark; 2514 __u32 queue_mapping; 2515 __u32 protocol; 2516 __u32 vlan_present; 2517 __u32 vlan_tci; 2518 __u32 vlan_proto; 2519 __u32 priority; 2520 __u32 ingress_ifindex; 2521 __u32 ifindex; 2522 __u32 tc_index; 2523 __u32 cb[5]; 2524 __u32 hash; 2525 __u32 tc_classid; 2526 __u32 data; 2527 __u32 data_end; 2528 __u32 napi_id; 2529 2530 /* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */ 2531 __u32 family; 2532 __u32 remote_ip4; /* Stored in network byte order */ 2533 __u32 local_ip4; /* Stored in network byte order */ 2534 __u32 remote_ip6[4]; /* Stored in network byte order */ 2535 __u32 local_ip6[4]; /* Stored in network byte order */ 2536 __u32 remote_port; /* Stored in network byte order */ 2537 __u32 local_port; /* stored in host byte order */ 2538 /* ... here. */ 2539 2540 __u32 data_meta; 2541 __bpf_md_ptr(struct bpf_flow_keys *, flow_keys); 2542 __u64 tstamp; 2543 __u32 wire_len; 2544 }; 2545 2546 struct bpf_tunnel_key { 2547 __u32 tunnel_id; 2548 union { 2549 __u32 remote_ipv4; 2550 __u32 remote_ipv6[4]; 2551 }; 2552 __u8 tunnel_tos; 2553 __u8 tunnel_ttl; 2554 __u16 tunnel_ext; /* Padding, future use. */ 2555 __u32 tunnel_label; 2556 }; 2557 2558 /* user accessible mirror of in-kernel xfrm_state. 2559 * new fields can only be added to the end of this structure 2560 */ 2561 struct bpf_xfrm_state { 2562 __u32 reqid; 2563 __u32 spi; /* Stored in network byte order */ 2564 __u16 family; 2565 __u16 ext; /* Padding, future use. */ 2566 union { 2567 __u32 remote_ipv4; /* Stored in network byte order */ 2568 __u32 remote_ipv6[4]; /* Stored in network byte order */ 2569 }; 2570 }; 2571 2572 /* Generic BPF return codes which all BPF program types may support. 2573 * The values are binary compatible with their TC_ACT_* counter-part to 2574 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT 2575 * programs. 2576 * 2577 * XDP is handled seprately, see XDP_*. 2578 */ 2579 enum bpf_ret_code { 2580 BPF_OK = 0, 2581 /* 1 reserved */ 2582 BPF_DROP = 2, 2583 /* 3-6 reserved */ 2584 BPF_REDIRECT = 7, 2585 /* >127 are reserved for prog type specific return codes */ 2586 }; 2587 2588 struct bpf_sock { 2589 __u32 bound_dev_if; 2590 __u32 family; 2591 __u32 type; 2592 __u32 protocol; 2593 __u32 mark; 2594 __u32 priority; 2595 __u32 src_ip4; /* Allows 1,2,4-byte read. 2596 * Stored in network byte order. 2597 */ 2598 __u32 src_ip6[4]; /* Allows 1,2,4-byte read. 2599 * Stored in network byte order. 2600 */ 2601 __u32 src_port; /* Allows 4-byte read. 2602 * Stored in host byte order 2603 */ 2604 }; 2605 2606 struct bpf_sock_tuple { 2607 union { 2608 struct { 2609 __be32 saddr; 2610 __be32 daddr; 2611 __be16 sport; 2612 __be16 dport; 2613 } ipv4; 2614 struct { 2615 __be32 saddr[4]; 2616 __be32 daddr[4]; 2617 __be16 sport; 2618 __be16 dport; 2619 } ipv6; 2620 }; 2621 }; 2622 2623 #define XDP_PACKET_HEADROOM 256 2624 2625 /* User return codes for XDP prog type. 2626 * A valid XDP program must return one of these defined values. All other 2627 * return codes are reserved for future use. Unknown return codes will 2628 * result in packet drops and a warning via bpf_warn_invalid_xdp_action(). 2629 */ 2630 enum xdp_action { 2631 XDP_ABORTED = 0, 2632 XDP_DROP, 2633 XDP_PASS, 2634 XDP_TX, 2635 XDP_REDIRECT, 2636 }; 2637 2638 /* user accessible metadata for XDP packet hook 2639 * new fields must be added to the end of this structure 2640 */ 2641 struct xdp_md { 2642 __u32 data; 2643 __u32 data_end; 2644 __u32 data_meta; 2645 /* Below access go through struct xdp_rxq_info */ 2646 __u32 ingress_ifindex; /* rxq->dev->ifindex */ 2647 __u32 rx_queue_index; /* rxq->queue_index */ 2648 }; 2649 2650 enum sk_action { 2651 SK_DROP = 0, 2652 SK_PASS, 2653 }; 2654 2655 /* user accessible metadata for SK_MSG packet hook, new fields must 2656 * be added to the end of this structure 2657 */ 2658 struct sk_msg_md { 2659 __bpf_md_ptr(void *, data); 2660 __bpf_md_ptr(void *, data_end); 2661 2662 __u32 family; 2663 __u32 remote_ip4; /* Stored in network byte order */ 2664 __u32 local_ip4; /* Stored in network byte order */ 2665 __u32 remote_ip6[4]; /* Stored in network byte order */ 2666 __u32 local_ip6[4]; /* Stored in network byte order */ 2667 __u32 remote_port; /* Stored in network byte order */ 2668 __u32 local_port; /* stored in host byte order */ 2669 __u32 size; /* Total size of sk_msg */ 2670 }; 2671 2672 struct sk_reuseport_md { 2673 /* 2674 * Start of directly accessible data. It begins from 2675 * the tcp/udp header. 2676 */ 2677 __bpf_md_ptr(void *, data); 2678 /* End of directly accessible data */ 2679 __bpf_md_ptr(void *, data_end); 2680 /* 2681 * Total length of packet (starting from the tcp/udp header). 2682 * Note that the directly accessible bytes (data_end - data) 2683 * could be less than this "len". Those bytes could be 2684 * indirectly read by a helper "bpf_skb_load_bytes()". 2685 */ 2686 __u32 len; 2687 /* 2688 * Eth protocol in the mac header (network byte order). e.g. 2689 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD) 2690 */ 2691 __u32 eth_protocol; 2692 __u32 ip_protocol; /* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */ 2693 __u32 bind_inany; /* Is sock bound to an INANY address? */ 2694 __u32 hash; /* A hash of the packet 4 tuples */ 2695 }; 2696 2697 #define BPF_TAG_SIZE 8 2698 2699 struct bpf_prog_info { 2700 __u32 type; 2701 __u32 id; 2702 __u8 tag[BPF_TAG_SIZE]; 2703 __u32 jited_prog_len; 2704 __u32 xlated_prog_len; 2705 __aligned_u64 jited_prog_insns; 2706 __aligned_u64 xlated_prog_insns; 2707 __u64 load_time; /* ns since boottime */ 2708 __u32 created_by_uid; 2709 __u32 nr_map_ids; 2710 __aligned_u64 map_ids; 2711 char name[BPF_OBJ_NAME_LEN]; 2712 __u32 ifindex; 2713 __u32 gpl_compatible:1; 2714 __u64 netns_dev; 2715 __u64 netns_ino; 2716 __u32 nr_jited_ksyms; 2717 __u32 nr_jited_func_lens; 2718 __aligned_u64 jited_ksyms; 2719 __aligned_u64 jited_func_lens; 2720 __u32 btf_id; 2721 __u32 func_info_rec_size; 2722 __aligned_u64 func_info; 2723 __u32 nr_func_info; 2724 __u32 nr_line_info; 2725 __aligned_u64 line_info; 2726 __aligned_u64 jited_line_info; 2727 __u32 nr_jited_line_info; 2728 __u32 line_info_rec_size; 2729 __u32 jited_line_info_rec_size; 2730 __u32 nr_prog_tags; 2731 __aligned_u64 prog_tags; 2732 } __attribute__((aligned(8))); 2733 2734 struct bpf_map_info { 2735 __u32 type; 2736 __u32 id; 2737 __u32 key_size; 2738 __u32 value_size; 2739 __u32 max_entries; 2740 __u32 map_flags; 2741 char name[BPF_OBJ_NAME_LEN]; 2742 __u32 ifindex; 2743 __u32 :32; 2744 __u64 netns_dev; 2745 __u64 netns_ino; 2746 __u32 btf_id; 2747 __u32 btf_key_type_id; 2748 __u32 btf_value_type_id; 2749 } __attribute__((aligned(8))); 2750 2751 struct bpf_btf_info { 2752 __aligned_u64 btf; 2753 __u32 btf_size; 2754 __u32 id; 2755 } __attribute__((aligned(8))); 2756 2757 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed 2758 * by user and intended to be used by socket (e.g. to bind to, depends on 2759 * attach attach type). 2760 */ 2761 struct bpf_sock_addr { 2762 __u32 user_family; /* Allows 4-byte read, but no write. */ 2763 __u32 user_ip4; /* Allows 1,2,4-byte read and 4-byte write. 2764 * Stored in network byte order. 2765 */ 2766 __u32 user_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 2767 * Stored in network byte order. 2768 */ 2769 __u32 user_port; /* Allows 4-byte read and write. 2770 * Stored in network byte order 2771 */ 2772 __u32 family; /* Allows 4-byte read, but no write */ 2773 __u32 type; /* Allows 4-byte read, but no write */ 2774 __u32 protocol; /* Allows 4-byte read, but no write */ 2775 __u32 msg_src_ip4; /* Allows 1,2,4-byte read an 4-byte write. 2776 * Stored in network byte order. 2777 */ 2778 __u32 msg_src_ip6[4]; /* Allows 1,2,4-byte read an 4-byte write. 2779 * Stored in network byte order. 2780 */ 2781 }; 2782 2783 /* User bpf_sock_ops struct to access socket values and specify request ops 2784 * and their replies. 2785 * Some of this fields are in network (bigendian) byte order and may need 2786 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h). 2787 * New fields can only be added at the end of this structure 2788 */ 2789 struct bpf_sock_ops { 2790 __u32 op; 2791 union { 2792 __u32 args[4]; /* Optionally passed to bpf program */ 2793 __u32 reply; /* Returned by bpf program */ 2794 __u32 replylong[4]; /* Optionally returned by bpf prog */ 2795 }; 2796 __u32 family; 2797 __u32 remote_ip4; /* Stored in network byte order */ 2798 __u32 local_ip4; /* Stored in network byte order */ 2799 __u32 remote_ip6[4]; /* Stored in network byte order */ 2800 __u32 local_ip6[4]; /* Stored in network byte order */ 2801 __u32 remote_port; /* Stored in network byte order */ 2802 __u32 local_port; /* stored in host byte order */ 2803 __u32 is_fullsock; /* Some TCP fields are only valid if 2804 * there is a full socket. If not, the 2805 * fields read as zero. 2806 */ 2807 __u32 snd_cwnd; 2808 __u32 srtt_us; /* Averaged RTT << 3 in usecs */ 2809 __u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */ 2810 __u32 state; 2811 __u32 rtt_min; 2812 __u32 snd_ssthresh; 2813 __u32 rcv_nxt; 2814 __u32 snd_nxt; 2815 __u32 snd_una; 2816 __u32 mss_cache; 2817 __u32 ecn_flags; 2818 __u32 rate_delivered; 2819 __u32 rate_interval_us; 2820 __u32 packets_out; 2821 __u32 retrans_out; 2822 __u32 total_retrans; 2823 __u32 segs_in; 2824 __u32 data_segs_in; 2825 __u32 segs_out; 2826 __u32 data_segs_out; 2827 __u32 lost_out; 2828 __u32 sacked_out; 2829 __u32 sk_txhash; 2830 __u64 bytes_received; 2831 __u64 bytes_acked; 2832 }; 2833 2834 /* Definitions for bpf_sock_ops_cb_flags */ 2835 #define BPF_SOCK_OPS_RTO_CB_FLAG (1<<0) 2836 #define BPF_SOCK_OPS_RETRANS_CB_FLAG (1<<1) 2837 #define BPF_SOCK_OPS_STATE_CB_FLAG (1<<2) 2838 #define BPF_SOCK_OPS_ALL_CB_FLAGS 0x7 /* Mask of all currently 2839 * supported cb flags 2840 */ 2841 2842 /* List of known BPF sock_ops operators. 2843 * New entries can only be added at the end 2844 */ 2845 enum { 2846 BPF_SOCK_OPS_VOID, 2847 BPF_SOCK_OPS_TIMEOUT_INIT, /* Should return SYN-RTO value to use or 2848 * -1 if default value should be used 2849 */ 2850 BPF_SOCK_OPS_RWND_INIT, /* Should return initial advertized 2851 * window (in packets) or -1 if default 2852 * value should be used 2853 */ 2854 BPF_SOCK_OPS_TCP_CONNECT_CB, /* Calls BPF program right before an 2855 * active connection is initialized 2856 */ 2857 BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, /* Calls BPF program when an 2858 * active connection is 2859 * established 2860 */ 2861 BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, /* Calls BPF program when a 2862 * passive connection is 2863 * established 2864 */ 2865 BPF_SOCK_OPS_NEEDS_ECN, /* If connection's congestion control 2866 * needs ECN 2867 */ 2868 BPF_SOCK_OPS_BASE_RTT, /* Get base RTT. The correct value is 2869 * based on the path and may be 2870 * dependent on the congestion control 2871 * algorithm. In general it indicates 2872 * a congestion threshold. RTTs above 2873 * this indicate congestion 2874 */ 2875 BPF_SOCK_OPS_RTO_CB, /* Called when an RTO has triggered. 2876 * Arg1: value of icsk_retransmits 2877 * Arg2: value of icsk_rto 2878 * Arg3: whether RTO has expired 2879 */ 2880 BPF_SOCK_OPS_RETRANS_CB, /* Called when skb is retransmitted. 2881 * Arg1: sequence number of 1st byte 2882 * Arg2: # segments 2883 * Arg3: return value of 2884 * tcp_transmit_skb (0 => success) 2885 */ 2886 BPF_SOCK_OPS_STATE_CB, /* Called when TCP changes state. 2887 * Arg1: old_state 2888 * Arg2: new_state 2889 */ 2890 BPF_SOCK_OPS_TCP_LISTEN_CB, /* Called on listen(2), right after 2891 * socket transition to LISTEN state. 2892 */ 2893 }; 2894 2895 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect 2896 * changes between the TCP and BPF versions. Ideally this should never happen. 2897 * If it does, we need to add code to convert them before calling 2898 * the BPF sock_ops function. 2899 */ 2900 enum { 2901 BPF_TCP_ESTABLISHED = 1, 2902 BPF_TCP_SYN_SENT, 2903 BPF_TCP_SYN_RECV, 2904 BPF_TCP_FIN_WAIT1, 2905 BPF_TCP_FIN_WAIT2, 2906 BPF_TCP_TIME_WAIT, 2907 BPF_TCP_CLOSE, 2908 BPF_TCP_CLOSE_WAIT, 2909 BPF_TCP_LAST_ACK, 2910 BPF_TCP_LISTEN, 2911 BPF_TCP_CLOSING, /* Now a valid state */ 2912 BPF_TCP_NEW_SYN_RECV, 2913 2914 BPF_TCP_MAX_STATES /* Leave at the end! */ 2915 }; 2916 2917 #define TCP_BPF_IW 1001 /* Set TCP initial congestion window */ 2918 #define TCP_BPF_SNDCWND_CLAMP 1002 /* Set sndcwnd_clamp */ 2919 2920 struct bpf_perf_event_value { 2921 __u64 counter; 2922 __u64 enabled; 2923 __u64 running; 2924 }; 2925 2926 #define BPF_DEVCG_ACC_MKNOD (1ULL << 0) 2927 #define BPF_DEVCG_ACC_READ (1ULL << 1) 2928 #define BPF_DEVCG_ACC_WRITE (1ULL << 2) 2929 2930 #define BPF_DEVCG_DEV_BLOCK (1ULL << 0) 2931 #define BPF_DEVCG_DEV_CHAR (1ULL << 1) 2932 2933 struct bpf_cgroup_dev_ctx { 2934 /* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */ 2935 __u32 access_type; 2936 __u32 major; 2937 __u32 minor; 2938 }; 2939 2940 struct bpf_raw_tracepoint_args { 2941 __u64 args[0]; 2942 }; 2943 2944 /* DIRECT: Skip the FIB rules and go to FIB table associated with device 2945 * OUTPUT: Do lookup from egress perspective; default is ingress 2946 */ 2947 #define BPF_FIB_LOOKUP_DIRECT BIT(0) 2948 #define BPF_FIB_LOOKUP_OUTPUT BIT(1) 2949 2950 enum { 2951 BPF_FIB_LKUP_RET_SUCCESS, /* lookup successful */ 2952 BPF_FIB_LKUP_RET_BLACKHOLE, /* dest is blackholed; can be dropped */ 2953 BPF_FIB_LKUP_RET_UNREACHABLE, /* dest is unreachable; can be dropped */ 2954 BPF_FIB_LKUP_RET_PROHIBIT, /* dest not allowed; can be dropped */ 2955 BPF_FIB_LKUP_RET_NOT_FWDED, /* packet is not forwarded */ 2956 BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */ 2957 BPF_FIB_LKUP_RET_UNSUPP_LWT, /* fwd requires encapsulation */ 2958 BPF_FIB_LKUP_RET_NO_NEIGH, /* no neighbor entry for nh */ 2959 BPF_FIB_LKUP_RET_FRAG_NEEDED, /* fragmentation required to fwd */ 2960 }; 2961 2962 struct bpf_fib_lookup { 2963 /* input: network family for lookup (AF_INET, AF_INET6) 2964 * output: network family of egress nexthop 2965 */ 2966 __u8 family; 2967 2968 /* set if lookup is to consider L4 data - e.g., FIB rules */ 2969 __u8 l4_protocol; 2970 __be16 sport; 2971 __be16 dport; 2972 2973 /* total length of packet from network header - used for MTU check */ 2974 __u16 tot_len; 2975 2976 /* input: L3 device index for lookup 2977 * output: device index from FIB lookup 2978 */ 2979 __u32 ifindex; 2980 2981 union { 2982 /* inputs to lookup */ 2983 __u8 tos; /* AF_INET */ 2984 __be32 flowinfo; /* AF_INET6, flow_label + priority */ 2985 2986 /* output: metric of fib result (IPv4/IPv6 only) */ 2987 __u32 rt_metric; 2988 }; 2989 2990 union { 2991 __be32 ipv4_src; 2992 __u32 ipv6_src[4]; /* in6_addr; network order */ 2993 }; 2994 2995 /* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in 2996 * network header. output: bpf_fib_lookup sets to gateway address 2997 * if FIB lookup returns gateway route 2998 */ 2999 union { 3000 __be32 ipv4_dst; 3001 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3002 }; 3003 3004 /* output */ 3005 __be16 h_vlan_proto; 3006 __be16 h_vlan_TCI; 3007 __u8 smac[6]; /* ETH_ALEN */ 3008 __u8 dmac[6]; /* ETH_ALEN */ 3009 }; 3010 3011 enum bpf_task_fd_type { 3012 BPF_FD_TYPE_RAW_TRACEPOINT, /* tp name */ 3013 BPF_FD_TYPE_TRACEPOINT, /* tp name */ 3014 BPF_FD_TYPE_KPROBE, /* (symbol + offset) or addr */ 3015 BPF_FD_TYPE_KRETPROBE, /* (symbol + offset) or addr */ 3016 BPF_FD_TYPE_UPROBE, /* filename + offset */ 3017 BPF_FD_TYPE_URETPROBE, /* filename + offset */ 3018 }; 3019 3020 struct bpf_flow_keys { 3021 __u16 nhoff; 3022 __u16 thoff; 3023 __u16 addr_proto; /* ETH_P_* of valid addrs */ 3024 __u8 is_frag; 3025 __u8 is_first_frag; 3026 __u8 is_encap; 3027 __u8 ip_proto; 3028 __be16 n_proto; 3029 __be16 sport; 3030 __be16 dport; 3031 union { 3032 struct { 3033 __be32 ipv4_src; 3034 __be32 ipv4_dst; 3035 }; 3036 struct { 3037 __u32 ipv6_src[4]; /* in6_addr; network order */ 3038 __u32 ipv6_dst[4]; /* in6_addr; network order */ 3039 }; 3040 }; 3041 }; 3042 3043 struct bpf_func_info { 3044 __u32 insn_off; 3045 __u32 type_id; 3046 }; 3047 3048 #define BPF_LINE_INFO_LINE_NUM(line_col) ((line_col) >> 10) 3049 #define BPF_LINE_INFO_LINE_COL(line_col) ((line_col) & 0x3ff) 3050 3051 struct bpf_line_info { 3052 __u32 insn_off; 3053 __u32 file_name_off; 3054 __u32 line_off; 3055 __u32 line_col; 3056 }; 3057 3058 #endif /* _UAPI__LINUX_BPF_H__ */ 3059 )********" 3060