• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2019 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert ELEMENTS_TILE % 8 == 0
7$assert ELEMENTS_TILE >= 8
8$SIMD_TILE = ELEMENTS_TILE // 8
9$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
10#include <assert.h>
11
12#include <immintrin.h>
13
14#include <xnnpack/raddexpminusmax.h>
15
16
17static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
18
19void xnn_f32_raddexpminusmax_ukernel__avx2_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
20    size_t elements,
21    const float* input,
22    float* sum,
23    float max)
24{
25  assert(elements % sizeof(float) == 0);
26
27  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
28  // The smallest x for which expf(x) is normalized.
29  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
30  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
31  const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
32  const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
33
34  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
35  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
36  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
37  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
38  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
39
40  const __m256 vi_max = _mm256_set1_ps(max);
41
42  $for K in range(ACCUMULATORS):
43    __m256 vacc${K} = _mm256_setzero_ps();
44  for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
45    // Load ${ELEMENTS_TILE} (${SIMD_TILE}x8) inputs at a time.
46    const __m256 vi0 = _mm256_loadu_ps(input);
47    $for N in range(1, SIMD_TILE):
48      const __m256 vi${N} = _mm256_loadu_ps(input + ${N * 8});
49    input += ${ELEMENTS_TILE};
50
51    // Subtract maximum input x := i - i_max. This implies x <= 0.
52    $for N in range(SIMD_TILE):
53      const __m256 vx${N} = _mm256_sub_ps(vi${N}, vi_max);
54
55    // Compute reduced argument elements := round(x / log(2)).
56    $for N in range(SIMD_TILE):
57      __m256 vn${N} = _mm256_fmadd_ps(vx${N}, vlog2e, vmagic_bias);
58
59    // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
60    // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
61    $for N in range(SIMD_TILE):
62      const __m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${N}), 23));
63
64    // Subtract the large number back to get final elements := round(x / log(2)).
65    $for N in range(SIMD_TILE):
66      vn${N} = _mm256_sub_ps(vn${N}, vmagic_bias);
67
68    // Compute reduced argument t := x - elements * log(2).
69    // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
70    $for N in range(SIMD_TILE):
71      __m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N});
72
73    $for N in range(SIMD_TILE):
74      vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N});
75
76    // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
77    $for N in range(SIMD_TILE):
78      __m256 vp${N} = _mm256_fmadd_ps(vc5, vt${N}, vc4);
79
80    $for N in range(SIMD_TILE):
81      vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc3);
82
83    $for N in range(SIMD_TILE):
84      vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2);
85
86    $for N in range(SIMD_TILE):
87      vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1);
88
89    // Reconstruct the final f value:
90    //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
91    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
92    //     = s + (t * s) * p
93    $for N in range(SIMD_TILE):
94      vt${N} = _mm256_mul_ps(vt${N}, vs${N});
95
96    $for N in range(SIMD_TILE):
97      __m256 vf${N} = _mm256_fmadd_ps(vt${N}, vp${N}, vs${N});
98
99    // For inputs below zero cutoff, replace output with +0.0f.
100    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
101    $for N in range(SIMD_TILE):
102      vf${N} = _mm256_andnot_ps(_mm256_cmp_ps(vx${N}, vdenorm_cutoff, _CMP_LT_OS), vf${N});
103
104    // Accumulate computed exponents.
105    $for N in range(SIMD_TILE):
106      vacc${N % ACCUMULATORS} = _mm256_add_ps(vacc${N % ACCUMULATORS}, vf${N});
107  }
108  $if ACCUMULATORS > 1:
109    // Add up all accumulators to vacc0
110    $ACC_SLICE = 1
111    $while ACC_SLICE < ACCUMULATORS:
112      $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
113        $if A + ACC_SLICE < ACCUMULATORS:
114          vacc${A} = _mm256_add_ps(vacc${A}, vacc${A + ACC_SLICE});
115      $ACC_SLICE *= 2
116
117  __m256 vacc = vacc0;
118  for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
119    // Load 8 inputs at a time.
120    const __m256 vi = _mm256_loadu_ps(input);
121    input += 8;
122
123    // Subtract maximum input x := i - i_max. This implies x <= 0.
124    const __m256 vx = _mm256_sub_ps(vi, vi_max);
125
126    // Compute reduced argument elements := round(x / log(2)).
127    __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
128
129    // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
130    // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
131    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
132
133    // Subtract the large number back to get final elements := round(x / log(2)).
134    vn = _mm256_sub_ps(vn, vmagic_bias);
135
136    // Compute reduced argument t := x - elements * log(2).
137    // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
138    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
139    vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
140
141    // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
142    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
143    vp = _mm256_fmadd_ps(vp, vt, vc3);
144    vp = _mm256_fmadd_ps(vp, vt, vc2);
145    vp = _mm256_fmadd_ps(vp, vt, vc1);
146
147    // Reconstruct the final f value:
148    //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
149    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
150    //     = s + (t * s) * p
151    vt = _mm256_mul_ps(vt, vs);
152    __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
153
154    // For inputs below zero cutoff, replace output with +0.0f.
155    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
156    vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
157
158    // Accumulate computed exponents.
159    vacc = _mm256_add_ps(vacc, vf);
160  }
161  if (elements != 0) {
162    assert(elements >= 1 * sizeof(float));
163    assert(elements <= 7 * sizeof(float));
164    const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
165
166    // Load up to 7 inputs at a time.
167    const __m256 vi = _mm256_maskload_ps(input, vmask);
168
169    // Subtract maximum input x := i - i_max. This implies x <= 0.
170    const __m256 vx = _mm256_sub_ps(vi, vi_max);
171
172    // Compute reduced argument elements := round(x / log(2)).
173    __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
174
175    // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
176    // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
177    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
178
179    // Subtract the large number back to get final elements := round(x / log(2)).
180    vn = _mm256_sub_ps(vn, vmagic_bias);
181
182    // Compute reduced argument t := x - elements * log(2).
183    // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
184    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
185    vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
186
187    // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
188    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
189    vp = _mm256_fmadd_ps(vp, vt, vc3);
190    vp = _mm256_fmadd_ps(vp, vt, vc2);
191    vp = _mm256_fmadd_ps(vp, vt, vc1);
192
193    // Reconstruct the final f value:
194    //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
195    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
196    //     = s + (t * s) * p
197    vt = _mm256_mul_ps(vt, vs);
198    __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
199
200    // For inputs below zero cutoff, replace output with +0.0f.
201    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
202    vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
203
204    // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged.
205    vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask)));
206  }
207  // Reduce 8 elements in the SIMD register
208  __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1));
209  vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo));
210  vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo));
211  _mm_store_ss(sum, vacc_lo);
212  _mm256_zeroupper();
213}
214