• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #ifndef TENSORFLOW_LITE_TOOLS_OPTIMIZE_QUANTIZATION_UTILS_H_
16 #define TENSORFLOW_LITE_TOOLS_OPTIMIZE_QUANTIZATION_UTILS_H_
17 
18 #include <cstdint>
19 
20 #include "tensorflow/lite/context.h"
21 #include "tensorflow/lite/core/api/error_reporter.h"
22 #include "tensorflow/lite/schema/schema_generated.h"
23 
24 namespace tflite {
25 namespace optimize {
26 namespace utils {
27 
28 // Returns the number of elements in the given tensor.
29 TfLiteStatus NumElements(const TensorT& tensor, uint64_t* num_elements);
30 
31 // Populates the scale and zero point for quantization parameters.
32 //
33 // Nudges min and max so that floating point 0 falls exactly on a quantized
34 // value, returning the nudges scale and zero_point.
35 void GetAsymmetricQuantizationParams(
36     float min, float max, const int quant_min, const int quant_max,
37     QuantizationParametersT* quantization_params);
38 
39 // Populates the single total max and min values for a tensor.
40 void FillSingleMinMax(const float* const input, const uint64_t input_size,
41                       QuantizationParametersT* quantization_params);
42 
43 // Populates the max and min values for per channel quantization.
44 TfLiteStatus FillPerChannelMinMax(const float* const input,
45                                   const std::vector<int>& dimension,
46                                   int32_t channel_dim_index,
47                                   QuantizationParametersT* quantization_params,
48                                   ErrorReporter* error_reporter);
49 
50 // Per-channel quantize a tensor at the given index and returns both scales and
51 // quantized values.
52 // Parameters:
53 // - tensor is the tensor to be quantized, needed to access associated
54 //   quantization parameters
55 // - input is the float input data to be quantized.
56 // - channel_dim_index is the channel index within "dimension".
57 //   dimension[channel_dim_index] gives the number of channels.
58 // - output_scale is the output scale, the size of which equals the number of
59 //   channels.
60 // - output_value is the output data, the size of which equals the number of
61 //   inputs.
62 TfLiteStatus SymmetricPerChannelQuantization(TensorT* tensor,
63                                              const float* const input,
64                                              int32_t channel_dim_index,
65                                              std::vector<float>* output_scales,
66                                              std::vector<int8_t>* output_value,
67                                              ErrorReporter* error_reporter);
68 
69 // Quantize the values given an array of scales.
70 void SymmetricPerChannelQuantizeValues(const float* const input,
71                                        const std::vector<float>& scales_inv,
72                                        const std::vector<int32_t>& dimension,
73                                        int32_t channel_dim_index,
74                                        std::vector<int8_t>* output_value);
75 
76 // Quantizes tensor using symmetric quantization with the min and max elements
77 // of the tensor.
78 TfLiteStatus SymmetricQuantizeTensor(ModelT* model, TensorT* tensor);
79 
80 // Quantizes tensor to float16.
81 TfLiteStatus QuantizeTensorFloat16(ModelT* model, TensorT* tensor);
82 
83 // Add quantization parameters.
84 TfLiteStatus AddQuantizationParams(const std::vector<float>& scales,
85                                    const std::vector<int64_t>& zero_point,
86                                    int quantized_dimension,
87                                    const uint8_t* buffer_data,
88                                    size_t buffer_size, TensorType output_type,
89                                    ModelT* model, TensorT* tensor,
90                                    ErrorReporter* error_reporter);
91 
92 // Populates the scales vector based on max and min values of quant_params
93 TfLiteStatus GetSymmetricScalesFromMaxMin(QuantizationParametersT* quant_params,
94                                           std::vector<float>* scales,
95                                           ErrorReporter* error_reporter);
96 
97 // Adjusts scale of weights if incompatible with bias scale and likely to
98 // cause overflow.
99 TfLiteStatus AdjustWeightsForBiasScale(QuantizationParametersT* quant_params,
100                                        const float* bias_data,
101                                        const size_t bias_size,
102                                        const float input_scale,
103                                        ErrorReporter* error_reporter);
104 
105 // Quantizes tensor with per channel.
106 TfLiteStatus SymmetricQuantizeTensorPerChannel(ModelT* model, TensorT* tensor,
107                                                int32_t channel_dim_index,
108                                                ErrorReporter* error_reporter);
109 
110 // Symmetrically quantizes float to 16bits.
111 TfLiteStatus SymmetricQuantizeFloatsToInt16(ModelT* model, TensorT* tensor,
112                                             float scaling_factor,
113                                             ErrorReporter* error_reporter);
114 
115 std::vector<int16_t> SymmetricQuantizeFloatsToInt16(const float* data,
116                                                     uint64_t num_elements,
117                                                     float scaling_factor);
118 
119 // Symmetrically quantizes the bias for per-layer ops (i.e. FullyConnected).
120 template <typename BiasType>
121 TfLiteStatus SymmetricPerLayerBiasQuantize(ModelT* model, TensorT* tensor,
122                                            float scaling_factor,
123                                            ErrorReporter* error_reporter);
124 
125 // Symmetrically quantizes the bias for ops like Conv and DepthwiseConv.
126 // The scale of bias if weight_per_channel_scale[channel] * input_scale.
127 template <typename BiasType>
128 TfLiteStatus SymmetricPerChannelBiasQuantize(ModelT* model, TensorT* tensor,
129                                              float input_scale,
130                                              const float* weight_scales,
131                                              int number_of_dimension,
132                                              ErrorReporter* error_reporter);
133 
134 template <typename BiasType>
135 std::vector<BiasType> SymmetricBiasQuantize(const float* data,
136                                             uint64_t num_elements,
137                                             const std::vector<float>& scales);
138 
139 // Quantize weight with or without per channel.
140 TfLiteStatus QuantizeWeight(ModelT* model, TensorT* tensor, bool per_channel,
141                             int per_axis_index, ErrorReporter* error_reporter);
142 
143 // Get effective scale by combining input scale, intermediate scale and factors.
144 float GetEffectiveScale(ModelT* model, SubGraphT* subgraph, int op_idx,
145                         std::vector<int> input_index,
146                         std::vector<int> intermediate_index,
147                         std::vector<float> factors);
148 
149 // Return quantization parameters depending on activations type.
150 TfLiteStatus GetQuantizationParams(TensorT* tensor, TensorType activations_type,
151                                    QuantizationParametersT* quantization_params,
152                                    ErrorReporter* error_reporter);
153 
154 // Quantize activation.
155 TfLiteStatus QuantizeActivation(TensorT* tensor, TensorType activations_type,
156                                 ErrorReporter* error_reporter);
157 
158 // Quantize activation to 16bit.
159 TfLiteStatus QuantizeActivationToInt16(TensorT* tensor, float scale);
160 
161 // Get the power of two scale for min and max for symmetric quantization case.
162 int GetPowerOfTwoScale(float min, float max);
163 
164 }  // namespace utils
165 }  // namespace optimize
166 }  // namespace tflite
167 
168 #endif  // TENSORFLOW_LITE_TOOLS_OPTIMIZE_QUANTIZATION_UTILS_H_
169