• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2007-2008 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /*
29  * \author
30  * Michal Krol,
31  * Keith Whitwell
32  */
33 
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "tgsi/tgsi_from_mesa.h"
41 #include "st_mesa_to_tgsi.h"
42 #include "st_context.h"
43 #include "program/prog_instruction.h"
44 #include "program/prog_parameter.h"
45 #include "util/u_debug.h"
46 #include "util/u_math.h"
47 #include "util/u_memory.h"
48 #include "st_glsl_to_tgsi.h" /* for _mesa_sysval_to_semantic */
49 
50 
51 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) |    \
52                            (1 << PROGRAM_CONSTANT) |     \
53                            (1 << PROGRAM_UNIFORM))
54 
55 /**
56  * Intermediate state used during shader translation.
57  */
58 struct st_translate {
59    struct ureg_program *ureg;
60 
61    struct ureg_dst temps[MAX_PROGRAM_TEMPS];
62    struct ureg_src *constants;
63    struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
64    struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
65    struct ureg_dst address[1];
66    struct ureg_src samplers[PIPE_MAX_SAMPLERS];
67    struct ureg_src systemValues[SYSTEM_VALUE_MAX];
68 
69    const ubyte *inputMapping;
70    const ubyte *outputMapping;
71 
72    unsigned procType;  /**< PIPE_SHADER_VERTEX/FRAGMENT */
73 };
74 
75 
76 /**
77  * Map a Mesa dst register to a TGSI ureg_dst register.
78  */
79 static struct ureg_dst
dst_register(struct st_translate * t,gl_register_file file,GLuint index)80 dst_register(struct st_translate *t, gl_register_file file, GLuint index)
81 {
82    switch(file) {
83    case PROGRAM_UNDEFINED:
84       return ureg_dst_undef();
85 
86    case PROGRAM_TEMPORARY:
87       if (ureg_dst_is_undef(t->temps[index]))
88          t->temps[index] = ureg_DECL_temporary(t->ureg);
89 
90       return t->temps[index];
91 
92    case PROGRAM_OUTPUT:
93       if (t->procType == PIPE_SHADER_VERTEX)
94          assert(index < VARYING_SLOT_MAX);
95       else if (t->procType == PIPE_SHADER_FRAGMENT)
96          assert(index < FRAG_RESULT_MAX);
97       else
98          assert(index < VARYING_SLOT_MAX);
99 
100       if (t->outputMapping[index] < ARRAY_SIZE(t->outputs))
101          return t->outputs[t->outputMapping[index]];
102       else {
103          assert(t->procType == PIPE_SHADER_VERTEX);
104          return ureg_dst(ureg_DECL_constant(t->ureg, 0));
105       }
106 
107    case PROGRAM_ADDRESS:
108       return t->address[index];
109 
110    default:
111       debug_assert(0);
112       return ureg_dst_undef();
113    }
114 }
115 
116 
117 /**
118  * Map a Mesa src register to a TGSI ureg_src register.
119  */
120 static struct ureg_src
src_register(struct st_translate * t,gl_register_file file,GLint index)121 src_register(struct st_translate *t,
122               gl_register_file file,
123               GLint index)
124 {
125    switch(file) {
126    case PROGRAM_UNDEFINED:
127       return ureg_src_undef();
128 
129    case PROGRAM_TEMPORARY:
130       assert(index >= 0);
131       assert(index < ARRAY_SIZE(t->temps));
132       if (ureg_dst_is_undef(t->temps[index]))
133          t->temps[index] = ureg_DECL_temporary(t->ureg);
134       return ureg_src(t->temps[index]);
135 
136    case PROGRAM_UNIFORM:
137       assert(index >= 0);
138       return t->constants[index];
139    case PROGRAM_STATE_VAR:
140    case PROGRAM_CONSTANT:       /* ie, immediate */
141       if (index < 0)
142          return ureg_DECL_constant(t->ureg, 0);
143       else
144          return t->constants[index];
145 
146    case PROGRAM_INPUT:
147       if (t->inputMapping[index] < ARRAY_SIZE(t->inputs))
148          return t->inputs[t->inputMapping[index]];
149       else {
150          assert(t->procType == PIPE_SHADER_VERTEX);
151          return ureg_DECL_constant(t->ureg, 0);
152       }
153 
154    case PROGRAM_OUTPUT:
155       if (t->outputMapping[index] < ARRAY_SIZE(t->outputs))
156          return ureg_src(t->outputs[t->outputMapping[index]]);
157       else {
158          assert(t->procType == PIPE_SHADER_VERTEX);
159          return ureg_DECL_constant(t->ureg, 0);
160       }
161 
162    case PROGRAM_ADDRESS:
163       return ureg_src(t->address[index]);
164 
165    case PROGRAM_SYSTEM_VALUE:
166       assert(index < ARRAY_SIZE(t->systemValues));
167       return t->systemValues[index];
168 
169    default:
170       debug_assert(0);
171       return ureg_src_undef();
172    }
173 }
174 
175 
176 /**
177  * Map mesa texture target to TGSI texture target.
178  */
179 enum tgsi_texture_type
st_translate_texture_target(gl_texture_index textarget,GLboolean shadow)180 st_translate_texture_target(gl_texture_index textarget, GLboolean shadow)
181 {
182    if (shadow) {
183       switch (textarget) {
184       case TEXTURE_1D_INDEX:
185          return TGSI_TEXTURE_SHADOW1D;
186       case TEXTURE_2D_INDEX:
187          return TGSI_TEXTURE_SHADOW2D;
188       case TEXTURE_RECT_INDEX:
189          return TGSI_TEXTURE_SHADOWRECT;
190       case TEXTURE_1D_ARRAY_INDEX:
191          return TGSI_TEXTURE_SHADOW1D_ARRAY;
192       case TEXTURE_2D_ARRAY_INDEX:
193          return TGSI_TEXTURE_SHADOW2D_ARRAY;
194       case TEXTURE_CUBE_INDEX:
195          return TGSI_TEXTURE_SHADOWCUBE;
196       case TEXTURE_CUBE_ARRAY_INDEX:
197          return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
198       default:
199          break;
200       }
201    }
202 
203    switch (textarget) {
204    case TEXTURE_2D_MULTISAMPLE_INDEX:
205       return TGSI_TEXTURE_2D_MSAA;
206    case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX:
207       return TGSI_TEXTURE_2D_ARRAY_MSAA;
208    case TEXTURE_BUFFER_INDEX:
209       return TGSI_TEXTURE_BUFFER;
210    case TEXTURE_1D_INDEX:
211       return TGSI_TEXTURE_1D;
212    case TEXTURE_2D_INDEX:
213       return TGSI_TEXTURE_2D;
214    case TEXTURE_3D_INDEX:
215       return TGSI_TEXTURE_3D;
216    case TEXTURE_CUBE_INDEX:
217       return TGSI_TEXTURE_CUBE;
218    case TEXTURE_CUBE_ARRAY_INDEX:
219       return TGSI_TEXTURE_CUBE_ARRAY;
220    case TEXTURE_RECT_INDEX:
221       return TGSI_TEXTURE_RECT;
222    case TEXTURE_1D_ARRAY_INDEX:
223       return TGSI_TEXTURE_1D_ARRAY;
224    case TEXTURE_2D_ARRAY_INDEX:
225       return TGSI_TEXTURE_2D_ARRAY;
226    case TEXTURE_EXTERNAL_INDEX:
227       return TGSI_TEXTURE_2D;
228    default:
229       debug_assert(!"unexpected texture target index");
230       return TGSI_TEXTURE_1D;
231    }
232 }
233 
234 
235 /**
236  * Map GLSL base type to TGSI return type.
237  */
238 enum tgsi_return_type
st_translate_texture_type(enum glsl_base_type type)239 st_translate_texture_type(enum glsl_base_type type)
240 {
241    switch (type) {
242    case GLSL_TYPE_INT:
243       return TGSI_RETURN_TYPE_SINT;
244    case GLSL_TYPE_UINT:
245       return TGSI_RETURN_TYPE_UINT;
246    case GLSL_TYPE_FLOAT:
247       return TGSI_RETURN_TYPE_FLOAT;
248    default:
249       assert(!"unexpected texture type");
250       return TGSI_RETURN_TYPE_UNKNOWN;
251    }
252 }
253 
254 
255 /**
256  * Translate a (1 << TEXTURE_x_INDEX) bit into a TGSI_TEXTURE_x enum.
257  */
258 static unsigned
translate_texture_index(GLbitfield texBit,bool shadow)259 translate_texture_index(GLbitfield texBit, bool shadow)
260 {
261    int index = ffs(texBit);
262    assert(index > 0);
263    assert(index - 1 < NUM_TEXTURE_TARGETS);
264    return st_translate_texture_target(index - 1, shadow);
265 }
266 
267 
268 /**
269  * Create a TGSI ureg_dst register from a Mesa dest register.
270  */
271 static struct ureg_dst
translate_dst(struct st_translate * t,const struct prog_dst_register * DstReg,boolean saturate)272 translate_dst(struct st_translate *t,
273               const struct prog_dst_register *DstReg,
274               boolean saturate)
275 {
276    struct ureg_dst dst = dst_register(t, DstReg->File, DstReg->Index);
277 
278    dst = ureg_writemask(dst, DstReg->WriteMask);
279 
280    if (saturate)
281       dst = ureg_saturate(dst);
282 
283    if (DstReg->RelAddr)
284       dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
285 
286    return dst;
287 }
288 
289 
290 /**
291  * Create a TGSI ureg_src register from a Mesa src register.
292  */
293 static struct ureg_src
translate_src(struct st_translate * t,const struct prog_src_register * SrcReg)294 translate_src(struct st_translate *t,
295               const struct prog_src_register *SrcReg)
296 {
297    struct ureg_src src = src_register(t, SrcReg->File, SrcReg->Index);
298 
299    src = ureg_swizzle(src,
300                       GET_SWZ(SrcReg->Swizzle, 0) & 0x3,
301                       GET_SWZ(SrcReg->Swizzle, 1) & 0x3,
302                       GET_SWZ(SrcReg->Swizzle, 2) & 0x3,
303                       GET_SWZ(SrcReg->Swizzle, 3) & 0x3);
304 
305    if (SrcReg->Negate == NEGATE_XYZW)
306       src = ureg_negate(src);
307 
308    if (SrcReg->RelAddr) {
309       src = ureg_src_indirect(src, ureg_src(t->address[0]));
310       if (SrcReg->File != PROGRAM_INPUT &&
311           SrcReg->File != PROGRAM_OUTPUT) {
312          /* If SrcReg->Index was negative, it was set to zero in
313           * src_register().  Reassign it now.  But don't do this
314           * for input/output regs since they get remapped while
315           * const buffers don't.
316           */
317          src.Index = SrcReg->Index;
318       }
319    }
320 
321    return src;
322 }
323 
324 
325 static struct ureg_src
swizzle_4v(struct ureg_src src,const unsigned * swz)326 swizzle_4v(struct ureg_src src, const unsigned *swz)
327 {
328    return ureg_swizzle(src, swz[0], swz[1], swz[2], swz[3]);
329 }
330 
331 
332 /**
333  * Translate a SWZ instruction into a MOV, MUL or MAD instruction.  EG:
334  *
335  *   SWZ dst, src.x-y10
336  *
337  * becomes:
338  *
339  *   MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
340  */
341 static void
emit_swz(struct st_translate * t,struct ureg_dst dst,const struct prog_src_register * SrcReg)342 emit_swz(struct st_translate *t,
343          struct ureg_dst dst,
344          const struct prog_src_register *SrcReg)
345 {
346    struct ureg_program *ureg = t->ureg;
347    struct ureg_src src = src_register(t, SrcReg->File, SrcReg->Index);
348 
349    unsigned negate_mask =  SrcReg->Negate;
350 
351    unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
352                         (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
353                         (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
354                         (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
355 
356    unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
357                          (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
358                          (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
359                          (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
360 
361    unsigned negative_one_mask = one_mask & negate_mask;
362    unsigned positive_one_mask = one_mask & ~negate_mask;
363 
364    struct ureg_src imm;
365    unsigned i;
366    unsigned mul_swizzle[4] = {0,0,0,0};
367    unsigned add_swizzle[4] = {0,0,0,0};
368    unsigned src_swizzle[4] = {0,0,0,0};
369    boolean need_add = FALSE;
370    boolean need_mul = FALSE;
371 
372    if (dst.WriteMask == 0)
373       return;
374 
375    /* Is this just a MOV?
376     */
377    if (zero_mask == 0 &&
378        one_mask == 0 &&
379        (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW)) {
380       ureg_MOV(ureg, dst, translate_src(t, SrcReg));
381       return;
382    }
383 
384 #define IMM_ZERO    0
385 #define IMM_ONE     1
386 #define IMM_NEG_ONE 2
387 
388    imm = ureg_imm3f(ureg, 0, 1, -1);
389 
390    for (i = 0; i < 4; i++) {
391       unsigned bit = 1 << i;
392 
393       if (dst.WriteMask & bit) {
394          if (positive_one_mask & bit) {
395             mul_swizzle[i] = IMM_ZERO;
396             add_swizzle[i] = IMM_ONE;
397             need_add = TRUE;
398          }
399          else if (negative_one_mask & bit) {
400             mul_swizzle[i] = IMM_ZERO;
401             add_swizzle[i] = IMM_NEG_ONE;
402             need_add = TRUE;
403          }
404          else if (zero_mask & bit) {
405             mul_swizzle[i] = IMM_ZERO;
406             add_swizzle[i] = IMM_ZERO;
407             need_add = TRUE;
408          }
409          else {
410             add_swizzle[i] = IMM_ZERO;
411             src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
412             need_mul = TRUE;
413             if (negate_mask & bit) {
414                mul_swizzle[i] = IMM_NEG_ONE;
415             }
416             else {
417                mul_swizzle[i] = IMM_ONE;
418             }
419          }
420       }
421    }
422 
423    if (need_mul && need_add) {
424       ureg_MAD(ureg,
425                dst,
426                swizzle_4v(src, src_swizzle),
427                swizzle_4v(imm, mul_swizzle),
428                swizzle_4v(imm, add_swizzle));
429    }
430    else if (need_mul) {
431       ureg_MUL(ureg,
432                dst,
433                swizzle_4v(src, src_swizzle),
434                swizzle_4v(imm, mul_swizzle));
435    }
436    else if (need_add) {
437       ureg_MOV(ureg,
438                dst,
439                swizzle_4v(imm, add_swizzle));
440    }
441    else {
442       debug_assert(0);
443    }
444 
445 #undef IMM_ZERO
446 #undef IMM_ONE
447 #undef IMM_NEG_ONE
448 }
449 
450 
451 static unsigned
translate_opcode(unsigned op)452 translate_opcode(unsigned op)
453 {
454    switch(op) {
455    case OPCODE_ARL:
456       return TGSI_OPCODE_ARL;
457    case OPCODE_ADD:
458       return TGSI_OPCODE_ADD;
459    case OPCODE_CMP:
460       return TGSI_OPCODE_CMP;
461    case OPCODE_COS:
462       return TGSI_OPCODE_COS;
463    case OPCODE_DP3:
464       return TGSI_OPCODE_DP3;
465    case OPCODE_DP4:
466       return TGSI_OPCODE_DP4;
467    case OPCODE_DST:
468       return TGSI_OPCODE_DST;
469    case OPCODE_EX2:
470       return TGSI_OPCODE_EX2;
471    case OPCODE_EXP:
472       return TGSI_OPCODE_EXP;
473    case OPCODE_FLR:
474       return TGSI_OPCODE_FLR;
475    case OPCODE_FRC:
476       return TGSI_OPCODE_FRC;
477    case OPCODE_KIL:
478       return TGSI_OPCODE_KILL_IF;
479    case OPCODE_LG2:
480       return TGSI_OPCODE_LG2;
481    case OPCODE_LOG:
482       return TGSI_OPCODE_LOG;
483    case OPCODE_LIT:
484       return TGSI_OPCODE_LIT;
485    case OPCODE_LRP:
486       return TGSI_OPCODE_LRP;
487    case OPCODE_MAD:
488       return TGSI_OPCODE_MAD;
489    case OPCODE_MAX:
490       return TGSI_OPCODE_MAX;
491    case OPCODE_MIN:
492       return TGSI_OPCODE_MIN;
493    case OPCODE_MOV:
494       return TGSI_OPCODE_MOV;
495    case OPCODE_MUL:
496       return TGSI_OPCODE_MUL;
497    case OPCODE_POW:
498       return TGSI_OPCODE_POW;
499    case OPCODE_RCP:
500       return TGSI_OPCODE_RCP;
501    case OPCODE_SGE:
502       return TGSI_OPCODE_SGE;
503    case OPCODE_SIN:
504       return TGSI_OPCODE_SIN;
505    case OPCODE_SLT:
506       return TGSI_OPCODE_SLT;
507    case OPCODE_TEX:
508       return TGSI_OPCODE_TEX;
509    case OPCODE_TXB:
510       return TGSI_OPCODE_TXB;
511    case OPCODE_TXP:
512       return TGSI_OPCODE_TXP;
513    case OPCODE_END:
514       return TGSI_OPCODE_END;
515    default:
516       debug_assert(0);
517       return TGSI_OPCODE_NOP;
518    }
519 }
520 
521 
522 static void
compile_instruction(struct gl_context * ctx,struct st_translate * t,const struct prog_instruction * inst)523 compile_instruction(struct gl_context *ctx,
524                     struct st_translate *t,
525                     const struct prog_instruction *inst)
526 {
527    struct ureg_program *ureg = t->ureg;
528    GLuint i;
529    struct ureg_dst dst[1] = { { 0 } };
530    struct ureg_src src[4];
531    unsigned num_dst;
532    unsigned num_src;
533 
534    num_dst = _mesa_num_inst_dst_regs(inst->Opcode);
535    num_src = _mesa_num_inst_src_regs(inst->Opcode);
536 
537    if (num_dst)
538       dst[0] = translate_dst(t, &inst->DstReg, inst->Saturate);
539 
540    for (i = 0; i < num_src; i++)
541       src[i] = translate_src(t, &inst->SrcReg[i]);
542 
543    switch(inst->Opcode) {
544    case OPCODE_SWZ:
545       emit_swz(t, dst[0], &inst->SrcReg[0]);
546       return;
547 
548    case OPCODE_TEX:
549    case OPCODE_TXB:
550    case OPCODE_TXP:
551       src[num_src++] = t->samplers[inst->TexSrcUnit];
552       ureg_tex_insn(ureg,
553                     translate_opcode(inst->Opcode),
554                     dst, num_dst,
555                     st_translate_texture_target(inst->TexSrcTarget,
556                                                 inst->TexShadow),
557                     TGSI_RETURN_TYPE_FLOAT,
558                     NULL, 0,
559                     src, num_src);
560       return;
561 
562    case OPCODE_SCS:
563       ureg_COS(ureg, ureg_writemask(dst[0], TGSI_WRITEMASK_X),
564                ureg_scalar(src[0], TGSI_SWIZZLE_X));
565       ureg_SIN(ureg, ureg_writemask(dst[0], TGSI_WRITEMASK_Y),
566                ureg_scalar(src[0], TGSI_SWIZZLE_X));
567       break;
568 
569    case OPCODE_XPD: {
570       struct ureg_dst tmp = ureg_DECL_temporary(ureg);
571 
572       ureg_MUL(ureg, ureg_writemask(tmp, TGSI_WRITEMASK_XYZ),
573                ureg_swizzle(src[0], TGSI_SWIZZLE_Y, TGSI_SWIZZLE_Z,
574                             TGSI_SWIZZLE_X, 0),
575                ureg_swizzle(src[1], TGSI_SWIZZLE_Z, TGSI_SWIZZLE_X,
576                             TGSI_SWIZZLE_Y, 0));
577       ureg_MAD(ureg, ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ),
578                ureg_swizzle(src[0], TGSI_SWIZZLE_Z, TGSI_SWIZZLE_X,
579                             TGSI_SWIZZLE_Y, 0),
580                ureg_negate(ureg_swizzle(src[1], TGSI_SWIZZLE_Y,
581                                         TGSI_SWIZZLE_Z, TGSI_SWIZZLE_X, 0)),
582                ureg_src(tmp));
583       break;
584    }
585 
586    case OPCODE_RSQ:
587       ureg_RSQ(ureg, dst[0], ureg_abs(src[0]));
588       break;
589 
590    case OPCODE_ABS:
591       ureg_MOV(ureg, dst[0], ureg_abs(src[0]));
592       break;
593 
594    case OPCODE_SUB:
595       ureg_ADD(ureg, dst[0], src[0], ureg_negate(src[1]));
596       break;
597 
598    case OPCODE_DPH: {
599       struct ureg_dst temp = ureg_DECL_temporary(ureg);
600 
601       /* DPH = DP4(src0, src1) where src0.w = 1. */
602       ureg_MOV(ureg, ureg_writemask(temp, TGSI_WRITEMASK_XYZ), src[0]);
603       ureg_MOV(ureg, ureg_writemask(temp, TGSI_WRITEMASK_W),
604                ureg_imm1f(ureg, 1));
605       ureg_DP4(ureg, dst[0], ureg_src(temp), src[1]);
606       break;
607    }
608 
609    default:
610       ureg_insn(ureg,
611                  translate_opcode(inst->Opcode),
612                  dst, num_dst,
613                  src, num_src, 0);
614       break;
615    }
616 }
617 
618 
619 /**
620  * Emit the TGSI instructions for inverting and adjusting WPOS.
621  * This code is unavoidable because it also depends on whether
622  * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
623  */
624 static void
emit_wpos_adjustment(struct gl_context * ctx,struct st_translate * t,const struct gl_program * program,boolean invert,GLfloat adjX,GLfloat adjY[2])625 emit_wpos_adjustment(struct gl_context *ctx,
626                      struct st_translate *t,
627                      const struct gl_program *program,
628                      boolean invert,
629                      GLfloat adjX, GLfloat adjY[2])
630 {
631    struct ureg_program *ureg = t->ureg;
632 
633    /* Fragment program uses fragment position input.
634     * Need to replace instances of INPUT[WPOS] with temp T
635     * where T = INPUT[WPOS] by y is inverted.
636     */
637    static const gl_state_index16 wposTransformState[STATE_LENGTH]
638       = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
639 
640    /* XXX: note we are modifying the incoming shader here!  Need to
641     * do this before emitting the constant decls below, or this
642     * will be missed:
643     */
644    unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
645                                                        wposTransformState);
646 
647    struct ureg_src wpostrans = ureg_DECL_constant(ureg, wposTransConst);
648    struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg);
649    struct ureg_src *wpos =
650       ctx->Const.GLSLFragCoordIsSysVal ?
651          &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
652          &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
653    struct ureg_src wpos_input = *wpos;
654 
655    /* First, apply the coordinate shift: */
656    if (adjX || adjY[0] || adjY[1]) {
657       if (adjY[0] != adjY[1]) {
658          /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
659           * depending on whether inversion is actually going to be applied
660           * or not, which is determined by testing against the inversion
661           * state variable used below, which will be either +1 or -1.
662           */
663          struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
664 
665          ureg_CMP(ureg, adj_temp,
666                   ureg_scalar(wpostrans, invert ? 2 : 0),
667                   ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
668                   ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
669          ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
670       } else {
671          ureg_ADD(ureg, wpos_temp, wpos_input,
672                   ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
673       }
674       wpos_input = ureg_src(wpos_temp);
675    } else {
676       /* MOV wpos_temp, input[wpos]
677        */
678       ureg_MOV(ureg, wpos_temp, wpos_input);
679    }
680 
681    /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
682     * inversion/identity, or the other way around if we're drawing to an FBO.
683     */
684    if (invert) {
685       /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
686        */
687       ureg_MAD(ureg,
688                 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
689                 wpos_input,
690                 ureg_scalar(wpostrans, 0),
691                 ureg_scalar(wpostrans, 1));
692    } else {
693       /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
694        */
695       ureg_MAD(ureg,
696                 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
697                 wpos_input,
698                 ureg_scalar(wpostrans, 2),
699                 ureg_scalar(wpostrans, 3));
700    }
701 
702    /* Use wpos_temp as position input from here on:
703     */
704    *wpos = ureg_src(wpos_temp);
705 }
706 
707 
708 /**
709  * Emit fragment position/coordinate code.
710  */
711 static void
emit_wpos(struct st_context * st,struct st_translate * t,const struct gl_program * program,struct ureg_program * ureg)712 emit_wpos(struct st_context *st,
713           struct st_translate *t,
714           const struct gl_program *program,
715           struct ureg_program *ureg)
716 {
717    struct pipe_screen *pscreen = st->pipe->screen;
718    GLfloat adjX = 0.0f;
719    GLfloat adjY[2] = { 0.0f, 0.0f };
720    boolean invert = FALSE;
721 
722    /* Query the pixel center conventions supported by the pipe driver and set
723     * adjX, adjY to help out if it cannot handle the requested one internally.
724     *
725     * The bias of the y-coordinate depends on whether y-inversion takes place
726     * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
727     * drawing to an FBO (causes additional inversion), and whether the pipe
728     * driver origin and the requested origin differ (the latter condition is
729     * stored in the 'invert' variable).
730     *
731     * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
732     *
733     * center shift only:
734     * i -> h: +0.5
735     * h -> i: -0.5
736     *
737     * inversion only:
738     * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
739     * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
740     * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
741     * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
742     *
743     * inversion and center shift:
744     * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
745     * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
746     * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
747     * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
748     */
749    if (program->info.fs.origin_upper_left) {
750       /* Fragment shader wants origin in upper-left */
751       if (pscreen->get_param(pscreen,
752                              PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
753          /* the driver supports upper-left origin */
754       }
755       else if (pscreen->get_param(pscreen,
756                                   PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
757          /* the driver supports lower-left origin, need to invert Y */
758          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
759                        TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
760          invert = TRUE;
761       }
762       else
763          assert(0);
764    }
765    else {
766       /* Fragment shader wants origin in lower-left */
767       if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
768          /* the driver supports lower-left origin */
769          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
770                        TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
771       else if (pscreen->get_param(pscreen,
772                                   PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
773          /* the driver supports upper-left origin, need to invert Y */
774          invert = TRUE;
775       else
776          assert(0);
777    }
778 
779    if (program->info.fs.pixel_center_integer) {
780       /* Fragment shader wants pixel center integer */
781       if (pscreen->get_param(pscreen,
782                              PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
783          /* the driver supports pixel center integer */
784          adjY[1] = 1.0f;
785          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
786                        TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
787       }
788       else if (pscreen->get_param(pscreen,
789                             PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
790          /* the driver supports pixel center half integer, need to bias X,Y */
791          adjX = -0.5f;
792          adjY[0] = -0.5f;
793          adjY[1] = 0.5f;
794       }
795       else
796          assert(0);
797    }
798    else {
799       /* Fragment shader wants pixel center half integer */
800       if (pscreen->get_param(pscreen,
801                           PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
802          /* the driver supports pixel center half integer */
803       }
804       else if (pscreen->get_param(pscreen,
805                                PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
806          /* the driver supports pixel center integer, need to bias X,Y */
807          adjX = adjY[0] = adjY[1] = 0.5f;
808          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
809                        TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
810       }
811       else
812          assert(0);
813    }
814 
815    /* we invert after adjustment so that we avoid the MOV to temporary,
816     * and reuse the adjustment ADD instead */
817    emit_wpos_adjustment(st->ctx, t, program, invert, adjX, adjY);
818 }
819 
820 
821 /**
822  * Translate Mesa program to TGSI format.
823  * \param program  the program to translate
824  * \param numInputs  number of input registers used
825  * \param inputMapping  maps Mesa fragment program inputs to TGSI generic
826  *                      input indexes
827  * \param inputSemanticName  the TGSI_SEMANTIC flag for each input
828  * \param inputSemanticIndex  the semantic index (ex: which texcoord) for
829  *                            each input
830  * \param interpMode  the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
831  * \param numOutputs  number of output registers used
832  * \param outputMapping  maps Mesa fragment program outputs to TGSI
833  *                       generic outputs
834  * \param outputSemanticName  the TGSI_SEMANTIC flag for each output
835  * \param outputSemanticIndex  the semantic index (ex: which texcoord) for
836  *                             each output
837  *
838  * \return  PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
839  */
840 enum pipe_error
st_translate_mesa_program(struct gl_context * ctx,uint procType,struct ureg_program * ureg,const struct gl_program * program,GLuint numInputs,const ubyte inputMapping[],const ubyte inputSemanticName[],const ubyte inputSemanticIndex[],const ubyte interpMode[],GLuint numOutputs,const ubyte outputMapping[],const ubyte outputSemanticName[],const ubyte outputSemanticIndex[])841 st_translate_mesa_program(struct gl_context *ctx,
842                           uint procType,
843                           struct ureg_program *ureg,
844                           const struct gl_program *program,
845                           GLuint numInputs,
846                           const ubyte inputMapping[],
847                           const ubyte inputSemanticName[],
848                           const ubyte inputSemanticIndex[],
849                           const ubyte interpMode[],
850                           GLuint numOutputs,
851                           const ubyte outputMapping[],
852                           const ubyte outputSemanticName[],
853                           const ubyte outputSemanticIndex[])
854 {
855    struct st_translate translate, *t;
856    unsigned i;
857    enum pipe_error ret = PIPE_OK;
858 
859    assert(numInputs <= ARRAY_SIZE(t->inputs));
860    assert(numOutputs <= ARRAY_SIZE(t->outputs));
861 
862    t = &translate;
863    memset(t, 0, sizeof *t);
864 
865    t->procType = procType;
866    t->inputMapping = inputMapping;
867    t->outputMapping = outputMapping;
868    t->ureg = ureg;
869 
870    /*_mesa_print_program(program);*/
871 
872    /*
873     * Declare input attributes.
874     */
875    if (procType == PIPE_SHADER_FRAGMENT) {
876       for (i = 0; i < numInputs; i++) {
877          t->inputs[i] = ureg_DECL_fs_input(ureg,
878                                            inputSemanticName[i],
879                                            inputSemanticIndex[i],
880                                            interpMode[i]);
881       }
882 
883       if (program->info.inputs_read & VARYING_BIT_POS) {
884          /* Must do this after setting up t->inputs, and before
885           * emitting constant references, below:
886           */
887          emit_wpos(st_context(ctx), t, program, ureg);
888       }
889 
890       /*
891        * Declare output attributes.
892        */
893       for (i = 0; i < numOutputs; i++) {
894          switch (outputSemanticName[i]) {
895          case TGSI_SEMANTIC_POSITION:
896             t->outputs[i] = ureg_DECL_output(ureg,
897                                              TGSI_SEMANTIC_POSITION, /* Z / Depth */
898                                              outputSemanticIndex[i]);
899 
900             t->outputs[i] = ureg_writemask(t->outputs[i],
901                                            TGSI_WRITEMASK_Z);
902             break;
903          case TGSI_SEMANTIC_STENCIL:
904             t->outputs[i] = ureg_DECL_output(ureg,
905                                              TGSI_SEMANTIC_STENCIL, /* Stencil */
906                                              outputSemanticIndex[i]);
907             t->outputs[i] = ureg_writemask(t->outputs[i],
908                                            TGSI_WRITEMASK_Y);
909             break;
910          case TGSI_SEMANTIC_COLOR:
911             t->outputs[i] = ureg_DECL_output(ureg,
912                                              TGSI_SEMANTIC_COLOR,
913                                              outputSemanticIndex[i]);
914             break;
915          default:
916             debug_assert(0);
917             return 0;
918          }
919       }
920    }
921    else if (procType == PIPE_SHADER_GEOMETRY) {
922       for (i = 0; i < numInputs; i++) {
923          t->inputs[i] = ureg_DECL_input(ureg,
924                                         inputSemanticName[i],
925                                         inputSemanticIndex[i], 0, 1);
926       }
927 
928       for (i = 0; i < numOutputs; i++) {
929          t->outputs[i] = ureg_DECL_output(ureg,
930                                           outputSemanticName[i],
931                                           outputSemanticIndex[i]);
932       }
933    }
934    else {
935       assert(procType == PIPE_SHADER_VERTEX);
936 
937       for (i = 0; i < numInputs; i++) {
938          t->inputs[i] = ureg_DECL_vs_input(ureg, i);
939       }
940 
941       for (i = 0; i < numOutputs; i++) {
942          t->outputs[i] = ureg_DECL_output(ureg,
943                                           outputSemanticName[i],
944                                           outputSemanticIndex[i]);
945          if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
946             /* force register to contain a fog coordinate in the
947              * form (F, 0, 0, 1).
948              */
949             ureg_MOV(ureg,
950                      ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
951                      ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
952             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
953          }
954       }
955    }
956 
957    /* Declare address register.
958     */
959    if (program->arb.NumAddressRegs > 0) {
960       debug_assert(program->arb.NumAddressRegs == 1);
961       t->address[0] = ureg_DECL_address(ureg);
962    }
963 
964    /* Declare misc input registers
965     */
966    BITSET_FOREACH_SET (i, program->info.system_values_read, SYSTEM_VALUE_MAX) {
967       unsigned semName = tgsi_get_sysval_semantic(i);
968 
969       t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
970 
971       if (semName == TGSI_SEMANTIC_INSTANCEID ||
972           semName == TGSI_SEMANTIC_VERTEXID) {
973          /* From Gallium perspective, these system values are always
974           * integer, and require native integer support.  However, if
975           * native integer is supported on the vertex stage but not the
976           * pixel stage (e.g, i915g + draw), Mesa will generate IR that
977           * assumes these system values are floats. To resolve the
978           * inconsistency, we insert a U2F.
979           */
980          struct st_context *st = st_context(ctx);
981          struct pipe_screen *pscreen = st->pipe->screen;
982          assert(procType == PIPE_SHADER_VERTEX);
983          assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX,
984                                           PIPE_SHADER_CAP_INTEGERS));
985          (void) pscreen;  /* silence non-debug build warnings */
986          if (!ctx->Const.NativeIntegers) {
987             struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
988             ureg_U2F(t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X),
989                      t->systemValues[i]);
990             t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
991          }
992       }
993 
994       if (procType == PIPE_SHADER_FRAGMENT &&
995           semName == TGSI_SEMANTIC_POSITION)
996          emit_wpos(st_context(ctx), t, program, ureg);
997    }
998 
999    if (program->arb.IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
1000       /* If temps are accessed with indirect addressing, declare temporaries
1001        * in sequential order.  Else, we declare them on demand elsewhere.
1002        */
1003       for (i = 0; i < program->arb.NumTemporaries; i++) {
1004          /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
1005          t->temps[i] = ureg_DECL_temporary(t->ureg);
1006       }
1007    }
1008 
1009    /* Emit constants and immediates.  Mesa uses a single index space
1010     * for these, so we put all the translated regs in t->constants.
1011     */
1012    if (program->Parameters) {
1013       t->constants = calloc(program->Parameters->NumParameters,
1014                              sizeof t->constants[0]);
1015       if (t->constants == NULL) {
1016          ret = PIPE_ERROR_OUT_OF_MEMORY;
1017          goto out;
1018       }
1019 
1020       for (i = 0; i < program->Parameters->NumParameters; i++) {
1021          unsigned pvo = program->Parameters->ParameterValueOffset[i];
1022 
1023          switch (program->Parameters->Parameters[i].Type) {
1024          case PROGRAM_STATE_VAR:
1025          case PROGRAM_UNIFORM:
1026             t->constants[i] = ureg_DECL_constant(ureg, i);
1027             break;
1028 
1029             /* Emit immediates only when there's no indirect addressing of
1030              * the const buffer.
1031              * FIXME: Be smarter and recognize param arrays:
1032              * indirect addressing is only valid within the referenced
1033              * array.
1034              */
1035          case PROGRAM_CONSTANT:
1036             if (program->arb.IndirectRegisterFiles & PROGRAM_ANY_CONST)
1037                t->constants[i] = ureg_DECL_constant( ureg, i );
1038             else
1039                t->constants[i] =
1040                   ureg_DECL_immediate(ureg,
1041                                       (const float *)
1042                                       program->Parameters->ParameterValues + pvo,
1043                                       4);
1044             break;
1045          default:
1046             break;
1047          }
1048       }
1049    }
1050 
1051    /* texture samplers */
1052    for (i = 0;
1053         i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
1054       if (program->SamplersUsed & (1u << i)) {
1055          unsigned target =
1056             translate_texture_index(program->TexturesUsed[i],
1057                                     !!(program->ShadowSamplers & (1 << i)));
1058          t->samplers[i] = ureg_DECL_sampler(ureg, i);
1059          ureg_DECL_sampler_view(ureg, i, target,
1060                                 TGSI_RETURN_TYPE_FLOAT,
1061                                 TGSI_RETURN_TYPE_FLOAT,
1062                                 TGSI_RETURN_TYPE_FLOAT,
1063                                 TGSI_RETURN_TYPE_FLOAT);
1064 
1065       }
1066    }
1067 
1068    /* Emit each instruction in turn:
1069     */
1070    for (i = 0; i < program->arb.NumInstructions; i++)
1071       compile_instruction(ctx, t, &program->arb.Instructions[i]);
1072 
1073 out:
1074    free(t->constants);
1075    return ret;
1076 }
1077