• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_COMPILER_XLA_SERVICE_LOOP_SCHEDULE_LINEARIZER_H_
17 #define TENSORFLOW_COMPILER_XLA_SERVICE_LOOP_SCHEDULE_LINEARIZER_H_
18 
19 #include "tensorflow/compiler/xla/service/hlo_alias_analysis.h"
20 #include "tensorflow/compiler/xla/service/hlo_computation.h"
21 #include "tensorflow/compiler/xla/service/hlo_instruction.h"
22 #include "tensorflow/compiler/xla/service/hlo_module.h"
23 #include "tensorflow/compiler/xla/service/hlo_pass_interface.h"
24 
25 namespace xla {
26 
27 // Adds control dependency edges from instructions which "write" values inside
28 // the loop, to instructions which "read" those same values, in order to avoid
29 // extraneous copies. This is not always possible with our buffer layout
30 // constraints (that is, assuming that every element of the tuple the while loop
31 // operates upon gets the same buffer) as it may create cycles (an easiest
32 // example of a dependency cycle is a loop doing `(a, b) = (b, a)`). Thus we
33 // take a best-effort approach instead: add dependency edges only if we can show
34 // they don't create a cycle.
35 class LoopScheduleLinearizer : public HloModulePass {
36  public:
name()37   absl::string_view name() const override { return "loop-schedule-linearizer"; }
38 
39   explicit LoopScheduleLinearizer(
40       const HloDataflowAnalysis::CanShareBuffer& can_share_buffer = nullptr)
can_share_buffer_(can_share_buffer)41       : can_share_buffer_(can_share_buffer) {}
42 
43   StatusOr<bool> Run(HloModule* module) override;
44 
45  private:
46   // Backend specific function that decides whether an instruction can share
47   // buffer with its operand.
48   HloDataflowAnalysis::CanShareBuffer can_share_buffer_;
49 };
50 
51 }  // namespace xla
52 
53 #endif  // TENSORFLOW_COMPILER_XLA_SERVICE_LOOP_SCHEDULE_LINEARIZER_H_
54