• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #ifndef TENSORFLOW_COMPILER_XLA_SERVICE_GPU_TREE_REDUCTION_REWRITER_H_
16 #define TENSORFLOW_COMPILER_XLA_SERVICE_GPU_TREE_REDUCTION_REWRITER_H_
17 
18 #include <utility>
19 
20 #include "absl/strings/string_view.h"
21 #include "tensorflow/compiler/xla/service/hlo_module.h"
22 #include "tensorflow/compiler/xla/service/hlo_pass_interface.h"
23 #include "tensorflow/compiler/xla/statusor.h"
24 
25 namespace xla {
26 namespace gpu {
27 
28 // Rewrites reductions in a way they can be implemented without atomics.
29 //
30 // Rule application: rewrite a single HLO reduce operation into two.
31 //
32 // Case 1: Row reduction, batched dimension is present, larger than
33 // Z-tiling size.
34 // -----------------------------------------------------------------
35 //
36 // Rewriting:
37 //
38 // f32[B] out = reduce(f32[A, B, C] input, dimensions={0, 2})
39 //
40 // Into:
41 //
42 // f32[A, B] tmp = reduce(f32[A, B, C] input, dimensions={2})
43 // f32[B] out = reduce(f32[A, B] tmp, dimensions={0})
44 //
45 // Case 2: Row reduction
46 // ------------------------------------------------------------------
47 //
48 // Let M be the thread tiling multiplied by the warp size.
49 // We go from (assuming C > M):
50 //
51 // f32[B] out = reduce(f32[A, B, C] input, dimensions={0, 2})
52 //
53 // to:
54 //
55 // f32[A, B, P] padded = pad(input) // Let P = ceil(C/M) * M.
56 // f32[A, B, Q, M] reshaped = bitcast(padded) // Let Q = ceil(C/M)
57 // f32[B, Q] inner_reduce = reduce(reshaped, dimensions={0, 3})
58 // f32[B] outer_reduce = reduce(inner_reduce, dimensions={1})
59 //
60 // Case 3: Column reduction
61 // -------------------------------------------------------------------
62 //
63 // Let T be the tiling size for the column reduction.
64 //
65 // We go from (assuming B > T):
66 //
67 // f32[A, C] out = reduce(f32[A, B, C] input, dimensions={1})
68 //
69 // to:
70 //
71 // f32[A, P, C] padded = pad(input) // Let P = ceil(B/T) * T.
72 // f32[A, Q, T, C] reshaped = bitcast(padded) // Let Q = ceil(B/T)
73 // f32[A, Q, C] inner_reduce = reduce(reshaped, dimensions={2})
74 // f32[A, C] outer_reduce = reduce(inner_reduce, dimensions={1})
75 //
76 class GpuTreeReductionRewriter : public HloModulePass {
77  public:
GpuTreeReductionRewriter()78   GpuTreeReductionRewriter() {}
79   ~GpuTreeReductionRewriter() override = default;
name()80   absl::string_view name() const override {
81     return "gpu-tree-reduction-rewriter";
82   }
83 
84   StatusOr<bool> Run(HloModule* module) override;
85 };
86 
87 }  // end namespace gpu
88 }  // end namespace xla
89 
90 #endif  // TENSORFLOW_COMPILER_XLA_SERVICE_GPU_TREE_REDUCTION_REWRITER_H_
91