• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$SSE_HEADER = {2: "emmintrin.h", 3: "tmmintrin.h", 4: "smmintrin.h", 5: "ammintrin.h"}[SSE]
7$assert VARIANT in ["LD64", "LD128", "EXTENDED"]
8$assert MR <= 4
9#include <assert.h>
10
11$if SSE == 5:
12  #ifdef __GNUC__
13    #include <x86intrin.h>
14  #else
15    #include <immintrin.h>
16    #include <${SSE_HEADER}>
17  #endif
18$else:
19  #include <${SSE_HEADER}>
20
21#include <xnnpack/gemm.h>
22#include <xnnpack/math.h>
23
24
25$LOAD_SUFFIX = {"LD128": "_ld128", "LD64": "_ld64", "EXTENDED": ""}[VARIANT]
26$GEMM_SUFFIX = "_xw" if VARIANT == "EXTENDED" else ""
27$ISA = {2: "sse2", 3: "ssse3", 4: "sse41", 5: "xop"}[SSE]
28void xnn_qs8_gemm${GEMM_SUFFIX}_minmax_ukernel_${MR}x4c8__${ISA}${LOAD_SUFFIX}(
29    size_t mr,
30    size_t nc,
31    size_t kc,
32    const int8_t* restrict a,
33    size_t a_stride,
34    const void* restrict w,
35    int8_t* restrict c,
36    size_t cm_stride,
37    size_t cn_stride,
38    const union xnn_qs8_gemm${GEMM_SUFFIX}_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN
39{
40  assert(mr != 0);
41  assert(mr <= ${MR});
42  assert(nc != 0);
43  assert(kc != 0);
44  assert(kc % sizeof(int8_t) == 0);
45  assert(a != NULL);
46  assert(w != NULL);
47  assert(c != NULL);
48
49  kc = round_up_po2(kc, 8);
50  const int8_t* a0 = a;
51  int8_t* c0 = c;
52  $for M in range(1, MR):
53    const int8_t* a${M} = (const int8_t*) ((uintptr_t) a${M-1} + a_stride);
54    int8_t* c${M} = (int8_t*) ((uintptr_t) c${M-1} + cm_stride);
55    $if M % 2 == 0:
56      if XNN_UNPREDICTABLE(mr <= ${M}) {
57        a${M} = a${M-1};
58        c${M} = c${M-1};
59      }
60    $elif M + 1 == MR:
61      if XNN_UNPREDICTABLE(mr != ${M+1}) {
62        a${M} = a${M-1};
63        c${M} = c${M-1};
64      }
65    $else:
66      if XNN_UNPREDICTABLE(mr < ${M+1}) {
67        a${M} = a${M-1};
68        c${M} = c${M-1};
69      }
70
71  do {
72    $for N in range(4):
73      __m128i vacc0x${N} = _mm_cvtsi32_si128((int) ((const int32_t*) w)[${N}]);
74    $for M in range(1, MR):
75      $for N in range(4):
76        __m128i vacc${M}x${N} = vacc0x${N};
77    w = (const void*) ((uintptr_t) w + 4 * sizeof(int32_t));
78
79    size_t k = 0;
80    while (k < kc) {
81      $for M in range(MR):
82        const __m128i va${M} = _mm_loadl_epi64((const __m128i*) a${M});
83        $if SSE >= 4:
84          const __m128i vxa${M} = _mm_cvtepi8_epi16(va${M});
85        $else:
86          const __m128i vxa${M} = _mm_unpacklo_epi8(va${M}, _mm_cmpgt_epi8(_mm_setzero_si128(), va${M}));
87        a${M} += 8;
88
89      $if VARIANT == "LD128":
90        $for N in range(0, 4, 2):
91          $if N == 0:
92            const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) w);
93          $else:
94            const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) ((uintptr_t) w + ${N * 8} * sizeof(int8_t)));
95          const __m128i vsb${N}${N+1} = _mm_cmpgt_epi8(_mm_setzero_si128(), vb${N}${N+1});
96          const __m128i vxb${N} = _mm_unpacklo_epi8(vb${N}${N+1}, vsb${N}${N+1});
97          const __m128i vxb${N+1} = _mm_unpackhi_epi8(vb${N}${N+1}, vsb${N}${N+1});
98
99          $for M in range(MR):
100            $if SSE == 5:
101              vacc${M}x${N} = _mm_maddd_epi16(vxa${M}, vxb${N}, vacc${M}x${N});
102              vacc${M}x${N+1} = _mm_maddd_epi16(vxa${M}, vxb${N+1}, vacc${M}x${N+1});
103            $else:
104              vacc${M}x${N} = _mm_add_epi32(vacc${M}x${N}, _mm_madd_epi16(vxa${M}, vxb${N}));
105              vacc${M}x${N+1} = _mm_add_epi32(vacc${M}x${N+1}, _mm_madd_epi16(vxa${M}, vxb${N+1}));
106      $else:
107        $for N in range(4):
108          $if VARIANT == "LD64":
109            $if N == 0:
110              const __m128i vb${N} = _mm_loadl_epi64((const __m128i*) w);
111            $else:
112              const __m128i vb${N} = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${N * 8} * sizeof(int8_t)));
113            $if SSE >= 4:
114              const __m128i vxb${N} = _mm_cvtepi8_epi16(vb${N});
115            $else:
116              const __m128i vxb${N} = _mm_unpacklo_epi8(vb${N}, _mm_cmpgt_epi8(_mm_setzero_si128(), vb${N}));
117          $elif VARIANT == "EXTENDED":
118            $if N == 0:
119              const __m128i vxb${N} = _mm_load_si128((const __m128i*) w);
120            $else:
121              const __m128i vxb${N} = _mm_load_si128((const __m128i*) ((uintptr_t) w + ${N * 8} * sizeof(int16_t)));
122
123          $for M in range(MR):
124            $if SSE == 5:
125              vacc${M}x${N} = _mm_maddd_epi16(vxa${M}, vxb${N}, vacc${M}x${N});
126            $else:
127              vacc${M}x${N} = _mm_add_epi32(vacc${M}x${N}, _mm_madd_epi16(vxa${M}, vxb${N}));
128
129      $if VARIANT == "EXTENDED":
130        w = (const void*) ((uintptr_t) w + 32 * sizeof(int16_t));
131      $else:
132        w = (const void*) ((uintptr_t) w + 32 * sizeof(int8_t));
133      k += 8 * sizeof(int8_t);
134    }
135
136    $if SSE >= 3:
137      $for M in range(MR):
138        const __m128i vacc${M}x01 = _mm_hadd_epi32(vacc${M}x0, vacc${M}x1);
139        const __m128i vacc${M}x23 = _mm_hadd_epi32(vacc${M}x2, vacc${M}x3);
140
141      $for M in range(MR):
142        __m128i vacc${M}x0123 = _mm_hadd_epi32(vacc${M}x01, vacc${M}x23);
143    $else:
144      $for M in range(MR):
145        const __m128i vacc${M}x02 = _mm_add_epi32(_mm_unpacklo_epi32(vacc${M}x0, vacc${M}x2), _mm_unpackhi_epi32(vacc${M}x0, vacc${M}x2));
146        const __m128i vacc${M}x13 = _mm_add_epi32(_mm_unpacklo_epi32(vacc${M}x1, vacc${M}x3), _mm_unpackhi_epi32(vacc${M}x1, vacc${M}x3));
147
148      $for M in range(MR):
149        __m128i vacc${M}x0123 = _mm_add_epi32(_mm_unpacklo_epi32(vacc${M}x02, vacc${M}x13), _mm_unpackhi_epi32(vacc${M}x02, vacc${M}x13));
150
151    const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse2.multiplier);
152    const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse2.rounding);
153
154    $if SSE >= 4:
155      $for M in range(MR):
156        const __m128i vacc${M}x1133 = _mm_shuffle_epi32(vacc${M}x0123, _MM_SHUFFLE(3, 3, 1, 1));
157
158      $for M in range(MR):
159        const __m128i vprod${M}x02 = _mm_add_epi64(_mm_mul_epi32(vacc${M}x0123, vmultiplier), vrounding);
160
161      $for M in range(MR):
162        const __m128i vprod${M}x13 = _mm_add_epi64(_mm_mul_epi32(vacc${M}x1133, vmultiplier), vrounding);
163
164      $for M in range(MR):
165        const __m128i vq31prod${M}x02 = _mm_srli_epi64(vprod${M}x02, 31);
166        const __m128i vq31prod${M}x13 = _mm_add_epi64(vprod${M}x13, vprod${M}x13);
167
168      $for M in range(MR):
169        const __m128i vq31prod${M}x0123 = _mm_blend_epi16(vq31prod${M}x02, vq31prod${M}x13, 0xCC);
170    $else:
171      $for M in range(MR):
172        const __m128i vnmask${M}x0123 = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${M}x0123);
173
174      $for M in range(MR):
175        $if SSE >= 3:
176          const __m128i vabsacc${M}x0123 = _mm_abs_epi32(vacc${M}x0123);
177        $else:
178          const __m128i vabsacc${M}x0123 = _mm_sub_epi32(_mm_xor_si128(vacc${M}x0123, vnmask${M}x0123), vnmask${M}x0123);
179
180      $for M in range(MR):
181        const __m128i vabsacc${M}x1133 = _mm_shuffle_epi32(vabsacc${M}x0123, _MM_SHUFFLE(3, 3, 1, 1));
182
183      $for M in range(MR):
184        const __m128i vabsprod${M}x02 = _mm_mul_epu32(vabsacc${M}x0123, vmultiplier);
185
186      $for M in range(MR):
187        const __m128i vnmask${M}x02 = _mm_shuffle_epi32(vnmask${M}x0123, _MM_SHUFFLE(2, 2, 0, 0));
188
189      $for M in range(MR):
190        const __m128i vprod${M}x02 = _mm_sub_epi64(_mm_xor_si128(vabsprod${M}x02, vnmask${M}x02), vnmask${M}x02);
191
192      $for M in range(MR):
193        const __m128i vq31prod${M}x02 = _mm_srli_epi64(_mm_add_epi64(vprod${M}x02, vrounding), 31);
194
195      $for M in range(MR):
196        const __m128i vabsprod${M}x13 = _mm_mul_epu32(vabsacc${M}x1133, vmultiplier);
197
198      $for M in range(MR):
199        const __m128i vnmask${M}x13 = _mm_shuffle_epi32(vnmask${M}x0123, _MM_SHUFFLE(3, 3, 1, 1));
200
201      $for M in range(MR):
202        const __m128i vprod${M}x13 = _mm_sub_epi64(_mm_xor_si128(vabsprod${M}x13, vnmask${M}x13), vnmask${M}x13);
203
204      $for M in range(MR):
205        const __m128i vq31prod${M}x13 = _mm_srli_epi64(_mm_add_epi64(vprod${M}x13, vrounding), 31);
206
207      $for M in range(MR):
208        const __m128i vq31prod${M}x0213 = _mm_castps_si128(_mm_shuffle_ps(
209            _mm_castsi128_ps(vq31prod${M}x02), _mm_castsi128_ps(vq31prod${M}x13), _MM_SHUFFLE(2, 0, 2, 0)));
210
211      $for M in range(MR):
212        const __m128i vq31prod${M}x0123 = _mm_shuffle_epi32(vq31prod${M}x0213, _MM_SHUFFLE(3, 1, 2, 0));
213
214    const __m128i vremainder_mask = _mm_load_si128((const __m128i*) params->sse2.remainder_mask);
215    $for M in range(MR):
216      const __m128i vrem${M}x0123 =
217        _mm_add_epi32(_mm_and_si128(vq31prod${M}x0123, vremainder_mask), _mm_cmpgt_epi32(_mm_setzero_si128(), vq31prod${M}x0123));
218
219    const __m128i vremainder_threshold = _mm_load_si128((const __m128i*) params->sse2.remainder_threshold);
220    const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift);
221    $for M in range(MR):
222      vacc${M}x0123 =
223        _mm_sub_epi32(_mm_sra_epi32(vq31prod${M}x0123, vshift), _mm_cmpgt_epi32(vrem${M}x0123, vremainder_threshold));
224
225    const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point);
226    $for M in range(0, MR, 2):
227      __m128i vacc${M}${min(M+1, MR-1)}x0123 = _mm_adds_epi16(_mm_packs_epi32(vacc${M}x0123, vacc${min(M+1, MR-1)}x0123), voutput_zero_point);
228
229    const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min);
230    const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max);
231    $for M in range(0, MR, 2):
232      vacc${M}${min(M+1, MR-1)}x0123 = _mm_min_epi16(_mm_max_epi16(vacc${M}${min(M+1, MR-1)}x0123, voutput_min), voutput_max);
233
234    $if MR > 2:
235      __m128i vout = _mm_packs_epi16(vacc0${min(1, MR-1)}x0123, vacc${min(2, MR-1)}${min(3, MR-1)}x0123);
236    $else:
237      __m128i vout = _mm_packs_epi16(vacc0${min(1, MR-1)}x0123, vacc0${min(1, MR-1)}x0123);
238
239    if (nc >= 4) {
240      *((uint32_t*) c0) = (uint32_t) _mm_cvtsi128_si32(vout);
241      $for M in range(1, MR):
242        $if SSE >= 4:
243          *((uint32_t*) c${M}) = (uint32_t) _mm_extract_epi32(vout, ${M});
244        $else:
245          vout = _mm_srli_si128(vout, 4);
246          *((uint32_t*) c${M}) = (uint32_t) _mm_cvtsi128_si32(vout);
247
248      $for M in range(MR):
249        c${M} = (int8_t*) ((uintptr_t) c${M} + cn_stride);
250
251      $for M in range(MR):
252        a${M} = (const int8_t*) ((uintptr_t) a${M} - kc);
253
254      nc -= 4;
255    } else {
256      if (nc & 2) {
257        $for M in range(MR):
258          *((uint16_t*) c${M}) = (uint16_t) _mm_extract_epi16(vout, ${M * 2});
259          c${M} += 2;
260        vout = _mm_srli_epi32(vout, 16);
261      }
262      if (nc & 1) {
263        $if SSE >= 4:
264          $for M in range(MR):
265            *((int8_t*) c${M}) = (int8_t) _mm_extract_epi8(vout, ${M * 4});
266        $else:
267          *((int8_t*) c0) = (int8_t) _mm_cvtsi128_si32(vout);
268          $for M in range(1, MR):
269            *((int8_t*) c${M}) = (int8_t) _mm_extract_epi16(vout, ${M * 2});
270      }
271
272      nc = 0;
273    }
274  } while (nc != 0);
275}
276