• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/lite/c/builtin_op_data.h"
17 #include "tensorflow/lite/c/common.h"
18 #include "tensorflow/lite/micro/all_ops_resolver.h"
19 #include "tensorflow/lite/micro/kernels/kernel_runner.h"
20 #include "tensorflow/lite/micro/test_helpers.h"
21 #include "tensorflow/lite/micro/testing/micro_test.h"
22 
23 namespace tflite {
24 namespace testing {
25 namespace {
26 
TestZerosLikeFloat(const int * input_dims_data,const float * input_data,const float * expected_output_data,float * output_data)27 void TestZerosLikeFloat(const int* input_dims_data, const float* input_data,
28                         const float* expected_output_data, float* output_data) {
29   TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
30   TfLiteIntArray* output_dims = IntArrayFromInts(input_dims_data);
31   const int output_dims_count = ElementCount(*output_dims);
32   constexpr int inputs_size = 1;
33   constexpr int outputs_size = 1;
34   constexpr int tensors_size = inputs_size + outputs_size;
35   TfLiteTensor tensors[tensors_size] = {
36       CreateTensor(input_data, input_dims),
37       CreateTensor(output_data, output_dims),
38   };
39 
40   int inputs_array_data[] = {1, 0};
41   TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
42   int outputs_array_data[] = {1, 1};
43   TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
44 
45   const TfLiteRegistration registration = Register_ZEROS_LIKE();
46   micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
47                              outputs_array,
48                              /*builtin_data=*/nullptr);
49 
50   TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
51   TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
52 
53   for (int i = 0; i < output_dims_count; ++i) {
54     TF_LITE_MICRO_EXPECT_EQ(expected_output_data[i], output_data[i]);
55   }
56 }
57 
TestZerosLikeInt32(const int * input_dims_data,const int32_t * input_data,const int32_t * expected_output_data,int32_t * output_data)58 void TestZerosLikeInt32(const int* input_dims_data, const int32_t* input_data,
59                         const int32_t* expected_output_data,
60                         int32_t* output_data) {
61   TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
62   TfLiteIntArray* output_dims = IntArrayFromInts(input_dims_data);
63   const int output_dims_count = ElementCount(*output_dims);
64   constexpr int inputs_size = 1;
65   constexpr int outputs_size = 1;
66   constexpr int tensors_size = inputs_size + outputs_size;
67   TfLiteTensor tensors[tensors_size] = {
68       CreateTensor(input_data, input_dims),
69       CreateTensor(output_data, output_dims),
70   };
71 
72   int inputs_array_data[] = {1, 0};
73   TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
74   int outputs_array_data[] = {1, 1};
75   TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
76 
77   const TfLiteRegistration registration = Register_ZEROS_LIKE();
78   micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
79                              outputs_array,
80                              /*builtin_data=*/nullptr);
81 
82   TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
83   TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
84 
85   for (int i = 0; i < output_dims_count; ++i) {
86     TF_LITE_MICRO_EXPECT_EQ(expected_output_data[i], output_data[i]);
87   }
88 }
89 
TestZerosLikeInt64(const int * input_dims_data,const int64_t * input_data,const int64_t * expected_output_data,int64_t * output_data)90 void TestZerosLikeInt64(const int* input_dims_data, const int64_t* input_data,
91                         const int64_t* expected_output_data,
92                         int64_t* output_data) {
93   TfLiteIntArray* input_dims = IntArrayFromInts(input_dims_data);
94   TfLiteIntArray* output_dims = IntArrayFromInts(input_dims_data);
95   const int output_dims_count = ElementCount(*output_dims);
96   constexpr int inputs_size = 1;
97   constexpr int outputs_size = 1;
98   constexpr int tensors_size = inputs_size + outputs_size;
99   TfLiteTensor tensors[tensors_size] = {
100       CreateTensor(input_data, input_dims),
101       CreateTensor(output_data, output_dims),
102   };
103 
104   int inputs_array_data[] = {1, 0};
105   TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
106   int outputs_array_data[] = {1, 1};
107   TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
108 
109   const TfLiteRegistration registration = Register_ZEROS_LIKE();
110   micro::KernelRunner runner(registration, tensors, tensors_size, inputs_array,
111                              outputs_array,
112                              /*builtin_data=*/nullptr);
113 
114   TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.InitAndPrepare());
115   TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, runner.Invoke());
116 
117   for (int i = 0; i < output_dims_count; ++i) {
118     TF_LITE_MICRO_EXPECT_EQ(expected_output_data[i], output_data[i]);
119   }
120 }
121 
122 }  // namespace
123 }  // namespace testing
124 }  // namespace tflite
125 
126 TF_LITE_MICRO_TESTS_BEGIN
127 
TF_LITE_MICRO_TEST(TestZerosLikeFloat)128 TF_LITE_MICRO_TEST(TestZerosLikeFloat) {
129   float output_data[6];
130   const int input_dims[] = {2, 2, 3};
131   const float input_values[] = {-2.0, -1.0, 0.0, 1.0, 2.0, 3.0};
132   const float golden[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
133   tflite::testing::TestZerosLikeFloat(input_dims, input_values, golden,
134                                       output_data);
135 }
136 
TF_LITE_MICRO_TEST(TestZerosLikeInt32)137 TF_LITE_MICRO_TEST(TestZerosLikeInt32) {
138   int32_t output_data[4];
139   const int input_dims[] = {4, 1, 2, 2, 1};
140   const int32_t input_values[] = {-2, -1, 0, 3};
141   const int32_t golden[] = {0, 0, 0, 0};
142   tflite::testing::TestZerosLikeInt32(input_dims, input_values, golden,
143                                       output_data);
144 }
145 
TF_LITE_MICRO_TEST(TestZerosLikeInt64)146 TF_LITE_MICRO_TEST(TestZerosLikeInt64) {
147   int64_t output_data[4];
148   const int input_dims[] = {4, 1, 2, 2, 1};
149   const int64_t input_values[] = {-2, -1, 0, 3};
150   const int64_t golden[] = {0, 0, 0, 0};
151   tflite::testing::TestZerosLikeInt64(input_dims, input_values, golden,
152                                       output_data);
153 }
154 
155 TF_LITE_MICRO_TESTS_END
156