1 //===- tools/dsymutil/DwarfLinker.cpp - Dwarf debug info linker -----------===//
2 //
3 // The LLVM Linker
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 #include "DebugMap.h"
10 #include "BinaryHolder.h"
11 #include "DebugMap.h"
12 #include "dsymutil.h"
13 #include "MachOUtils.h"
14 #include "NonRelocatableStringpool.h"
15 #include "llvm/ADT/IntervalMap.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/CodeGen/AsmPrinter.h"
19 #include "llvm/CodeGen/DIE.h"
20 #include "llvm/Config/config.h"
21 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
22 #include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
23 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
24 #include "llvm/MC/MCAsmBackend.h"
25 #include "llvm/MC/MCAsmInfo.h"
26 #include "llvm/MC/MCContext.h"
27 #include "llvm/MC/MCCodeEmitter.h"
28 #include "llvm/MC/MCDwarf.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/MC/MCObjectFileInfo.h"
31 #include "llvm/MC/MCRegisterInfo.h"
32 #include "llvm/MC/MCStreamer.h"
33 #include "llvm/MC/MCSubtargetInfo.h"
34 #include "llvm/MC/MCTargetOptionsCommandFlags.h"
35 #include "llvm/Object/MachO.h"
36 #include "llvm/Support/Dwarf.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/TargetRegistry.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include "llvm/Target/TargetOptions.h"
41 #include <string>
42 #include <tuple>
43
44 namespace llvm {
45 namespace dsymutil {
46
47 namespace {
48
49 template <typename KeyT, typename ValT>
50 using HalfOpenIntervalMap =
51 IntervalMap<KeyT, ValT, IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
52 IntervalMapHalfOpenInfo<KeyT>>;
53
54 typedef HalfOpenIntervalMap<uint64_t, int64_t> FunctionIntervals;
55
56 // FIXME: Delete this structure.
57 struct PatchLocation {
58 DIE::value_iterator I;
59
60 PatchLocation() = default;
PatchLocationllvm::dsymutil::__anondabe43b60111::PatchLocation61 PatchLocation(DIE::value_iterator I) : I(I) {}
62
setllvm::dsymutil::__anondabe43b60111::PatchLocation63 void set(uint64_t New) const {
64 assert(I);
65 const auto &Old = *I;
66 assert(Old.getType() == DIEValue::isInteger);
67 *I = DIEValue(Old.getAttribute(), Old.getForm(), DIEInteger(New));
68 }
69
getllvm::dsymutil::__anondabe43b60111::PatchLocation70 uint64_t get() const {
71 assert(I);
72 return I->getDIEInteger().getValue();
73 }
74 };
75
76 class CompileUnit;
77 struct DeclMapInfo;
78
79 /// A DeclContext is a named program scope that is used for ODR
80 /// uniquing of types.
81 /// The set of DeclContext for the ODR-subject parts of a Dwarf link
82 /// is expanded (and uniqued) with each new object file processed. We
83 /// need to determine the context of each DIE in an linked object file
84 /// to see if the corresponding type has already been emitted.
85 ///
86 /// The contexts are conceptually organised as a tree (eg. a function
87 /// scope is contained in a namespace scope that contains other
88 /// scopes), but storing/accessing them in an actual tree is too
89 /// inefficient: we need to be able to very quickly query a context
90 /// for a given child context by name. Storing a StringMap in each
91 /// DeclContext would be too space inefficient.
92 /// The solution here is to give each DeclContext a link to its parent
93 /// (this allows to walk up the tree), but to query the existance of a
94 /// specific DeclContext using a separate DenseMap keyed on the hash
95 /// of the fully qualified name of the context.
96 class DeclContext {
97 unsigned QualifiedNameHash;
98 uint32_t Line;
99 uint32_t ByteSize;
100 uint16_t Tag;
101 StringRef Name;
102 StringRef File;
103 const DeclContext &Parent;
104 const DWARFDebugInfoEntryMinimal *LastSeenDIE;
105 uint32_t LastSeenCompileUnitID;
106 uint32_t CanonicalDIEOffset;
107
108 friend DeclMapInfo;
109
110 public:
111 typedef DenseSet<DeclContext *, DeclMapInfo> Map;
112
DeclContext()113 DeclContext()
114 : QualifiedNameHash(0), Line(0), ByteSize(0),
115 Tag(dwarf::DW_TAG_compile_unit), Name(), File(), Parent(*this),
116 LastSeenDIE(nullptr), LastSeenCompileUnitID(0), CanonicalDIEOffset(0) {}
117
DeclContext(unsigned Hash,uint32_t Line,uint32_t ByteSize,uint16_t Tag,StringRef Name,StringRef File,const DeclContext & Parent,const DWARFDebugInfoEntryMinimal * LastSeenDIE=nullptr,unsigned CUId=0)118 DeclContext(unsigned Hash, uint32_t Line, uint32_t ByteSize, uint16_t Tag,
119 StringRef Name, StringRef File, const DeclContext &Parent,
120 const DWARFDebugInfoEntryMinimal *LastSeenDIE = nullptr,
121 unsigned CUId = 0)
122 : QualifiedNameHash(Hash), Line(Line), ByteSize(ByteSize), Tag(Tag),
123 Name(Name), File(File), Parent(Parent), LastSeenDIE(LastSeenDIE),
124 LastSeenCompileUnitID(CUId), CanonicalDIEOffset(0) {}
125
getQualifiedNameHash() const126 uint32_t getQualifiedNameHash() const { return QualifiedNameHash; }
127
128 bool setLastSeenDIE(CompileUnit &U, const DWARFDebugInfoEntryMinimal *Die);
129
getCanonicalDIEOffset() const130 uint32_t getCanonicalDIEOffset() const { return CanonicalDIEOffset; }
setCanonicalDIEOffset(uint32_t Offset)131 void setCanonicalDIEOffset(uint32_t Offset) { CanonicalDIEOffset = Offset; }
132
getTag() const133 uint16_t getTag() const { return Tag; }
getName() const134 StringRef getName() const { return Name; }
135 };
136
137 /// Info type for the DenseMap storing the DeclContext pointers.
138 struct DeclMapInfo : private DenseMapInfo<DeclContext *> {
139 using DenseMapInfo<DeclContext *>::getEmptyKey;
140 using DenseMapInfo<DeclContext *>::getTombstoneKey;
141
getHashValuellvm::dsymutil::__anondabe43b60111::DeclMapInfo142 static unsigned getHashValue(const DeclContext *Ctxt) {
143 return Ctxt->QualifiedNameHash;
144 }
145
isEqualllvm::dsymutil::__anondabe43b60111::DeclMapInfo146 static bool isEqual(const DeclContext *LHS, const DeclContext *RHS) {
147 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
148 return RHS == LHS;
149 return LHS->QualifiedNameHash == RHS->QualifiedNameHash &&
150 LHS->Line == RHS->Line && LHS->ByteSize == RHS->ByteSize &&
151 LHS->Name.data() == RHS->Name.data() &&
152 LHS->File.data() == RHS->File.data() &&
153 LHS->Parent.QualifiedNameHash == RHS->Parent.QualifiedNameHash;
154 }
155 };
156
157 /// This class gives a tree-like API to the DenseMap that stores the
158 /// DeclContext objects. It also holds the BumpPtrAllocator where
159 /// these objects will be allocated.
160 class DeclContextTree {
161 BumpPtrAllocator Allocator;
162 DeclContext Root;
163 DeclContext::Map Contexts;
164
165 public:
166 /// Get the child of \a Context described by \a DIE in \a Unit. The
167 /// required strings will be interned in \a StringPool.
168 /// \returns The child DeclContext along with one bit that is set if
169 /// this context is invalid.
170 /// An invalid context means it shouldn't be considered for uniquing, but its
171 /// not returning null, because some children of that context might be
172 /// uniquing candidates. FIXME: The invalid bit along the return value is to
173 /// emulate some dsymutil-classic functionality.
174 PointerIntPair<DeclContext *, 1>
175 getChildDeclContext(DeclContext &Context,
176 const DWARFDebugInfoEntryMinimal *DIE, CompileUnit &Unit,
177 NonRelocatableStringpool &StringPool, bool InClangModule);
178
getRoot()179 DeclContext &getRoot() { return Root; }
180 };
181
182 /// \brief Stores all information relating to a compile unit, be it in
183 /// its original instance in the object file to its brand new cloned
184 /// and linked DIE tree.
185 class CompileUnit {
186 public:
187 /// \brief Information gathered about a DIE in the object file.
188 struct DIEInfo {
189 int64_t AddrAdjust; ///< Address offset to apply to the described entity.
190 DeclContext *Ctxt; ///< ODR Declaration context.
191 DIE *Clone; ///< Cloned version of that DIE.
192 uint32_t ParentIdx; ///< The index of this DIE's parent.
193 bool Keep : 1; ///< Is the DIE part of the linked output?
194 bool InDebugMap : 1;///< Was this DIE's entity found in the map?
195 bool Prune : 1; ///< Is this a pure forward declaration we can strip?
196 };
197
CompileUnit(DWARFUnit & OrigUnit,unsigned ID,bool CanUseODR,StringRef ClangModuleName)198 CompileUnit(DWARFUnit &OrigUnit, unsigned ID, bool CanUseODR,
199 StringRef ClangModuleName)
200 : OrigUnit(OrigUnit), ID(ID), LowPc(UINT64_MAX), HighPc(0), RangeAlloc(),
201 Ranges(RangeAlloc), ClangModuleName(ClangModuleName) {
202 Info.resize(OrigUnit.getNumDIEs());
203
204 const auto *CUDie = OrigUnit.getUnitDIE(false);
205 unsigned Lang = CUDie->getAttributeValueAsUnsignedConstant(
206 &OrigUnit, dwarf::DW_AT_language, 0);
207 HasODR = CanUseODR && (Lang == dwarf::DW_LANG_C_plus_plus ||
208 Lang == dwarf::DW_LANG_C_plus_plus_03 ||
209 Lang == dwarf::DW_LANG_C_plus_plus_11 ||
210 Lang == dwarf::DW_LANG_C_plus_plus_14 ||
211 Lang == dwarf::DW_LANG_ObjC_plus_plus);
212 }
213
CompileUnit(CompileUnit && RHS)214 CompileUnit(CompileUnit &&RHS)
215 : OrigUnit(RHS.OrigUnit), Info(std::move(RHS.Info)),
216 CUDie(std::move(RHS.CUDie)), StartOffset(RHS.StartOffset),
217 NextUnitOffset(RHS.NextUnitOffset), RangeAlloc(), Ranges(RangeAlloc) {
218 // The CompileUnit container has been 'reserve()'d with the right
219 // size. We cannot move the IntervalMap anyway.
220 llvm_unreachable("CompileUnits should not be moved.");
221 }
222
getOrigUnit() const223 DWARFUnit &getOrigUnit() const { return OrigUnit; }
224
getUniqueID() const225 unsigned getUniqueID() const { return ID; }
226
getOutputUnitDIE() const227 DIE *getOutputUnitDIE() const { return CUDie; }
setOutputUnitDIE(DIE * Die)228 void setOutputUnitDIE(DIE *Die) { CUDie = Die; }
229
hasODR() const230 bool hasODR() const { return HasODR; }
isClangModule() const231 bool isClangModule() const { return !ClangModuleName.empty(); }
getClangModuleName() const232 const std::string &getClangModuleName() const { return ClangModuleName; }
233
getInfo(unsigned Idx)234 DIEInfo &getInfo(unsigned Idx) { return Info[Idx]; }
getInfo(unsigned Idx) const235 const DIEInfo &getInfo(unsigned Idx) const { return Info[Idx]; }
236
getStartOffset() const237 uint64_t getStartOffset() const { return StartOffset; }
getNextUnitOffset() const238 uint64_t getNextUnitOffset() const { return NextUnitOffset; }
setStartOffset(uint64_t DebugInfoSize)239 void setStartOffset(uint64_t DebugInfoSize) { StartOffset = DebugInfoSize; }
240
getLowPc() const241 uint64_t getLowPc() const { return LowPc; }
getHighPc() const242 uint64_t getHighPc() const { return HighPc; }
243
getUnitRangesAttribute() const244 Optional<PatchLocation> getUnitRangesAttribute() const {
245 return UnitRangeAttribute;
246 }
getFunctionRanges() const247 const FunctionIntervals &getFunctionRanges() const { return Ranges; }
getRangesAttributes() const248 const std::vector<PatchLocation> &getRangesAttributes() const {
249 return RangeAttributes;
250 }
251
252 const std::vector<std::pair<PatchLocation, int64_t>> &
getLocationAttributes() const253 getLocationAttributes() const {
254 return LocationAttributes;
255 }
256
setHasInterestingContent()257 void setHasInterestingContent() { HasInterestingContent = true; }
hasInterestingContent()258 bool hasInterestingContent() { return HasInterestingContent; }
259
260 /// Mark every DIE in this unit as kept. This function also
261 /// marks variables as InDebugMap so that they appear in the
262 /// reconstructed accelerator tables.
263 void markEverythingAsKept();
264
265 /// \brief Compute the end offset for this unit. Must be
266 /// called after the CU's DIEs have been cloned.
267 /// \returns the next unit offset (which is also the current
268 /// debug_info section size).
269 uint64_t computeNextUnitOffset();
270
271 /// \brief Keep track of a forward reference to DIE \p Die in \p
272 /// RefUnit by \p Attr. The attribute should be fixed up later to
273 /// point to the absolute offset of \p Die in the debug_info section
274 /// or to the canonical offset of \p Ctxt if it is non-null.
275 void noteForwardReference(DIE *Die, const CompileUnit *RefUnit,
276 DeclContext *Ctxt, PatchLocation Attr);
277
278 /// \brief Apply all fixups recored by noteForwardReference().
279 void fixupForwardReferences();
280
281 /// \brief Add a function range [\p LowPC, \p HighPC) that is
282 /// relocatad by applying offset \p PCOffset.
283 void addFunctionRange(uint64_t LowPC, uint64_t HighPC, int64_t PCOffset);
284
285 /// \brief Keep track of a DW_AT_range attribute that we will need to
286 /// patch up later.
287 void noteRangeAttribute(const DIE &Die, PatchLocation Attr);
288
289 /// \brief Keep track of a location attribute pointing to a location
290 /// list in the debug_loc section.
291 void noteLocationAttribute(PatchLocation Attr, int64_t PcOffset);
292
293 /// \brief Add a name accelerator entry for \p Die with \p Name
294 /// which is stored in the string table at \p Offset.
295 void addNameAccelerator(const DIE *Die, const char *Name, uint32_t Offset,
296 bool SkipPubnamesSection = false);
297
298 /// \brief Add a type accelerator entry for \p Die with \p Name
299 /// which is stored in the string table at \p Offset.
300 void addTypeAccelerator(const DIE *Die, const char *Name, uint32_t Offset);
301
302 struct AccelInfo {
303 StringRef Name; ///< Name of the entry.
304 const DIE *Die; ///< DIE this entry describes.
305 uint32_t NameOffset; ///< Offset of Name in the string pool.
306 bool SkipPubSection; ///< Emit this entry only in the apple_* sections.
307
AccelInfollvm::dsymutil::__anondabe43b60111::CompileUnit::AccelInfo308 AccelInfo(StringRef Name, const DIE *Die, uint32_t NameOffset,
309 bool SkipPubSection = false)
310 : Name(Name), Die(Die), NameOffset(NameOffset),
311 SkipPubSection(SkipPubSection) {}
312 };
313
getPubnames() const314 const std::vector<AccelInfo> &getPubnames() const { return Pubnames; }
getPubtypes() const315 const std::vector<AccelInfo> &getPubtypes() const { return Pubtypes; }
316
317 /// Get the full path for file \a FileNum in the line table
getResolvedPath(unsigned FileNum)318 StringRef getResolvedPath(unsigned FileNum) {
319 if (FileNum >= ResolvedPaths.size())
320 return StringRef();
321 return ResolvedPaths[FileNum];
322 }
323
324 /// Set the fully resolved path for the line-table's file \a FileNum
325 /// to \a Path.
setResolvedPath(unsigned FileNum,StringRef Path)326 void setResolvedPath(unsigned FileNum, StringRef Path) {
327 if (ResolvedPaths.size() <= FileNum)
328 ResolvedPaths.resize(FileNum + 1);
329 ResolvedPaths[FileNum] = Path;
330 }
331
332 private:
333 DWARFUnit &OrigUnit;
334 unsigned ID;
335 std::vector<DIEInfo> Info; ///< DIE info indexed by DIE index.
336 DIE *CUDie; ///< Root of the linked DIE tree.
337
338 uint64_t StartOffset;
339 uint64_t NextUnitOffset;
340
341 uint64_t LowPc;
342 uint64_t HighPc;
343
344 /// \brief A list of attributes to fixup with the absolute offset of
345 /// a DIE in the debug_info section.
346 ///
347 /// The offsets for the attributes in this array couldn't be set while
348 /// cloning because for cross-cu forward refences the target DIE's
349 /// offset isn't known you emit the reference attribute.
350 std::vector<std::tuple<DIE *, const CompileUnit *, DeclContext *,
351 PatchLocation>> ForwardDIEReferences;
352
353 FunctionIntervals::Allocator RangeAlloc;
354 /// \brief The ranges in that interval map are the PC ranges for
355 /// functions in this unit, associated with the PC offset to apply
356 /// to the addresses to get the linked address.
357 FunctionIntervals Ranges;
358
359 /// \brief DW_AT_ranges attributes to patch after we have gathered
360 /// all the unit's function addresses.
361 /// @{
362 std::vector<PatchLocation> RangeAttributes;
363 Optional<PatchLocation> UnitRangeAttribute;
364 /// @}
365
366 /// \brief Location attributes that need to be transfered from th
367 /// original debug_loc section to the liked one. They are stored
368 /// along with the PC offset that is to be applied to their
369 /// function's address.
370 std::vector<std::pair<PatchLocation, int64_t>> LocationAttributes;
371
372 /// \brief Accelerator entries for the unit, both for the pub*
373 /// sections and the apple* ones.
374 /// @{
375 std::vector<AccelInfo> Pubnames;
376 std::vector<AccelInfo> Pubtypes;
377 /// @}
378
379 /// Cached resolved paths from the line table.
380 /// Note, the StringRefs here point in to the intern (uniquing) string pool.
381 /// This means that a StringRef returned here doesn't need to then be uniqued
382 /// for the purposes of getting a unique address for each string.
383 std::vector<StringRef> ResolvedPaths;
384
385 /// Is this unit subject to the ODR rule?
386 bool HasODR;
387 /// Did a DIE actually contain a valid reloc?
388 bool HasInterestingContent;
389 /// If this is a Clang module, this holds the module's name.
390 std::string ClangModuleName;
391 };
392
markEverythingAsKept()393 void CompileUnit::markEverythingAsKept() {
394 for (auto &I : Info)
395 // Mark everything that wasn't explicity marked for pruning.
396 I.Keep = !I.Prune;
397 }
398
computeNextUnitOffset()399 uint64_t CompileUnit::computeNextUnitOffset() {
400 NextUnitOffset = StartOffset + 11 /* Header size */;
401 // The root DIE might be null, meaning that the Unit had nothing to
402 // contribute to the linked output. In that case, we will emit the
403 // unit header without any actual DIE.
404 if (CUDie)
405 NextUnitOffset += CUDie->getSize();
406 return NextUnitOffset;
407 }
408
409 /// \brief Keep track of a forward cross-cu reference from this unit
410 /// to \p Die that lives in \p RefUnit.
noteForwardReference(DIE * Die,const CompileUnit * RefUnit,DeclContext * Ctxt,PatchLocation Attr)411 void CompileUnit::noteForwardReference(DIE *Die, const CompileUnit *RefUnit,
412 DeclContext *Ctxt, PatchLocation Attr) {
413 ForwardDIEReferences.emplace_back(Die, RefUnit, Ctxt, Attr);
414 }
415
416 /// \brief Apply all fixups recorded by noteForwardReference().
fixupForwardReferences()417 void CompileUnit::fixupForwardReferences() {
418 for (const auto &Ref : ForwardDIEReferences) {
419 DIE *RefDie;
420 const CompileUnit *RefUnit;
421 PatchLocation Attr;
422 DeclContext *Ctxt;
423 std::tie(RefDie, RefUnit, Ctxt, Attr) = Ref;
424 if (Ctxt && Ctxt->getCanonicalDIEOffset())
425 Attr.set(Ctxt->getCanonicalDIEOffset());
426 else
427 Attr.set(RefDie->getOffset() + RefUnit->getStartOffset());
428 }
429 }
430
addFunctionRange(uint64_t FuncLowPc,uint64_t FuncHighPc,int64_t PcOffset)431 void CompileUnit::addFunctionRange(uint64_t FuncLowPc, uint64_t FuncHighPc,
432 int64_t PcOffset) {
433 Ranges.insert(FuncLowPc, FuncHighPc, PcOffset);
434 this->LowPc = std::min(LowPc, FuncLowPc + PcOffset);
435 this->HighPc = std::max(HighPc, FuncHighPc + PcOffset);
436 }
437
noteRangeAttribute(const DIE & Die,PatchLocation Attr)438 void CompileUnit::noteRangeAttribute(const DIE &Die, PatchLocation Attr) {
439 if (Die.getTag() != dwarf::DW_TAG_compile_unit)
440 RangeAttributes.push_back(Attr);
441 else
442 UnitRangeAttribute = Attr;
443 }
444
noteLocationAttribute(PatchLocation Attr,int64_t PcOffset)445 void CompileUnit::noteLocationAttribute(PatchLocation Attr, int64_t PcOffset) {
446 LocationAttributes.emplace_back(Attr, PcOffset);
447 }
448
449 /// \brief Add a name accelerator entry for \p Die with \p Name
450 /// which is stored in the string table at \p Offset.
addNameAccelerator(const DIE * Die,const char * Name,uint32_t Offset,bool SkipPubSection)451 void CompileUnit::addNameAccelerator(const DIE *Die, const char *Name,
452 uint32_t Offset, bool SkipPubSection) {
453 Pubnames.emplace_back(Name, Die, Offset, SkipPubSection);
454 }
455
456 /// \brief Add a type accelerator entry for \p Die with \p Name
457 /// which is stored in the string table at \p Offset.
addTypeAccelerator(const DIE * Die,const char * Name,uint32_t Offset)458 void CompileUnit::addTypeAccelerator(const DIE *Die, const char *Name,
459 uint32_t Offset) {
460 Pubtypes.emplace_back(Name, Die, Offset, false);
461 }
462
463 /// \brief The Dwarf streaming logic
464 ///
465 /// All interactions with the MC layer that is used to build the debug
466 /// information binary representation are handled in this class.
467 class DwarfStreamer {
468 /// \defgroup MCObjects MC layer objects constructed by the streamer
469 /// @{
470 std::unique_ptr<MCRegisterInfo> MRI;
471 std::unique_ptr<MCAsmInfo> MAI;
472 std::unique_ptr<MCObjectFileInfo> MOFI;
473 std::unique_ptr<MCContext> MC;
474 MCAsmBackend *MAB; // Owned by MCStreamer
475 std::unique_ptr<MCInstrInfo> MII;
476 std::unique_ptr<MCSubtargetInfo> MSTI;
477 MCCodeEmitter *MCE; // Owned by MCStreamer
478 MCStreamer *MS; // Owned by AsmPrinter
479 std::unique_ptr<TargetMachine> TM;
480 std::unique_ptr<AsmPrinter> Asm;
481 /// @}
482
483 /// \brief the file we stream the linked Dwarf to.
484 std::unique_ptr<raw_fd_ostream> OutFile;
485
486 uint32_t RangesSectionSize;
487 uint32_t LocSectionSize;
488 uint32_t LineSectionSize;
489 uint32_t FrameSectionSize;
490
491 /// \brief Emit the pubnames or pubtypes section contribution for \p
492 /// Unit into \p Sec. The data is provided in \p Names.
493 void emitPubSectionForUnit(MCSection *Sec, StringRef Name,
494 const CompileUnit &Unit,
495 const std::vector<CompileUnit::AccelInfo> &Names);
496
497 public:
498 /// \brief Actually create the streamer and the ouptut file.
499 ///
500 /// This could be done directly in the constructor, but it feels
501 /// more natural to handle errors through return value.
502 bool init(Triple TheTriple, StringRef OutputFilename);
503
504 /// \brief Dump the file to the disk.
505 bool finish(const DebugMap &);
506
getAsmPrinter() const507 AsmPrinter &getAsmPrinter() const { return *Asm; }
508
509 /// \brief Set the current output section to debug_info and change
510 /// the MC Dwarf version to \p DwarfVersion.
511 void switchToDebugInfoSection(unsigned DwarfVersion);
512
513 /// \brief Emit the compilation unit header for \p Unit in the
514 /// debug_info section.
515 ///
516 /// As a side effect, this also switches the current Dwarf version
517 /// of the MC layer to the one of U.getOrigUnit().
518 void emitCompileUnitHeader(CompileUnit &Unit);
519
520 /// \brief Recursively emit the DIE tree rooted at \p Die.
521 void emitDIE(DIE &Die);
522
523 /// \brief Emit the abbreviation table \p Abbrevs to the
524 /// debug_abbrev section.
525 void emitAbbrevs(const std::vector<std::unique_ptr<DIEAbbrev>> &Abbrevs);
526
527 /// \brief Emit the string table described by \p Pool.
528 void emitStrings(const NonRelocatableStringpool &Pool);
529
530 /// \brief Emit debug_ranges for \p FuncRange by translating the
531 /// original \p Entries.
532 void emitRangesEntries(
533 int64_t UnitPcOffset, uint64_t OrigLowPc,
534 const FunctionIntervals::const_iterator &FuncRange,
535 const std::vector<DWARFDebugRangeList::RangeListEntry> &Entries,
536 unsigned AddressSize);
537
538 /// \brief Emit debug_aranges entries for \p Unit and if \p
539 /// DoRangesSection is true, also emit the debug_ranges entries for
540 /// the DW_TAG_compile_unit's DW_AT_ranges attribute.
541 void emitUnitRangesEntries(CompileUnit &Unit, bool DoRangesSection);
542
getRangesSectionSize() const543 uint32_t getRangesSectionSize() const { return RangesSectionSize; }
544
545 /// \brief Emit the debug_loc contribution for \p Unit by copying
546 /// the entries from \p Dwarf and offseting them. Update the
547 /// location attributes to point to the new entries.
548 void emitLocationsForUnit(const CompileUnit &Unit, DWARFContext &Dwarf);
549
550 /// \brief Emit the line table described in \p Rows into the
551 /// debug_line section.
552 void emitLineTableForUnit(MCDwarfLineTableParams Params,
553 StringRef PrologueBytes, unsigned MinInstLength,
554 std::vector<DWARFDebugLine::Row> &Rows,
555 unsigned AdddressSize);
556
getLineSectionSize() const557 uint32_t getLineSectionSize() const { return LineSectionSize; }
558
559 /// \brief Emit the .debug_pubnames contribution for \p Unit.
560 void emitPubNamesForUnit(const CompileUnit &Unit);
561
562 /// \brief Emit the .debug_pubtypes contribution for \p Unit.
563 void emitPubTypesForUnit(const CompileUnit &Unit);
564
565 /// \brief Emit a CIE.
566 void emitCIE(StringRef CIEBytes);
567
568 /// \brief Emit an FDE with data \p Bytes.
569 void emitFDE(uint32_t CIEOffset, uint32_t AddreSize, uint32_t Address,
570 StringRef Bytes);
571
getFrameSectionSize() const572 uint32_t getFrameSectionSize() const { return FrameSectionSize; }
573 };
574
init(Triple TheTriple,StringRef OutputFilename)575 bool DwarfStreamer::init(Triple TheTriple, StringRef OutputFilename) {
576 std::string ErrorStr;
577 std::string TripleName;
578 StringRef Context = "dwarf streamer init";
579
580 // Get the target.
581 const Target *TheTarget =
582 TargetRegistry::lookupTarget(TripleName, TheTriple, ErrorStr);
583 if (!TheTarget)
584 return error(ErrorStr, Context);
585 TripleName = TheTriple.getTriple();
586
587 // Create all the MC Objects.
588 MRI.reset(TheTarget->createMCRegInfo(TripleName));
589 if (!MRI)
590 return error(Twine("no register info for target ") + TripleName, Context);
591
592 MAI.reset(TheTarget->createMCAsmInfo(*MRI, TripleName));
593 if (!MAI)
594 return error("no asm info for target " + TripleName, Context);
595
596 MOFI.reset(new MCObjectFileInfo);
597 MC.reset(new MCContext(MAI.get(), MRI.get(), MOFI.get()));
598 MOFI->InitMCObjectFileInfo(TheTriple, /*PIC*/ false, CodeModel::Default, *MC);
599
600 MAB = TheTarget->createMCAsmBackend(*MRI, TripleName, "");
601 if (!MAB)
602 return error("no asm backend for target " + TripleName, Context);
603
604 MII.reset(TheTarget->createMCInstrInfo());
605 if (!MII)
606 return error("no instr info info for target " + TripleName, Context);
607
608 MSTI.reset(TheTarget->createMCSubtargetInfo(TripleName, "", ""));
609 if (!MSTI)
610 return error("no subtarget info for target " + TripleName, Context);
611
612 MCE = TheTarget->createMCCodeEmitter(*MII, *MRI, *MC);
613 if (!MCE)
614 return error("no code emitter for target " + TripleName, Context);
615
616 // Create the output file.
617 std::error_code EC;
618 OutFile =
619 llvm::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::F_None);
620 if (EC)
621 return error(Twine(OutputFilename) + ": " + EC.message(), Context);
622
623 MCTargetOptions MCOptions = InitMCTargetOptionsFromFlags();
624 MS = TheTarget->createMCObjectStreamer(
625 TheTriple, *MC, *MAB, *OutFile, MCE, *MSTI, MCOptions.MCRelaxAll,
626 MCOptions.MCIncrementalLinkerCompatible,
627 /*DWARFMustBeAtTheEnd*/ false);
628 if (!MS)
629 return error("no object streamer for target " + TripleName, Context);
630
631 // Finally create the AsmPrinter we'll use to emit the DIEs.
632 TM.reset(TheTarget->createTargetMachine(TripleName, "", "", TargetOptions(),
633 None));
634 if (!TM)
635 return error("no target machine for target " + TripleName, Context);
636
637 Asm.reset(TheTarget->createAsmPrinter(*TM, std::unique_ptr<MCStreamer>(MS)));
638 if (!Asm)
639 return error("no asm printer for target " + TripleName, Context);
640
641 RangesSectionSize = 0;
642 LocSectionSize = 0;
643 LineSectionSize = 0;
644 FrameSectionSize = 0;
645
646 return true;
647 }
648
finish(const DebugMap & DM)649 bool DwarfStreamer::finish(const DebugMap &DM) {
650 if (DM.getTriple().isOSDarwin() && !DM.getBinaryPath().empty())
651 return MachOUtils::generateDsymCompanion(DM, *MS, *OutFile);
652
653 MS->Finish();
654 return true;
655 }
656
657 /// \brief Set the current output section to debug_info and change
658 /// the MC Dwarf version to \p DwarfVersion.
switchToDebugInfoSection(unsigned DwarfVersion)659 void DwarfStreamer::switchToDebugInfoSection(unsigned DwarfVersion) {
660 MS->SwitchSection(MOFI->getDwarfInfoSection());
661 MC->setDwarfVersion(DwarfVersion);
662 }
663
664 /// \brief Emit the compilation unit header for \p Unit in the
665 /// debug_info section.
666 ///
667 /// A Dwarf scetion header is encoded as:
668 /// uint32_t Unit length (omiting this field)
669 /// uint16_t Version
670 /// uint32_t Abbreviation table offset
671 /// uint8_t Address size
672 ///
673 /// Leading to a total of 11 bytes.
emitCompileUnitHeader(CompileUnit & Unit)674 void DwarfStreamer::emitCompileUnitHeader(CompileUnit &Unit) {
675 unsigned Version = Unit.getOrigUnit().getVersion();
676 switchToDebugInfoSection(Version);
677
678 // Emit size of content not including length itself. The size has
679 // already been computed in CompileUnit::computeOffsets(). Substract
680 // 4 to that size to account for the length field.
681 Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset() - 4);
682 Asm->EmitInt16(Version);
683 // We share one abbreviations table across all units so it's always at the
684 // start of the section.
685 Asm->EmitInt32(0);
686 Asm->EmitInt8(Unit.getOrigUnit().getAddressByteSize());
687 }
688
689 /// \brief Emit the \p Abbrevs array as the shared abbreviation table
690 /// for the linked Dwarf file.
emitAbbrevs(const std::vector<std::unique_ptr<DIEAbbrev>> & Abbrevs)691 void DwarfStreamer::emitAbbrevs(
692 const std::vector<std::unique_ptr<DIEAbbrev>> &Abbrevs) {
693 MS->SwitchSection(MOFI->getDwarfAbbrevSection());
694 Asm->emitDwarfAbbrevs(Abbrevs);
695 }
696
697 /// \brief Recursively emit the DIE tree rooted at \p Die.
emitDIE(DIE & Die)698 void DwarfStreamer::emitDIE(DIE &Die) {
699 MS->SwitchSection(MOFI->getDwarfInfoSection());
700 Asm->emitDwarfDIE(Die);
701 }
702
703 /// \brief Emit the debug_str section stored in \p Pool.
emitStrings(const NonRelocatableStringpool & Pool)704 void DwarfStreamer::emitStrings(const NonRelocatableStringpool &Pool) {
705 Asm->OutStreamer->SwitchSection(MOFI->getDwarfStrSection());
706 for (auto *Entry = Pool.getFirstEntry(); Entry;
707 Entry = Pool.getNextEntry(Entry))
708 Asm->OutStreamer->EmitBytes(
709 StringRef(Entry->getKey().data(), Entry->getKey().size() + 1));
710 }
711
712 /// \brief Emit the debug_range section contents for \p FuncRange by
713 /// translating the original \p Entries. The debug_range section
714 /// format is totally trivial, consisting just of pairs of address
715 /// sized addresses describing the ranges.
emitRangesEntries(int64_t UnitPcOffset,uint64_t OrigLowPc,const FunctionIntervals::const_iterator & FuncRange,const std::vector<DWARFDebugRangeList::RangeListEntry> & Entries,unsigned AddressSize)716 void DwarfStreamer::emitRangesEntries(
717 int64_t UnitPcOffset, uint64_t OrigLowPc,
718 const FunctionIntervals::const_iterator &FuncRange,
719 const std::vector<DWARFDebugRangeList::RangeListEntry> &Entries,
720 unsigned AddressSize) {
721 MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection());
722
723 // Offset each range by the right amount.
724 int64_t PcOffset = Entries.empty() ? 0 : FuncRange.value() + UnitPcOffset;
725 for (const auto &Range : Entries) {
726 if (Range.isBaseAddressSelectionEntry(AddressSize)) {
727 warn("unsupported base address selection operation",
728 "emitting debug_ranges");
729 break;
730 }
731 // Do not emit empty ranges.
732 if (Range.StartAddress == Range.EndAddress)
733 continue;
734
735 // All range entries should lie in the function range.
736 if (!(Range.StartAddress + OrigLowPc >= FuncRange.start() &&
737 Range.EndAddress + OrigLowPc <= FuncRange.stop()))
738 warn("inconsistent range data.", "emitting debug_ranges");
739 MS->EmitIntValue(Range.StartAddress + PcOffset, AddressSize);
740 MS->EmitIntValue(Range.EndAddress + PcOffset, AddressSize);
741 RangesSectionSize += 2 * AddressSize;
742 }
743
744 // Add the terminator entry.
745 MS->EmitIntValue(0, AddressSize);
746 MS->EmitIntValue(0, AddressSize);
747 RangesSectionSize += 2 * AddressSize;
748 }
749
750 /// \brief Emit the debug_aranges contribution of a unit and
751 /// if \p DoDebugRanges is true the debug_range contents for a
752 /// compile_unit level DW_AT_ranges attribute (Which are basically the
753 /// same thing with a different base address).
754 /// Just aggregate all the ranges gathered inside that unit.
emitUnitRangesEntries(CompileUnit & Unit,bool DoDebugRanges)755 void DwarfStreamer::emitUnitRangesEntries(CompileUnit &Unit,
756 bool DoDebugRanges) {
757 unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
758 // Gather the ranges in a vector, so that we can simplify them. The
759 // IntervalMap will have coalesced the non-linked ranges, but here
760 // we want to coalesce the linked addresses.
761 std::vector<std::pair<uint64_t, uint64_t>> Ranges;
762 const auto &FunctionRanges = Unit.getFunctionRanges();
763 for (auto Range = FunctionRanges.begin(), End = FunctionRanges.end();
764 Range != End; ++Range)
765 Ranges.push_back(std::make_pair(Range.start() + Range.value(),
766 Range.stop() + Range.value()));
767
768 // The object addresses where sorted, but again, the linked
769 // addresses might end up in a different order.
770 std::sort(Ranges.begin(), Ranges.end());
771
772 if (!Ranges.empty()) {
773 MS->SwitchSection(MC->getObjectFileInfo()->getDwarfARangesSection());
774
775 MCSymbol *BeginLabel = Asm->createTempSymbol("Barange");
776 MCSymbol *EndLabel = Asm->createTempSymbol("Earange");
777
778 unsigned HeaderSize =
779 sizeof(int32_t) + // Size of contents (w/o this field
780 sizeof(int16_t) + // DWARF ARange version number
781 sizeof(int32_t) + // Offset of CU in the .debug_info section
782 sizeof(int8_t) + // Pointer Size (in bytes)
783 sizeof(int8_t); // Segment Size (in bytes)
784
785 unsigned TupleSize = AddressSize * 2;
786 unsigned Padding = OffsetToAlignment(HeaderSize, TupleSize);
787
788 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Arange length
789 Asm->OutStreamer->EmitLabel(BeginLabel);
790 Asm->EmitInt16(dwarf::DW_ARANGES_VERSION); // Version number
791 Asm->EmitInt32(Unit.getStartOffset()); // Corresponding unit's offset
792 Asm->EmitInt8(AddressSize); // Address size
793 Asm->EmitInt8(0); // Segment size
794
795 Asm->OutStreamer->emitFill(Padding, 0x0);
796
797 for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End;
798 ++Range) {
799 uint64_t RangeStart = Range->first;
800 MS->EmitIntValue(RangeStart, AddressSize);
801 while ((Range + 1) != End && Range->second == (Range + 1)->first)
802 ++Range;
803 MS->EmitIntValue(Range->second - RangeStart, AddressSize);
804 }
805
806 // Emit terminator
807 Asm->OutStreamer->EmitIntValue(0, AddressSize);
808 Asm->OutStreamer->EmitIntValue(0, AddressSize);
809 Asm->OutStreamer->EmitLabel(EndLabel);
810 }
811
812 if (!DoDebugRanges)
813 return;
814
815 MS->SwitchSection(MC->getObjectFileInfo()->getDwarfRangesSection());
816 // Offset each range by the right amount.
817 int64_t PcOffset = -Unit.getLowPc();
818 // Emit coalesced ranges.
819 for (auto Range = Ranges.begin(), End = Ranges.end(); Range != End; ++Range) {
820 MS->EmitIntValue(Range->first + PcOffset, AddressSize);
821 while (Range + 1 != End && Range->second == (Range + 1)->first)
822 ++Range;
823 MS->EmitIntValue(Range->second + PcOffset, AddressSize);
824 RangesSectionSize += 2 * AddressSize;
825 }
826
827 // Add the terminator entry.
828 MS->EmitIntValue(0, AddressSize);
829 MS->EmitIntValue(0, AddressSize);
830 RangesSectionSize += 2 * AddressSize;
831 }
832
833 /// \brief Emit location lists for \p Unit and update attribtues to
834 /// point to the new entries.
emitLocationsForUnit(const CompileUnit & Unit,DWARFContext & Dwarf)835 void DwarfStreamer::emitLocationsForUnit(const CompileUnit &Unit,
836 DWARFContext &Dwarf) {
837 const auto &Attributes = Unit.getLocationAttributes();
838
839 if (Attributes.empty())
840 return;
841
842 MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLocSection());
843
844 unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
845 const DWARFSection &InputSec = Dwarf.getLocSection();
846 DataExtractor Data(InputSec.Data, Dwarf.isLittleEndian(), AddressSize);
847 DWARFUnit &OrigUnit = Unit.getOrigUnit();
848 const auto *OrigUnitDie = OrigUnit.getUnitDIE(false);
849 int64_t UnitPcOffset = 0;
850 uint64_t OrigLowPc = OrigUnitDie->getAttributeValueAsAddress(
851 &OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
852 if (OrigLowPc != -1ULL)
853 UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
854
855 for (const auto &Attr : Attributes) {
856 uint32_t Offset = Attr.first.get();
857 Attr.first.set(LocSectionSize);
858 // This is the quantity to add to the old location address to get
859 // the correct address for the new one.
860 int64_t LocPcOffset = Attr.second + UnitPcOffset;
861 while (Data.isValidOffset(Offset)) {
862 uint64_t Low = Data.getUnsigned(&Offset, AddressSize);
863 uint64_t High = Data.getUnsigned(&Offset, AddressSize);
864 LocSectionSize += 2 * AddressSize;
865 if (Low == 0 && High == 0) {
866 Asm->OutStreamer->EmitIntValue(0, AddressSize);
867 Asm->OutStreamer->EmitIntValue(0, AddressSize);
868 break;
869 }
870 Asm->OutStreamer->EmitIntValue(Low + LocPcOffset, AddressSize);
871 Asm->OutStreamer->EmitIntValue(High + LocPcOffset, AddressSize);
872 uint64_t Length = Data.getU16(&Offset);
873 Asm->OutStreamer->EmitIntValue(Length, 2);
874 // Just copy the bytes over.
875 Asm->OutStreamer->EmitBytes(
876 StringRef(InputSec.Data.substr(Offset, Length)));
877 Offset += Length;
878 LocSectionSize += Length + 2;
879 }
880 }
881 }
882
emitLineTableForUnit(MCDwarfLineTableParams Params,StringRef PrologueBytes,unsigned MinInstLength,std::vector<DWARFDebugLine::Row> & Rows,unsigned PointerSize)883 void DwarfStreamer::emitLineTableForUnit(MCDwarfLineTableParams Params,
884 StringRef PrologueBytes,
885 unsigned MinInstLength,
886 std::vector<DWARFDebugLine::Row> &Rows,
887 unsigned PointerSize) {
888 // Switch to the section where the table will be emitted into.
889 MS->SwitchSection(MC->getObjectFileInfo()->getDwarfLineSection());
890 MCSymbol *LineStartSym = MC->createTempSymbol();
891 MCSymbol *LineEndSym = MC->createTempSymbol();
892
893 // The first 4 bytes is the total length of the information for this
894 // compilation unit (not including these 4 bytes for the length).
895 Asm->EmitLabelDifference(LineEndSym, LineStartSym, 4);
896 Asm->OutStreamer->EmitLabel(LineStartSym);
897 // Copy Prologue.
898 MS->EmitBytes(PrologueBytes);
899 LineSectionSize += PrologueBytes.size() + 4;
900
901 SmallString<128> EncodingBuffer;
902 raw_svector_ostream EncodingOS(EncodingBuffer);
903
904 if (Rows.empty()) {
905 // We only have the dummy entry, dsymutil emits an entry with a 0
906 // address in that case.
907 MCDwarfLineAddr::Encode(*MC, Params, INT64_MAX, 0, EncodingOS);
908 MS->EmitBytes(EncodingOS.str());
909 LineSectionSize += EncodingBuffer.size();
910 MS->EmitLabel(LineEndSym);
911 return;
912 }
913
914 // Line table state machine fields
915 unsigned FileNum = 1;
916 unsigned LastLine = 1;
917 unsigned Column = 0;
918 unsigned IsStatement = 1;
919 unsigned Isa = 0;
920 uint64_t Address = -1ULL;
921
922 unsigned RowsSinceLastSequence = 0;
923
924 for (unsigned Idx = 0; Idx < Rows.size(); ++Idx) {
925 auto &Row = Rows[Idx];
926
927 int64_t AddressDelta;
928 if (Address == -1ULL) {
929 MS->EmitIntValue(dwarf::DW_LNS_extended_op, 1);
930 MS->EmitULEB128IntValue(PointerSize + 1);
931 MS->EmitIntValue(dwarf::DW_LNE_set_address, 1);
932 MS->EmitIntValue(Row.Address, PointerSize);
933 LineSectionSize += 2 + PointerSize + getULEB128Size(PointerSize + 1);
934 AddressDelta = 0;
935 } else {
936 AddressDelta = (Row.Address - Address) / MinInstLength;
937 }
938
939 // FIXME: code copied and transfromed from
940 // MCDwarf.cpp::EmitDwarfLineTable. We should find a way to share
941 // this code, but the current compatibility requirement with
942 // classic dsymutil makes it hard. Revisit that once this
943 // requirement is dropped.
944
945 if (FileNum != Row.File) {
946 FileNum = Row.File;
947 MS->EmitIntValue(dwarf::DW_LNS_set_file, 1);
948 MS->EmitULEB128IntValue(FileNum);
949 LineSectionSize += 1 + getULEB128Size(FileNum);
950 }
951 if (Column != Row.Column) {
952 Column = Row.Column;
953 MS->EmitIntValue(dwarf::DW_LNS_set_column, 1);
954 MS->EmitULEB128IntValue(Column);
955 LineSectionSize += 1 + getULEB128Size(Column);
956 }
957
958 // FIXME: We should handle the discriminator here, but dsymutil
959 // doesn' consider it, thus ignore it for now.
960
961 if (Isa != Row.Isa) {
962 Isa = Row.Isa;
963 MS->EmitIntValue(dwarf::DW_LNS_set_isa, 1);
964 MS->EmitULEB128IntValue(Isa);
965 LineSectionSize += 1 + getULEB128Size(Isa);
966 }
967 if (IsStatement != Row.IsStmt) {
968 IsStatement = Row.IsStmt;
969 MS->EmitIntValue(dwarf::DW_LNS_negate_stmt, 1);
970 LineSectionSize += 1;
971 }
972 if (Row.BasicBlock) {
973 MS->EmitIntValue(dwarf::DW_LNS_set_basic_block, 1);
974 LineSectionSize += 1;
975 }
976
977 if (Row.PrologueEnd) {
978 MS->EmitIntValue(dwarf::DW_LNS_set_prologue_end, 1);
979 LineSectionSize += 1;
980 }
981
982 if (Row.EpilogueBegin) {
983 MS->EmitIntValue(dwarf::DW_LNS_set_epilogue_begin, 1);
984 LineSectionSize += 1;
985 }
986
987 int64_t LineDelta = int64_t(Row.Line) - LastLine;
988 if (!Row.EndSequence) {
989 MCDwarfLineAddr::Encode(*MC, Params, LineDelta, AddressDelta, EncodingOS);
990 MS->EmitBytes(EncodingOS.str());
991 LineSectionSize += EncodingBuffer.size();
992 EncodingBuffer.resize(0);
993 Address = Row.Address;
994 LastLine = Row.Line;
995 RowsSinceLastSequence++;
996 } else {
997 if (LineDelta) {
998 MS->EmitIntValue(dwarf::DW_LNS_advance_line, 1);
999 MS->EmitSLEB128IntValue(LineDelta);
1000 LineSectionSize += 1 + getSLEB128Size(LineDelta);
1001 }
1002 if (AddressDelta) {
1003 MS->EmitIntValue(dwarf::DW_LNS_advance_pc, 1);
1004 MS->EmitULEB128IntValue(AddressDelta);
1005 LineSectionSize += 1 + getULEB128Size(AddressDelta);
1006 }
1007 MCDwarfLineAddr::Encode(*MC, Params, INT64_MAX, 0, EncodingOS);
1008 MS->EmitBytes(EncodingOS.str());
1009 LineSectionSize += EncodingBuffer.size();
1010 EncodingBuffer.resize(0);
1011 Address = -1ULL;
1012 LastLine = FileNum = IsStatement = 1;
1013 RowsSinceLastSequence = Column = Isa = 0;
1014 }
1015 }
1016
1017 if (RowsSinceLastSequence) {
1018 MCDwarfLineAddr::Encode(*MC, Params, INT64_MAX, 0, EncodingOS);
1019 MS->EmitBytes(EncodingOS.str());
1020 LineSectionSize += EncodingBuffer.size();
1021 EncodingBuffer.resize(0);
1022 }
1023
1024 MS->EmitLabel(LineEndSym);
1025 }
1026
1027 /// \brief Emit the pubnames or pubtypes section contribution for \p
1028 /// Unit into \p Sec. The data is provided in \p Names.
emitPubSectionForUnit(MCSection * Sec,StringRef SecName,const CompileUnit & Unit,const std::vector<CompileUnit::AccelInfo> & Names)1029 void DwarfStreamer::emitPubSectionForUnit(
1030 MCSection *Sec, StringRef SecName, const CompileUnit &Unit,
1031 const std::vector<CompileUnit::AccelInfo> &Names) {
1032 if (Names.empty())
1033 return;
1034
1035 // Start the dwarf pubnames section.
1036 Asm->OutStreamer->SwitchSection(Sec);
1037 MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + SecName + "_begin");
1038 MCSymbol *EndLabel = Asm->createTempSymbol("pub" + SecName + "_end");
1039
1040 bool HeaderEmitted = false;
1041 // Emit the pubnames for this compilation unit.
1042 for (const auto &Name : Names) {
1043 if (Name.SkipPubSection)
1044 continue;
1045
1046 if (!HeaderEmitted) {
1047 // Emit the header.
1048 Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); // Length
1049 Asm->OutStreamer->EmitLabel(BeginLabel);
1050 Asm->EmitInt16(dwarf::DW_PUBNAMES_VERSION); // Version
1051 Asm->EmitInt32(Unit.getStartOffset()); // Unit offset
1052 Asm->EmitInt32(Unit.getNextUnitOffset() - Unit.getStartOffset()); // Size
1053 HeaderEmitted = true;
1054 }
1055 Asm->EmitInt32(Name.Die->getOffset());
1056 Asm->OutStreamer->EmitBytes(
1057 StringRef(Name.Name.data(), Name.Name.size() + 1));
1058 }
1059
1060 if (!HeaderEmitted)
1061 return;
1062 Asm->EmitInt32(0); // End marker.
1063 Asm->OutStreamer->EmitLabel(EndLabel);
1064 }
1065
1066 /// \brief Emit .debug_pubnames for \p Unit.
emitPubNamesForUnit(const CompileUnit & Unit)1067 void DwarfStreamer::emitPubNamesForUnit(const CompileUnit &Unit) {
1068 emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubNamesSection(),
1069 "names", Unit, Unit.getPubnames());
1070 }
1071
1072 /// \brief Emit .debug_pubtypes for \p Unit.
emitPubTypesForUnit(const CompileUnit & Unit)1073 void DwarfStreamer::emitPubTypesForUnit(const CompileUnit &Unit) {
1074 emitPubSectionForUnit(MC->getObjectFileInfo()->getDwarfPubTypesSection(),
1075 "types", Unit, Unit.getPubtypes());
1076 }
1077
1078 /// \brief Emit a CIE into the debug_frame section.
emitCIE(StringRef CIEBytes)1079 void DwarfStreamer::emitCIE(StringRef CIEBytes) {
1080 MS->SwitchSection(MC->getObjectFileInfo()->getDwarfFrameSection());
1081
1082 MS->EmitBytes(CIEBytes);
1083 FrameSectionSize += CIEBytes.size();
1084 }
1085
1086 /// \brief Emit a FDE into the debug_frame section. \p FDEBytes
1087 /// contains the FDE data without the length, CIE offset and address
1088 /// which will be replaced with the paramter values.
emitFDE(uint32_t CIEOffset,uint32_t AddrSize,uint32_t Address,StringRef FDEBytes)1089 void DwarfStreamer::emitFDE(uint32_t CIEOffset, uint32_t AddrSize,
1090 uint32_t Address, StringRef FDEBytes) {
1091 MS->SwitchSection(MC->getObjectFileInfo()->getDwarfFrameSection());
1092
1093 MS->EmitIntValue(FDEBytes.size() + 4 + AddrSize, 4);
1094 MS->EmitIntValue(CIEOffset, 4);
1095 MS->EmitIntValue(Address, AddrSize);
1096 MS->EmitBytes(FDEBytes);
1097 FrameSectionSize += FDEBytes.size() + 8 + AddrSize;
1098 }
1099
1100 /// \brief The core of the Dwarf linking logic.
1101 ///
1102 /// The link of the dwarf information from the object files will be
1103 /// driven by the selection of 'root DIEs', which are DIEs that
1104 /// describe variables or functions that are present in the linked
1105 /// binary (and thus have entries in the debug map). All the debug
1106 /// information that will be linked (the DIEs, but also the line
1107 /// tables, ranges, ...) is derived from that set of root DIEs.
1108 ///
1109 /// The root DIEs are identified because they contain relocations that
1110 /// correspond to a debug map entry at specific places (the low_pc for
1111 /// a function, the location for a variable). These relocations are
1112 /// called ValidRelocs in the DwarfLinker and are gathered as a very
1113 /// first step when we start processing a DebugMapObject.
1114 class DwarfLinker {
1115 public:
DwarfLinker(StringRef OutputFilename,const LinkOptions & Options)1116 DwarfLinker(StringRef OutputFilename, const LinkOptions &Options)
1117 : OutputFilename(OutputFilename), Options(Options),
1118 BinHolder(Options.Verbose), LastCIEOffset(0) {}
1119
1120 /// \brief Link the contents of the DebugMap.
1121 bool link(const DebugMap &);
1122
1123 void reportWarning(const Twine &Warning, const DWARFUnit *Unit = nullptr,
1124 const DWARFDebugInfoEntryMinimal *DIE = nullptr) const;
1125
1126 private:
1127 /// \brief Called at the start of a debug object link.
1128 void startDebugObject(DWARFContext &, DebugMapObject &);
1129
1130 /// \brief Called at the end of a debug object link.
1131 void endDebugObject();
1132
1133 /// Keeps track of relocations.
1134 class RelocationManager {
1135 struct ValidReloc {
1136 uint32_t Offset;
1137 uint32_t Size;
1138 uint64_t Addend;
1139 const DebugMapObject::DebugMapEntry *Mapping;
1140
ValidRelocllvm::dsymutil::__anondabe43b60111::DwarfLinker::RelocationManager::ValidReloc1141 ValidReloc(uint32_t Offset, uint32_t Size, uint64_t Addend,
1142 const DebugMapObject::DebugMapEntry *Mapping)
1143 : Offset(Offset), Size(Size), Addend(Addend), Mapping(Mapping) {}
1144
operator <llvm::dsymutil::__anondabe43b60111::DwarfLinker::RelocationManager::ValidReloc1145 bool operator<(const ValidReloc &RHS) const {
1146 return Offset < RHS.Offset;
1147 }
1148 };
1149
1150 DwarfLinker &Linker;
1151
1152 /// \brief The valid relocations for the current DebugMapObject.
1153 /// This vector is sorted by relocation offset.
1154 std::vector<ValidReloc> ValidRelocs;
1155
1156 /// \brief Index into ValidRelocs of the next relocation to
1157 /// consider. As we walk the DIEs in acsending file offset and as
1158 /// ValidRelocs is sorted by file offset, keeping this index
1159 /// uptodate is all we have to do to have a cheap lookup during the
1160 /// root DIE selection and during DIE cloning.
1161 unsigned NextValidReloc;
1162
1163 public:
RelocationManager(DwarfLinker & Linker)1164 RelocationManager(DwarfLinker &Linker)
1165 : Linker(Linker), NextValidReloc(0) {}
1166
hasValidRelocs() const1167 bool hasValidRelocs() const { return !ValidRelocs.empty(); }
1168 /// \brief Reset the NextValidReloc counter.
resetValidRelocs()1169 void resetValidRelocs() { NextValidReloc = 0; }
1170
1171 /// \defgroup FindValidRelocations Translate debug map into a list
1172 /// of relevant relocations
1173 ///
1174 /// @{
1175 bool findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
1176 const DebugMapObject &DMO);
1177
1178 bool findValidRelocs(const object::SectionRef &Section,
1179 const object::ObjectFile &Obj,
1180 const DebugMapObject &DMO);
1181
1182 void findValidRelocsMachO(const object::SectionRef &Section,
1183 const object::MachOObjectFile &Obj,
1184 const DebugMapObject &DMO);
1185 /// @}
1186
1187 bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
1188 CompileUnit::DIEInfo &Info);
1189
1190 bool applyValidRelocs(MutableArrayRef<char> Data, uint32_t BaseOffset,
1191 bool isLittleEndian);
1192 };
1193
1194 /// \defgroup FindRootDIEs Find DIEs corresponding to debug map entries.
1195 ///
1196 /// @{
1197 /// \brief Recursively walk the \p DIE tree and look for DIEs to
1198 /// keep. Store that information in \p CU's DIEInfo.
1199 void lookForDIEsToKeep(RelocationManager &RelocMgr,
1200 const DWARFDebugInfoEntryMinimal &DIE,
1201 const DebugMapObject &DMO, CompileUnit &CU,
1202 unsigned Flags);
1203
1204 /// If this compile unit is really a skeleton CU that points to a
1205 /// clang module, register it in ClangModules and return true.
1206 ///
1207 /// A skeleton CU is a CU without children, a DW_AT_gnu_dwo_name
1208 /// pointing to the module, and a DW_AT_gnu_dwo_id with the module
1209 /// hash.
1210 bool registerModuleReference(const DWARFDebugInfoEntryMinimal &CUDie,
1211 const DWARFUnit &Unit, DebugMap &ModuleMap,
1212 unsigned Indent = 0);
1213
1214 /// Recursively add the debug info in this clang module .pcm
1215 /// file (and all the modules imported by it in a bottom-up fashion)
1216 /// to Units.
1217 void loadClangModule(StringRef Filename, StringRef ModulePath,
1218 StringRef ModuleName, uint64_t DwoId,
1219 DebugMap &ModuleMap, unsigned Indent = 0);
1220
1221 /// \brief Flags passed to DwarfLinker::lookForDIEsToKeep
1222 enum TravesalFlags {
1223 TF_Keep = 1 << 0, ///< Mark the traversed DIEs as kept.
1224 TF_InFunctionScope = 1 << 1, ///< Current scope is a fucntion scope.
1225 TF_DependencyWalk = 1 << 2, ///< Walking the dependencies of a kept DIE.
1226 TF_ParentWalk = 1 << 3, ///< Walking up the parents of a kept DIE.
1227 TF_ODR = 1 << 4, ///< Use the ODR whhile keeping dependants.
1228 TF_SkipPC = 1 << 5, ///< Skip all location attributes.
1229 };
1230
1231 /// \brief Mark the passed DIE as well as all the ones it depends on
1232 /// as kept.
1233 void keepDIEAndDependencies(RelocationManager &RelocMgr,
1234 const DWARFDebugInfoEntryMinimal &DIE,
1235 CompileUnit::DIEInfo &MyInfo,
1236 const DebugMapObject &DMO, CompileUnit &CU,
1237 bool UseODR);
1238
1239 unsigned shouldKeepDIE(RelocationManager &RelocMgr,
1240 const DWARFDebugInfoEntryMinimal &DIE,
1241 CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
1242 unsigned Flags);
1243
1244 unsigned shouldKeepVariableDIE(RelocationManager &RelocMgr,
1245 const DWARFDebugInfoEntryMinimal &DIE,
1246 CompileUnit &Unit,
1247 CompileUnit::DIEInfo &MyInfo, unsigned Flags);
1248
1249 unsigned shouldKeepSubprogramDIE(RelocationManager &RelocMgr,
1250 const DWARFDebugInfoEntryMinimal &DIE,
1251 CompileUnit &Unit,
1252 CompileUnit::DIEInfo &MyInfo,
1253 unsigned Flags);
1254
1255 bool hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
1256 CompileUnit::DIEInfo &Info);
1257 /// @}
1258
1259 /// \defgroup Linking Methods used to link the debug information
1260 ///
1261 /// @{
1262
1263 class DIECloner {
1264 DwarfLinker &Linker;
1265 RelocationManager &RelocMgr;
1266 /// Allocator used for all the DIEValue objects.
1267 BumpPtrAllocator &DIEAlloc;
1268 MutableArrayRef<CompileUnit> CompileUnits;
1269 LinkOptions Options;
1270
1271 public:
DIECloner(DwarfLinker & Linker,RelocationManager & RelocMgr,BumpPtrAllocator & DIEAlloc,MutableArrayRef<CompileUnit> CompileUnits,LinkOptions & Options)1272 DIECloner(DwarfLinker &Linker, RelocationManager &RelocMgr,
1273 BumpPtrAllocator &DIEAlloc,
1274 MutableArrayRef<CompileUnit> CompileUnits, LinkOptions &Options)
1275 : Linker(Linker), RelocMgr(RelocMgr), DIEAlloc(DIEAlloc),
1276 CompileUnits(CompileUnits), Options(Options) {}
1277
1278 /// Recursively clone \p InputDIE into an tree of DIE objects
1279 /// where useless (as decided by lookForDIEsToKeep()) bits have been
1280 /// stripped out and addresses have been rewritten according to the
1281 /// debug map.
1282 ///
1283 /// \param OutOffset is the offset the cloned DIE in the output
1284 /// compile unit.
1285 /// \param PCOffset (while cloning a function scope) is the offset
1286 /// applied to the entry point of the function to get the linked address.
1287 ///
1288 /// \returns the root of the cloned tree or null if nothing was selected.
1289 DIE *cloneDIE(const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &U,
1290 int64_t PCOffset, uint32_t OutOffset, unsigned Flags);
1291
1292 /// Construct the output DIE tree by cloning the DIEs we
1293 /// chose to keep above. If there are no valid relocs, then there's
1294 /// nothing to clone/emit.
1295 void cloneAllCompileUnits(DWARFContextInMemory &DwarfContext);
1296
1297 private:
1298 typedef DWARFAbbreviationDeclaration::AttributeSpec AttributeSpec;
1299
1300 /// Information gathered and exchanged between the various
1301 /// clone*Attributes helpers about the attributes of a particular DIE.
1302 struct AttributesInfo {
1303 const char *Name, *MangledName; ///< Names.
1304 uint32_t NameOffset, MangledNameOffset; ///< Offsets in the string pool.
1305
1306 uint64_t OrigLowPc; ///< Value of AT_low_pc in the input DIE
1307 uint64_t OrigHighPc; ///< Value of AT_high_pc in the input DIE
1308 int64_t PCOffset; ///< Offset to apply to PC addresses inside a function.
1309
1310 bool HasLowPc; ///< Does the DIE have a low_pc attribute?
1311 bool IsDeclaration; ///< Is this DIE only a declaration?
1312
AttributesInfollvm::dsymutil::__anondabe43b60111::DwarfLinker::DIECloner::AttributesInfo1313 AttributesInfo()
1314 : Name(nullptr), MangledName(nullptr), NameOffset(0),
1315 MangledNameOffset(0), OrigLowPc(UINT64_MAX), OrigHighPc(0),
1316 PCOffset(0), HasLowPc(false), IsDeclaration(false) {}
1317 };
1318
1319 /// Helper for cloneDIE.
1320 unsigned cloneAttribute(DIE &Die,
1321 const DWARFDebugInfoEntryMinimal &InputDIE,
1322 CompileUnit &U, const DWARFFormValue &Val,
1323 const AttributeSpec AttrSpec, unsigned AttrSize,
1324 AttributesInfo &AttrInfo);
1325
1326 /// Clone a string attribute described by \p AttrSpec and add
1327 /// it to \p Die.
1328 /// \returns the size of the new attribute.
1329 unsigned cloneStringAttribute(DIE &Die, AttributeSpec AttrSpec,
1330 const DWARFFormValue &Val,
1331 const DWARFUnit &U);
1332
1333 /// Clone an attribute referencing another DIE and add
1334 /// it to \p Die.
1335 /// \returns the size of the new attribute.
1336 unsigned
1337 cloneDieReferenceAttribute(DIE &Die,
1338 const DWARFDebugInfoEntryMinimal &InputDIE,
1339 AttributeSpec AttrSpec, unsigned AttrSize,
1340 const DWARFFormValue &Val, CompileUnit &Unit);
1341
1342 /// Clone an attribute referencing another DIE and add
1343 /// it to \p Die.
1344 /// \returns the size of the new attribute.
1345 unsigned cloneBlockAttribute(DIE &Die, AttributeSpec AttrSpec,
1346 const DWARFFormValue &Val, unsigned AttrSize);
1347
1348 /// Clone an attribute referencing another DIE and add
1349 /// it to \p Die.
1350 /// \returns the size of the new attribute.
1351 unsigned cloneAddressAttribute(DIE &Die, AttributeSpec AttrSpec,
1352 const DWARFFormValue &Val,
1353 const CompileUnit &Unit,
1354 AttributesInfo &Info);
1355
1356 /// Clone a scalar attribute and add it to \p Die.
1357 /// \returns the size of the new attribute.
1358 unsigned cloneScalarAttribute(DIE &Die,
1359 const DWARFDebugInfoEntryMinimal &InputDIE,
1360 CompileUnit &U, AttributeSpec AttrSpec,
1361 const DWARFFormValue &Val, unsigned AttrSize,
1362 AttributesInfo &Info);
1363
1364 /// Get the potential name and mangled name for the entity
1365 /// described by \p Die and store them in \Info if they are not
1366 /// already there.
1367 /// \returns is a name was found.
1368 bool getDIENames(const DWARFDebugInfoEntryMinimal &Die, DWARFUnit &U,
1369 AttributesInfo &Info);
1370
1371 /// Create a copy of abbreviation Abbrev.
1372 void copyAbbrev(const DWARFAbbreviationDeclaration &Abbrev, bool hasODR);
1373 };
1374
1375 /// \brief Assign an abbreviation number to \p Abbrev
1376 void AssignAbbrev(DIEAbbrev &Abbrev);
1377
1378 /// \brief FoldingSet that uniques the abbreviations.
1379 FoldingSet<DIEAbbrev> AbbreviationsSet;
1380 /// \brief Storage for the unique Abbreviations.
1381 /// This is passed to AsmPrinter::emitDwarfAbbrevs(), thus it cannot
1382 /// be changed to a vecot of unique_ptrs.
1383 std::vector<std::unique_ptr<DIEAbbrev>> Abbreviations;
1384
1385 /// \brief Compute and emit debug_ranges section for \p Unit, and
1386 /// patch the attributes referencing it.
1387 void patchRangesForUnit(const CompileUnit &Unit, DWARFContext &Dwarf) const;
1388
1389 /// \brief Generate and emit the DW_AT_ranges attribute for a
1390 /// compile_unit if it had one.
1391 void generateUnitRanges(CompileUnit &Unit) const;
1392
1393 /// \brief Extract the line tables fromt he original dwarf, extract
1394 /// the relevant parts according to the linked function ranges and
1395 /// emit the result in the debug_line section.
1396 void patchLineTableForUnit(CompileUnit &Unit, DWARFContext &OrigDwarf);
1397
1398 /// \brief Emit the accelerator entries for \p Unit.
1399 void emitAcceleratorEntriesForUnit(CompileUnit &Unit);
1400
1401 /// \brief Patch the frame info for an object file and emit it.
1402 void patchFrameInfoForObject(const DebugMapObject &, DWARFContext &,
1403 unsigned AddressSize);
1404
1405 /// \brief DIELoc objects that need to be destructed (but not freed!).
1406 std::vector<DIELoc *> DIELocs;
1407 /// \brief DIEBlock objects that need to be destructed (but not freed!).
1408 std::vector<DIEBlock *> DIEBlocks;
1409 /// \brief Allocator used for all the DIEValue objects.
1410 BumpPtrAllocator DIEAlloc;
1411 /// @}
1412
1413 /// ODR Contexts for that link.
1414 DeclContextTree ODRContexts;
1415
1416 /// \defgroup Helpers Various helper methods.
1417 ///
1418 /// @{
1419 bool createStreamer(const Triple &TheTriple, StringRef OutputFilename);
1420
1421 /// \brief Attempt to load a debug object from disk.
1422 ErrorOr<const object::ObjectFile &> loadObject(BinaryHolder &BinaryHolder,
1423 DebugMapObject &Obj,
1424 const DebugMap &Map);
1425 /// @}
1426
1427 std::string OutputFilename;
1428 LinkOptions Options;
1429 BinaryHolder BinHolder;
1430 std::unique_ptr<DwarfStreamer> Streamer;
1431 uint64_t OutputDebugInfoSize;
1432 unsigned UnitID; ///< A unique ID that identifies each compile unit.
1433
1434 /// The units of the current debug map object.
1435 std::vector<CompileUnit> Units;
1436
1437 /// The debug map object currently under consideration.
1438 DebugMapObject *CurrentDebugObject;
1439
1440 /// \brief The Dwarf string pool
1441 NonRelocatableStringpool StringPool;
1442
1443 /// \brief This map is keyed by the entry PC of functions in that
1444 /// debug object and the associated value is a pair storing the
1445 /// corresponding end PC and the offset to apply to get the linked
1446 /// address.
1447 ///
1448 /// See startDebugObject() for a more complete description of its use.
1449 std::map<uint64_t, std::pair<uint64_t, int64_t>> Ranges;
1450
1451 /// \brief The CIEs that have been emitted in the output
1452 /// section. The actual CIE data serves a the key to this StringMap,
1453 /// this takes care of comparing the semantics of CIEs defined in
1454 /// different object files.
1455 StringMap<uint32_t> EmittedCIEs;
1456
1457 /// Offset of the last CIE that has been emitted in the output
1458 /// debug_frame section.
1459 uint32_t LastCIEOffset;
1460
1461 /// Mapping the PCM filename to the DwoId.
1462 StringMap<uint64_t> ClangModules;
1463
1464 bool ModuleCacheHintDisplayed = false;
1465 bool ArchiveHintDisplayed = false;
1466 };
1467
1468 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
1469 /// CompileUnit object instead.
getUnitForOffset(MutableArrayRef<CompileUnit> Units,unsigned Offset)1470 static CompileUnit *getUnitForOffset(MutableArrayRef<CompileUnit> Units,
1471 unsigned Offset) {
1472 auto CU =
1473 std::upper_bound(Units.begin(), Units.end(), Offset,
1474 [](uint32_t LHS, const CompileUnit &RHS) {
1475 return LHS < RHS.getOrigUnit().getNextUnitOffset();
1476 });
1477 return CU != Units.end() ? &*CU : nullptr;
1478 }
1479
1480 /// Resolve the DIE attribute reference that has been
1481 /// extracted in \p RefValue. The resulting DIE migh be in another
1482 /// CompileUnit which is stored into \p ReferencedCU.
1483 /// \returns null if resolving fails for any reason.
resolveDIEReference(const DwarfLinker & Linker,MutableArrayRef<CompileUnit> Units,const DWARFFormValue & RefValue,const DWARFUnit & Unit,const DWARFDebugInfoEntryMinimal & DIE,CompileUnit * & RefCU)1484 static const DWARFDebugInfoEntryMinimal *resolveDIEReference(
1485 const DwarfLinker &Linker, MutableArrayRef<CompileUnit> Units,
1486 const DWARFFormValue &RefValue, const DWARFUnit &Unit,
1487 const DWARFDebugInfoEntryMinimal &DIE, CompileUnit *&RefCU) {
1488 assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
1489 uint64_t RefOffset = *RefValue.getAsReference(&Unit);
1490
1491 if ((RefCU = getUnitForOffset(Units, RefOffset)))
1492 if (const auto *RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset))
1493 return RefDie;
1494
1495 Linker.reportWarning("could not find referenced DIE", &Unit, &DIE);
1496 return nullptr;
1497 }
1498
1499 /// \returns whether the passed \a Attr type might contain a DIE
1500 /// reference suitable for ODR uniquing.
isODRAttribute(uint16_t Attr)1501 static bool isODRAttribute(uint16_t Attr) {
1502 switch (Attr) {
1503 default:
1504 return false;
1505 case dwarf::DW_AT_type:
1506 case dwarf::DW_AT_containing_type:
1507 case dwarf::DW_AT_specification:
1508 case dwarf::DW_AT_abstract_origin:
1509 case dwarf::DW_AT_import:
1510 return true;
1511 }
1512 llvm_unreachable("Improper attribute.");
1513 }
1514
1515 /// Set the last DIE/CU a context was seen in and, possibly invalidate
1516 /// the context if it is ambiguous.
1517 ///
1518 /// In the current implementation, we don't handle overloaded
1519 /// functions well, because the argument types are not taken into
1520 /// account when computing the DeclContext tree.
1521 ///
1522 /// Some of this is mitigated byt using mangled names that do contain
1523 /// the arguments types, but sometimes (eg. with function templates)
1524 /// we don't have that. In that case, just do not unique anything that
1525 /// refers to the contexts we are not able to distinguish.
1526 ///
1527 /// If a context that is not a namespace appears twice in the same CU,
1528 /// we know it is ambiguous. Make it invalid.
setLastSeenDIE(CompileUnit & U,const DWARFDebugInfoEntryMinimal * Die)1529 bool DeclContext::setLastSeenDIE(CompileUnit &U,
1530 const DWARFDebugInfoEntryMinimal *Die) {
1531 if (LastSeenCompileUnitID == U.getUniqueID()) {
1532 DWARFUnit &OrigUnit = U.getOrigUnit();
1533 uint32_t FirstIdx = OrigUnit.getDIEIndex(LastSeenDIE);
1534 U.getInfo(FirstIdx).Ctxt = nullptr;
1535 return false;
1536 }
1537
1538 LastSeenCompileUnitID = U.getUniqueID();
1539 LastSeenDIE = Die;
1540 return true;
1541 }
1542
getChildDeclContext(DeclContext & Context,const DWARFDebugInfoEntryMinimal * DIE,CompileUnit & U,NonRelocatableStringpool & StringPool,bool InClangModule)1543 PointerIntPair<DeclContext *, 1> DeclContextTree::getChildDeclContext(
1544 DeclContext &Context, const DWARFDebugInfoEntryMinimal *DIE, CompileUnit &U,
1545 NonRelocatableStringpool &StringPool, bool InClangModule) {
1546 unsigned Tag = DIE->getTag();
1547
1548 // FIXME: dsymutil-classic compat: We should bail out here if we
1549 // have a specification or an abstract_origin. We will get the
1550 // parent context wrong here.
1551
1552 switch (Tag) {
1553 default:
1554 // By default stop gathering child contexts.
1555 return PointerIntPair<DeclContext *, 1>(nullptr);
1556 case dwarf::DW_TAG_module:
1557 break;
1558 case dwarf::DW_TAG_compile_unit:
1559 return PointerIntPair<DeclContext *, 1>(&Context);
1560 case dwarf::DW_TAG_subprogram:
1561 // Do not unique anything inside CU local functions.
1562 if ((Context.getTag() == dwarf::DW_TAG_namespace ||
1563 Context.getTag() == dwarf::DW_TAG_compile_unit) &&
1564 !DIE->getAttributeValueAsUnsignedConstant(&U.getOrigUnit(),
1565 dwarf::DW_AT_external, 0))
1566 return PointerIntPair<DeclContext *, 1>(nullptr);
1567 // Fallthrough
1568 case dwarf::DW_TAG_member:
1569 case dwarf::DW_TAG_namespace:
1570 case dwarf::DW_TAG_structure_type:
1571 case dwarf::DW_TAG_class_type:
1572 case dwarf::DW_TAG_union_type:
1573 case dwarf::DW_TAG_enumeration_type:
1574 case dwarf::DW_TAG_typedef:
1575 // Artificial things might be ambiguous, because they might be
1576 // created on demand. For example implicitely defined constructors
1577 // are ambiguous because of the way we identify contexts, and they
1578 // won't be generated everytime everywhere.
1579 if (DIE->getAttributeValueAsUnsignedConstant(&U.getOrigUnit(),
1580 dwarf::DW_AT_artificial, 0))
1581 return PointerIntPair<DeclContext *, 1>(nullptr);
1582 break;
1583 }
1584
1585 const char *Name = DIE->getName(&U.getOrigUnit(), DINameKind::LinkageName);
1586 const char *ShortName = DIE->getName(&U.getOrigUnit(), DINameKind::ShortName);
1587 StringRef NameRef;
1588 StringRef ShortNameRef;
1589 StringRef FileRef;
1590
1591 if (Name)
1592 NameRef = StringPool.internString(Name);
1593 else if (Tag == dwarf::DW_TAG_namespace)
1594 // FIXME: For dsymutil-classic compatibility. I think uniquing
1595 // within anonymous namespaces is wrong. There is no ODR guarantee
1596 // there.
1597 NameRef = StringPool.internString("(anonymous namespace)");
1598
1599 if (ShortName && ShortName != Name)
1600 ShortNameRef = StringPool.internString(ShortName);
1601 else
1602 ShortNameRef = NameRef;
1603
1604 if (Tag != dwarf::DW_TAG_class_type && Tag != dwarf::DW_TAG_structure_type &&
1605 Tag != dwarf::DW_TAG_union_type &&
1606 Tag != dwarf::DW_TAG_enumeration_type && NameRef.empty())
1607 return PointerIntPair<DeclContext *, 1>(nullptr);
1608
1609 unsigned Line = 0;
1610 unsigned ByteSize = UINT32_MAX;
1611
1612 if (!InClangModule) {
1613 // Gather some discriminating data about the DeclContext we will be
1614 // creating: File, line number and byte size. This shouldn't be
1615 // necessary, because the ODR is just about names, but given that we
1616 // do some approximations with overloaded functions and anonymous
1617 // namespaces, use these additional data points to make the process
1618 // safer. This is disabled for clang modules, because forward
1619 // declarations of module-defined types do not have a file and line.
1620 ByteSize = DIE->getAttributeValueAsUnsignedConstant(
1621 &U.getOrigUnit(), dwarf::DW_AT_byte_size, UINT64_MAX);
1622 if (Tag != dwarf::DW_TAG_namespace || !Name) {
1623 if (unsigned FileNum = DIE->getAttributeValueAsUnsignedConstant(
1624 &U.getOrigUnit(), dwarf::DW_AT_decl_file, 0)) {
1625 if (const auto *LT = U.getOrigUnit().getContext().getLineTableForUnit(
1626 &U.getOrigUnit())) {
1627 // FIXME: dsymutil-classic compatibility. I'd rather not
1628 // unique anything in anonymous namespaces, but if we do, then
1629 // verify that the file and line correspond.
1630 if (!Name && Tag == dwarf::DW_TAG_namespace)
1631 FileNum = 1;
1632
1633 // FIXME: Passing U.getOrigUnit().getCompilationDir()
1634 // instead of "" would allow more uniquing, but for now, do
1635 // it this way to match dsymutil-classic.
1636 std::string File;
1637 if (LT->getFileNameByIndex(
1638 FileNum, "",
1639 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath,
1640 File)) {
1641 Line = DIE->getAttributeValueAsUnsignedConstant(
1642 &U.getOrigUnit(), dwarf::DW_AT_decl_line, 0);
1643 // Cache the resolved paths, because calling realpath is expansive.
1644 StringRef ResolvedPath = U.getResolvedPath(FileNum);
1645 if (!ResolvedPath.empty()) {
1646 FileRef = ResolvedPath;
1647 } else {
1648 #ifdef HAVE_REALPATH
1649 char RealPath[PATH_MAX + 1];
1650 RealPath[PATH_MAX] = 0;
1651 if (::realpath(File.c_str(), RealPath))
1652 File = RealPath;
1653 #endif
1654 FileRef = StringPool.internString(File);
1655 U.setResolvedPath(FileNum, FileRef);
1656 }
1657 }
1658 }
1659 }
1660 }
1661 }
1662
1663 if (!Line && NameRef.empty())
1664 return PointerIntPair<DeclContext *, 1>(nullptr);
1665
1666 // We hash NameRef, which is the mangled name, in order to get most
1667 // overloaded functions resolve correctly.
1668 //
1669 // Strictly speaking, hashing the Tag is only necessary for a
1670 // DW_TAG_module, to prevent uniquing of a module and a namespace
1671 // with the same name.
1672 //
1673 // FIXME: dsymutil-classic won't unique the same type presented
1674 // once as a struct and once as a class. Using the Tag in the fully
1675 // qualified name hash to get the same effect.
1676 unsigned Hash = hash_combine(Context.getQualifiedNameHash(), Tag, NameRef);
1677
1678 // FIXME: dsymutil-classic compatibility: when we don't have a name,
1679 // use the filename.
1680 if (Tag == dwarf::DW_TAG_namespace && NameRef == "(anonymous namespace)")
1681 Hash = hash_combine(Hash, FileRef);
1682
1683 // Now look if this context already exists.
1684 DeclContext Key(Hash, Line, ByteSize, Tag, NameRef, FileRef, Context);
1685 auto ContextIter = Contexts.find(&Key);
1686
1687 if (ContextIter == Contexts.end()) {
1688 // The context wasn't found.
1689 bool Inserted;
1690 DeclContext *NewContext =
1691 new (Allocator) DeclContext(Hash, Line, ByteSize, Tag, NameRef, FileRef,
1692 Context, DIE, U.getUniqueID());
1693 std::tie(ContextIter, Inserted) = Contexts.insert(NewContext);
1694 assert(Inserted && "Failed to insert DeclContext");
1695 (void)Inserted;
1696 } else if (Tag != dwarf::DW_TAG_namespace &&
1697 !(*ContextIter)->setLastSeenDIE(U, DIE)) {
1698 // The context was found, but it is ambiguous with another context
1699 // in the same file. Mark it invalid.
1700 return PointerIntPair<DeclContext *, 1>(*ContextIter, /* Invalid= */ 1);
1701 }
1702
1703 assert(ContextIter != Contexts.end());
1704 // FIXME: dsymutil-classic compatibility. Union types aren't
1705 // uniques, but their children might be.
1706 if ((Tag == dwarf::DW_TAG_subprogram &&
1707 Context.getTag() != dwarf::DW_TAG_structure_type &&
1708 Context.getTag() != dwarf::DW_TAG_class_type) ||
1709 (Tag == dwarf::DW_TAG_union_type))
1710 return PointerIntPair<DeclContext *, 1>(*ContextIter, /* Invalid= */ 1);
1711
1712 return PointerIntPair<DeclContext *, 1>(*ContextIter);
1713 }
1714
getDIENames(const DWARFDebugInfoEntryMinimal & Die,DWARFUnit & U,AttributesInfo & Info)1715 bool DwarfLinker::DIECloner::getDIENames(const DWARFDebugInfoEntryMinimal &Die,
1716 DWARFUnit &U, AttributesInfo &Info) {
1717 // FIXME: a bit wasteful as the first getName might return the
1718 // short name.
1719 if (!Info.MangledName &&
1720 (Info.MangledName = Die.getName(&U, DINameKind::LinkageName)))
1721 Info.MangledNameOffset =
1722 Linker.StringPool.getStringOffset(Info.MangledName);
1723
1724 if (!Info.Name && (Info.Name = Die.getName(&U, DINameKind::ShortName)))
1725 Info.NameOffset = Linker.StringPool.getStringOffset(Info.Name);
1726
1727 return Info.Name || Info.MangledName;
1728 }
1729
1730 /// \brief Report a warning to the user, optionaly including
1731 /// information about a specific \p DIE related to the warning.
reportWarning(const Twine & Warning,const DWARFUnit * Unit,const DWARFDebugInfoEntryMinimal * DIE) const1732 void DwarfLinker::reportWarning(const Twine &Warning, const DWARFUnit *Unit,
1733 const DWARFDebugInfoEntryMinimal *DIE) const {
1734 StringRef Context = "<debug map>";
1735 if (CurrentDebugObject)
1736 Context = CurrentDebugObject->getObjectFilename();
1737 warn(Warning, Context);
1738
1739 if (!Options.Verbose || !DIE)
1740 return;
1741
1742 errs() << " in DIE:\n";
1743 DIE->dump(errs(), const_cast<DWARFUnit *>(Unit), 0 /* RecurseDepth */,
1744 6 /* Indent */);
1745 }
1746
createStreamer(const Triple & TheTriple,StringRef OutputFilename)1747 bool DwarfLinker::createStreamer(const Triple &TheTriple,
1748 StringRef OutputFilename) {
1749 if (Options.NoOutput)
1750 return true;
1751
1752 Streamer = llvm::make_unique<DwarfStreamer>();
1753 return Streamer->init(TheTriple, OutputFilename);
1754 }
1755
1756 /// Recursive helper to build the global DeclContext information and
1757 /// gather the child->parent relationships in the original compile unit.
1758 ///
1759 /// \return true when this DIE and all of its children are only
1760 /// forward declarations to types defined in external clang modules
1761 /// (i.e., forward declarations that are children of a DW_TAG_module).
analyzeContextInfo(const DWARFDebugInfoEntryMinimal * DIE,unsigned ParentIdx,CompileUnit & CU,DeclContext * CurrentDeclContext,NonRelocatableStringpool & StringPool,DeclContextTree & Contexts,bool InImportedModule=false)1762 static bool analyzeContextInfo(const DWARFDebugInfoEntryMinimal *DIE,
1763 unsigned ParentIdx, CompileUnit &CU,
1764 DeclContext *CurrentDeclContext,
1765 NonRelocatableStringpool &StringPool,
1766 DeclContextTree &Contexts,
1767 bool InImportedModule = false) {
1768 unsigned MyIdx = CU.getOrigUnit().getDIEIndex(DIE);
1769 CompileUnit::DIEInfo &Info = CU.getInfo(MyIdx);
1770
1771 // Clang imposes an ODR on modules(!) regardless of the language:
1772 // "The module-id should consist of only a single identifier,
1773 // which provides the name of the module being defined. Each
1774 // module shall have a single definition."
1775 //
1776 // This does not extend to the types inside the modules:
1777 // "[I]n C, this implies that if two structs are defined in
1778 // different submodules with the same name, those two types are
1779 // distinct types (but may be compatible types if their
1780 // definitions match)."
1781 //
1782 // We treat non-C++ modules like namespaces for this reason.
1783 if (DIE->getTag() == dwarf::DW_TAG_module && ParentIdx == 0 &&
1784 DIE->getAttributeValueAsString(&CU.getOrigUnit(), dwarf::DW_AT_name,
1785 "") != CU.getClangModuleName()) {
1786 InImportedModule = true;
1787 }
1788
1789 Info.ParentIdx = ParentIdx;
1790 bool InClangModule = CU.isClangModule() || InImportedModule;
1791 if (CU.hasODR() || InClangModule) {
1792 if (CurrentDeclContext) {
1793 auto PtrInvalidPair = Contexts.getChildDeclContext(
1794 *CurrentDeclContext, DIE, CU, StringPool, InClangModule);
1795 CurrentDeclContext = PtrInvalidPair.getPointer();
1796 Info.Ctxt =
1797 PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
1798 } else
1799 Info.Ctxt = CurrentDeclContext = nullptr;
1800 }
1801
1802 Info.Prune = InImportedModule;
1803 if (DIE->hasChildren())
1804 for (auto *Child = DIE->getFirstChild(); Child && !Child->isNULL();
1805 Child = Child->getSibling())
1806 Info.Prune &= analyzeContextInfo(Child, MyIdx, CU, CurrentDeclContext,
1807 StringPool, Contexts, InImportedModule);
1808
1809 // Prune this DIE if it is either a forward declaration inside a
1810 // DW_TAG_module or a DW_TAG_module that contains nothing but
1811 // forward declarations.
1812 Info.Prune &= (DIE->getTag() == dwarf::DW_TAG_module) ||
1813 DIE->getAttributeValueAsUnsignedConstant(
1814 &CU.getOrigUnit(), dwarf::DW_AT_declaration, 0);
1815
1816 // Don't prune it if there is no definition for the DIE.
1817 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
1818
1819 return Info.Prune;
1820 }
1821
dieNeedsChildrenToBeMeaningful(uint32_t Tag)1822 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
1823 switch (Tag) {
1824 default:
1825 return false;
1826 case dwarf::DW_TAG_subprogram:
1827 case dwarf::DW_TAG_lexical_block:
1828 case dwarf::DW_TAG_subroutine_type:
1829 case dwarf::DW_TAG_structure_type:
1830 case dwarf::DW_TAG_class_type:
1831 case dwarf::DW_TAG_union_type:
1832 return true;
1833 }
1834 llvm_unreachable("Invalid Tag");
1835 }
1836
getRefAddrSize(const DWARFUnit & U)1837 static unsigned getRefAddrSize(const DWARFUnit &U) {
1838 if (U.getVersion() == 2)
1839 return U.getAddressByteSize();
1840 return 4;
1841 }
1842
startDebugObject(DWARFContext & Dwarf,DebugMapObject & Obj)1843 void DwarfLinker::startDebugObject(DWARFContext &Dwarf, DebugMapObject &Obj) {
1844 Units.reserve(Dwarf.getNumCompileUnits());
1845 // Iterate over the debug map entries and put all the ones that are
1846 // functions (because they have a size) into the Ranges map. This
1847 // map is very similar to the FunctionRanges that are stored in each
1848 // unit, with 2 notable differences:
1849 // - obviously this one is global, while the other ones are per-unit.
1850 // - this one contains not only the functions described in the DIE
1851 // tree, but also the ones that are only in the debug map.
1852 // The latter information is required to reproduce dsymutil's logic
1853 // while linking line tables. The cases where this information
1854 // matters look like bugs that need to be investigated, but for now
1855 // we need to reproduce dsymutil's behavior.
1856 // FIXME: Once we understood exactly if that information is needed,
1857 // maybe totally remove this (or try to use it to do a real
1858 // -gline-tables-only on Darwin.
1859 for (const auto &Entry : Obj.symbols()) {
1860 const auto &Mapping = Entry.getValue();
1861 if (Mapping.Size && Mapping.ObjectAddress)
1862 Ranges[*Mapping.ObjectAddress] = std::make_pair(
1863 *Mapping.ObjectAddress + Mapping.Size,
1864 int64_t(Mapping.BinaryAddress) - *Mapping.ObjectAddress);
1865 }
1866 }
1867
endDebugObject()1868 void DwarfLinker::endDebugObject() {
1869 Units.clear();
1870 Ranges.clear();
1871
1872 for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I)
1873 (*I)->~DIEBlock();
1874 for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I)
1875 (*I)->~DIELoc();
1876
1877 DIEBlocks.clear();
1878 DIELocs.clear();
1879 DIEAlloc.Reset();
1880 }
1881
isMachOPairedReloc(uint64_t RelocType,uint64_t Arch)1882 static bool isMachOPairedReloc(uint64_t RelocType, uint64_t Arch) {
1883 switch (Arch) {
1884 case Triple::x86:
1885 return RelocType == MachO::GENERIC_RELOC_SECTDIFF ||
1886 RelocType == MachO::GENERIC_RELOC_LOCAL_SECTDIFF;
1887 case Triple::x86_64:
1888 return RelocType == MachO::X86_64_RELOC_SUBTRACTOR;
1889 case Triple::arm:
1890 case Triple::thumb:
1891 return RelocType == MachO::ARM_RELOC_SECTDIFF ||
1892 RelocType == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
1893 RelocType == MachO::ARM_RELOC_HALF ||
1894 RelocType == MachO::ARM_RELOC_HALF_SECTDIFF;
1895 case Triple::aarch64:
1896 return RelocType == MachO::ARM64_RELOC_SUBTRACTOR;
1897 default:
1898 return false;
1899 }
1900 }
1901
1902 /// \brief Iterate over the relocations of the given \p Section and
1903 /// store the ones that correspond to debug map entries into the
1904 /// ValidRelocs array.
1905 void DwarfLinker::RelocationManager::
findValidRelocsMachO(const object::SectionRef & Section,const object::MachOObjectFile & Obj,const DebugMapObject & DMO)1906 findValidRelocsMachO(const object::SectionRef &Section,
1907 const object::MachOObjectFile &Obj,
1908 const DebugMapObject &DMO) {
1909 StringRef Contents;
1910 Section.getContents(Contents);
1911 DataExtractor Data(Contents, Obj.isLittleEndian(), 0);
1912 bool SkipNext = false;
1913
1914 for (const object::RelocationRef &Reloc : Section.relocations()) {
1915 if (SkipNext) {
1916 SkipNext = false;
1917 continue;
1918 }
1919
1920 object::DataRefImpl RelocDataRef = Reloc.getRawDataRefImpl();
1921 MachO::any_relocation_info MachOReloc = Obj.getRelocation(RelocDataRef);
1922
1923 if (isMachOPairedReloc(Obj.getAnyRelocationType(MachOReloc),
1924 Obj.getArch())) {
1925 SkipNext = true;
1926 Linker.reportWarning(" unsupported relocation in debug_info section.");
1927 continue;
1928 }
1929
1930 unsigned RelocSize = 1 << Obj.getAnyRelocationLength(MachOReloc);
1931 uint64_t Offset64 = Reloc.getOffset();
1932 if ((RelocSize != 4 && RelocSize != 8)) {
1933 Linker.reportWarning(" unsupported relocation in debug_info section.");
1934 continue;
1935 }
1936 uint32_t Offset = Offset64;
1937 // Mach-o uses REL relocations, the addend is at the relocation offset.
1938 uint64_t Addend = Data.getUnsigned(&Offset, RelocSize);
1939 uint64_t SymAddress;
1940 int64_t SymOffset;
1941
1942 if (Obj.isRelocationScattered(MachOReloc)) {
1943 // The address of the base symbol for scattered relocations is
1944 // stored in the reloc itself. The actual addend will store the
1945 // base address plus the offset.
1946 SymAddress = Obj.getScatteredRelocationValue(MachOReloc);
1947 SymOffset = int64_t(Addend) - SymAddress;
1948 } else {
1949 SymAddress = Addend;
1950 SymOffset = 0;
1951 }
1952
1953 auto Sym = Reloc.getSymbol();
1954 if (Sym != Obj.symbol_end()) {
1955 Expected<StringRef> SymbolName = Sym->getName();
1956 if (!SymbolName) {
1957 consumeError(SymbolName.takeError());
1958 Linker.reportWarning("error getting relocation symbol name.");
1959 continue;
1960 }
1961 if (const auto *Mapping = DMO.lookupSymbol(*SymbolName))
1962 ValidRelocs.emplace_back(Offset64, RelocSize, Addend, Mapping);
1963 } else if (const auto *Mapping = DMO.lookupObjectAddress(SymAddress)) {
1964 // Do not store the addend. The addend was the address of the
1965 // symbol in the object file, the address in the binary that is
1966 // stored in the debug map doesn't need to be offseted.
1967 ValidRelocs.emplace_back(Offset64, RelocSize, SymOffset, Mapping);
1968 }
1969 }
1970 }
1971
1972 /// \brief Dispatch the valid relocation finding logic to the
1973 /// appropriate handler depending on the object file format.
findValidRelocs(const object::SectionRef & Section,const object::ObjectFile & Obj,const DebugMapObject & DMO)1974 bool DwarfLinker::RelocationManager::findValidRelocs(
1975 const object::SectionRef &Section, const object::ObjectFile &Obj,
1976 const DebugMapObject &DMO) {
1977 // Dispatch to the right handler depending on the file type.
1978 if (auto *MachOObj = dyn_cast<object::MachOObjectFile>(&Obj))
1979 findValidRelocsMachO(Section, *MachOObj, DMO);
1980 else
1981 Linker.reportWarning(Twine("unsupported object file type: ") +
1982 Obj.getFileName());
1983
1984 if (ValidRelocs.empty())
1985 return false;
1986
1987 // Sort the relocations by offset. We will walk the DIEs linearly in
1988 // the file, this allows us to just keep an index in the relocation
1989 // array that we advance during our walk, rather than resorting to
1990 // some associative container. See DwarfLinker::NextValidReloc.
1991 std::sort(ValidRelocs.begin(), ValidRelocs.end());
1992 return true;
1993 }
1994
1995 /// \brief Look for relocations in the debug_info section that match
1996 /// entries in the debug map. These relocations will drive the Dwarf
1997 /// link by indicating which DIEs refer to symbols present in the
1998 /// linked binary.
1999 /// \returns wether there are any valid relocations in the debug info.
2000 bool DwarfLinker::RelocationManager::
findValidRelocsInDebugInfo(const object::ObjectFile & Obj,const DebugMapObject & DMO)2001 findValidRelocsInDebugInfo(const object::ObjectFile &Obj,
2002 const DebugMapObject &DMO) {
2003 // Find the debug_info section.
2004 for (const object::SectionRef &Section : Obj.sections()) {
2005 StringRef SectionName;
2006 Section.getName(SectionName);
2007 SectionName = SectionName.substr(SectionName.find_first_not_of("._"));
2008 if (SectionName != "debug_info")
2009 continue;
2010 return findValidRelocs(Section, Obj, DMO);
2011 }
2012 return false;
2013 }
2014
2015 /// \brief Checks that there is a relocation against an actual debug
2016 /// map entry between \p StartOffset and \p NextOffset.
2017 ///
2018 /// This function must be called with offsets in strictly ascending
2019 /// order because it never looks back at relocations it already 'went past'.
2020 /// \returns true and sets Info.InDebugMap if it is the case.
2021 bool DwarfLinker::RelocationManager::
hasValidRelocation(uint32_t StartOffset,uint32_t EndOffset,CompileUnit::DIEInfo & Info)2022 hasValidRelocation(uint32_t StartOffset, uint32_t EndOffset,
2023 CompileUnit::DIEInfo &Info) {
2024 assert(NextValidReloc == 0 ||
2025 StartOffset > ValidRelocs[NextValidReloc - 1].Offset);
2026 if (NextValidReloc >= ValidRelocs.size())
2027 return false;
2028
2029 uint64_t RelocOffset = ValidRelocs[NextValidReloc].Offset;
2030
2031 // We might need to skip some relocs that we didn't consider. For
2032 // example the high_pc of a discarded DIE might contain a reloc that
2033 // is in the list because it actually corresponds to the start of a
2034 // function that is in the debug map.
2035 while (RelocOffset < StartOffset && NextValidReloc < ValidRelocs.size() - 1)
2036 RelocOffset = ValidRelocs[++NextValidReloc].Offset;
2037
2038 if (RelocOffset < StartOffset || RelocOffset >= EndOffset)
2039 return false;
2040
2041 const auto &ValidReloc = ValidRelocs[NextValidReloc++];
2042 const auto &Mapping = ValidReloc.Mapping->getValue();
2043 uint64_t ObjectAddress =
2044 Mapping.ObjectAddress ? uint64_t(*Mapping.ObjectAddress) : UINT64_MAX;
2045 if (Linker.Options.Verbose)
2046 outs() << "Found valid debug map entry: " << ValidReloc.Mapping->getKey()
2047 << " " << format("\t%016" PRIx64 " => %016" PRIx64, ObjectAddress,
2048 uint64_t(Mapping.BinaryAddress));
2049
2050 Info.AddrAdjust = int64_t(Mapping.BinaryAddress) + ValidReloc.Addend;
2051 if (Mapping.ObjectAddress)
2052 Info.AddrAdjust -= ObjectAddress;
2053 Info.InDebugMap = true;
2054 return true;
2055 }
2056
2057 /// \brief Get the starting and ending (exclusive) offset for the
2058 /// attribute with index \p Idx descibed by \p Abbrev. \p Offset is
2059 /// supposed to point to the position of the first attribute described
2060 /// by \p Abbrev.
2061 /// \return [StartOffset, EndOffset) as a pair.
2062 static std::pair<uint32_t, uint32_t>
getAttributeOffsets(const DWARFAbbreviationDeclaration * Abbrev,unsigned Idx,unsigned Offset,const DWARFUnit & Unit)2063 getAttributeOffsets(const DWARFAbbreviationDeclaration *Abbrev, unsigned Idx,
2064 unsigned Offset, const DWARFUnit &Unit) {
2065 DataExtractor Data = Unit.getDebugInfoExtractor();
2066
2067 for (unsigned i = 0; i < Idx; ++i)
2068 DWARFFormValue::skipValue(Abbrev->getFormByIndex(i), Data, &Offset, &Unit);
2069
2070 uint32_t End = Offset;
2071 DWARFFormValue::skipValue(Abbrev->getFormByIndex(Idx), Data, &End, &Unit);
2072
2073 return std::make_pair(Offset, End);
2074 }
2075
2076 /// \brief Check if a variable describing DIE should be kept.
2077 /// \returns updated TraversalFlags.
shouldKeepVariableDIE(RelocationManager & RelocMgr,const DWARFDebugInfoEntryMinimal & DIE,CompileUnit & Unit,CompileUnit::DIEInfo & MyInfo,unsigned Flags)2078 unsigned DwarfLinker::shouldKeepVariableDIE(RelocationManager &RelocMgr,
2079 const DWARFDebugInfoEntryMinimal &DIE,
2080 CompileUnit &Unit,
2081 CompileUnit::DIEInfo &MyInfo,
2082 unsigned Flags) {
2083 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
2084
2085 // Global variables with constant value can always be kept.
2086 if (!(Flags & TF_InFunctionScope) &&
2087 Abbrev->findAttributeIndex(dwarf::DW_AT_const_value) != -1U) {
2088 MyInfo.InDebugMap = true;
2089 return Flags | TF_Keep;
2090 }
2091
2092 uint32_t LocationIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_location);
2093 if (LocationIdx == -1U)
2094 return Flags;
2095
2096 uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
2097 const DWARFUnit &OrigUnit = Unit.getOrigUnit();
2098 uint32_t LocationOffset, LocationEndOffset;
2099 std::tie(LocationOffset, LocationEndOffset) =
2100 getAttributeOffsets(Abbrev, LocationIdx, Offset, OrigUnit);
2101
2102 // See if there is a relocation to a valid debug map entry inside
2103 // this variable's location. The order is important here. We want to
2104 // always check in the variable has a valid relocation, so that the
2105 // DIEInfo is filled. However, we don't want a static variable in a
2106 // function to force us to keep the enclosing function.
2107 if (!RelocMgr.hasValidRelocation(LocationOffset, LocationEndOffset, MyInfo) ||
2108 (Flags & TF_InFunctionScope))
2109 return Flags;
2110
2111 if (Options.Verbose)
2112 DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
2113
2114 return Flags | TF_Keep;
2115 }
2116
2117 /// \brief Check if a function describing DIE should be kept.
2118 /// \returns updated TraversalFlags.
shouldKeepSubprogramDIE(RelocationManager & RelocMgr,const DWARFDebugInfoEntryMinimal & DIE,CompileUnit & Unit,CompileUnit::DIEInfo & MyInfo,unsigned Flags)2119 unsigned DwarfLinker::shouldKeepSubprogramDIE(
2120 RelocationManager &RelocMgr,
2121 const DWARFDebugInfoEntryMinimal &DIE, CompileUnit &Unit,
2122 CompileUnit::DIEInfo &MyInfo, unsigned Flags) {
2123 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
2124
2125 Flags |= TF_InFunctionScope;
2126
2127 uint32_t LowPcIdx = Abbrev->findAttributeIndex(dwarf::DW_AT_low_pc);
2128 if (LowPcIdx == -1U)
2129 return Flags;
2130
2131 uint32_t Offset = DIE.getOffset() + getULEB128Size(Abbrev->getCode());
2132 const DWARFUnit &OrigUnit = Unit.getOrigUnit();
2133 uint32_t LowPcOffset, LowPcEndOffset;
2134 std::tie(LowPcOffset, LowPcEndOffset) =
2135 getAttributeOffsets(Abbrev, LowPcIdx, Offset, OrigUnit);
2136
2137 uint64_t LowPc =
2138 DIE.getAttributeValueAsAddress(&OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
2139 assert(LowPc != -1ULL && "low_pc attribute is not an address.");
2140 if (LowPc == -1ULL ||
2141 !RelocMgr.hasValidRelocation(LowPcOffset, LowPcEndOffset, MyInfo))
2142 return Flags;
2143
2144 if (Options.Verbose)
2145 DIE.dump(outs(), const_cast<DWARFUnit *>(&OrigUnit), 0, 8 /* Indent */);
2146
2147 Flags |= TF_Keep;
2148
2149 DWARFFormValue HighPcValue;
2150 if (!DIE.getAttributeValue(&OrigUnit, dwarf::DW_AT_high_pc, HighPcValue)) {
2151 reportWarning("Function without high_pc. Range will be discarded.\n",
2152 &OrigUnit, &DIE);
2153 return Flags;
2154 }
2155
2156 uint64_t HighPc;
2157 if (HighPcValue.isFormClass(DWARFFormValue::FC_Address)) {
2158 HighPc = *HighPcValue.getAsAddress(&OrigUnit);
2159 } else {
2160 assert(HighPcValue.isFormClass(DWARFFormValue::FC_Constant));
2161 HighPc = LowPc + *HighPcValue.getAsUnsignedConstant();
2162 }
2163
2164 // Replace the debug map range with a more accurate one.
2165 Ranges[LowPc] = std::make_pair(HighPc, MyInfo.AddrAdjust);
2166 Unit.addFunctionRange(LowPc, HighPc, MyInfo.AddrAdjust);
2167 return Flags;
2168 }
2169
2170 /// \brief Check if a DIE should be kept.
2171 /// \returns updated TraversalFlags.
shouldKeepDIE(RelocationManager & RelocMgr,const DWARFDebugInfoEntryMinimal & DIE,CompileUnit & Unit,CompileUnit::DIEInfo & MyInfo,unsigned Flags)2172 unsigned DwarfLinker::shouldKeepDIE(RelocationManager &RelocMgr,
2173 const DWARFDebugInfoEntryMinimal &DIE,
2174 CompileUnit &Unit,
2175 CompileUnit::DIEInfo &MyInfo,
2176 unsigned Flags) {
2177 switch (DIE.getTag()) {
2178 case dwarf::DW_TAG_constant:
2179 case dwarf::DW_TAG_variable:
2180 return shouldKeepVariableDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
2181 case dwarf::DW_TAG_subprogram:
2182 return shouldKeepSubprogramDIE(RelocMgr, DIE, Unit, MyInfo, Flags);
2183 case dwarf::DW_TAG_module:
2184 case dwarf::DW_TAG_imported_module:
2185 case dwarf::DW_TAG_imported_declaration:
2186 case dwarf::DW_TAG_imported_unit:
2187 // We always want to keep these.
2188 return Flags | TF_Keep;
2189 }
2190
2191 return Flags;
2192 }
2193
2194 /// \brief Mark the passed DIE as well as all the ones it depends on
2195 /// as kept.
2196 ///
2197 /// This function is called by lookForDIEsToKeep on DIEs that are
2198 /// newly discovered to be needed in the link. It recursively calls
2199 /// back to lookForDIEsToKeep while adding TF_DependencyWalk to the
2200 /// TraversalFlags to inform it that it's not doing the primary DIE
2201 /// tree walk.
keepDIEAndDependencies(RelocationManager & RelocMgr,const DWARFDebugInfoEntryMinimal & Die,CompileUnit::DIEInfo & MyInfo,const DebugMapObject & DMO,CompileUnit & CU,bool UseODR)2202 void DwarfLinker::keepDIEAndDependencies(RelocationManager &RelocMgr,
2203 const DWARFDebugInfoEntryMinimal &Die,
2204 CompileUnit::DIEInfo &MyInfo,
2205 const DebugMapObject &DMO,
2206 CompileUnit &CU, bool UseODR) {
2207 const DWARFUnit &Unit = CU.getOrigUnit();
2208 MyInfo.Keep = true;
2209
2210 // First mark all the parent chain as kept.
2211 unsigned AncestorIdx = MyInfo.ParentIdx;
2212 while (!CU.getInfo(AncestorIdx).Keep) {
2213 unsigned ODRFlag = UseODR ? TF_ODR : 0;
2214 lookForDIEsToKeep(RelocMgr, *Unit.getDIEAtIndex(AncestorIdx), DMO, CU,
2215 TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag);
2216 AncestorIdx = CU.getInfo(AncestorIdx).ParentIdx;
2217 }
2218
2219 // Then we need to mark all the DIEs referenced by this DIE's
2220 // attributes as kept.
2221 DataExtractor Data = Unit.getDebugInfoExtractor();
2222 const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
2223 uint32_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
2224
2225 // Mark all DIEs referenced through atttributes as kept.
2226 for (const auto &AttrSpec : Abbrev->attributes()) {
2227 DWARFFormValue Val(AttrSpec.Form);
2228
2229 if (!Val.isFormClass(DWARFFormValue::FC_Reference)) {
2230 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &Unit);
2231 continue;
2232 }
2233
2234 Val.extractValue(Data, &Offset, &Unit);
2235 CompileUnit *ReferencedCU;
2236 if (const auto *RefDIE =
2237 resolveDIEReference(*this, MutableArrayRef<CompileUnit>(Units), Val,
2238 Unit, Die, ReferencedCU)) {
2239 uint32_t RefIdx = ReferencedCU->getOrigUnit().getDIEIndex(RefDIE);
2240 CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefIdx);
2241 // If the referenced DIE has a DeclContext that has already been
2242 // emitted, then do not keep the one in this CU. We'll link to
2243 // the canonical DIE in cloneDieReferenceAttribute.
2244 // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
2245 // be necessary and could be advantageously replaced by
2246 // ReferencedCU->hasODR() && CU.hasODR().
2247 // FIXME: compatibility with dsymutil-classic. There is no
2248 // reason not to unique ref_addr references.
2249 if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && UseODR && Info.Ctxt &&
2250 Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
2251 Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
2252 continue;
2253
2254 // Keep a module forward declaration if there is no definition.
2255 if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
2256 Info.Ctxt->getCanonicalDIEOffset()))
2257 Info.Prune = false;
2258
2259 unsigned ODRFlag = UseODR ? TF_ODR : 0;
2260 lookForDIEsToKeep(RelocMgr, *RefDIE, DMO, *ReferencedCU,
2261 TF_Keep | TF_DependencyWalk | ODRFlag);
2262 }
2263 }
2264 }
2265
2266 /// \brief Recursively walk the \p DIE tree and look for DIEs to
2267 /// keep. Store that information in \p CU's DIEInfo.
2268 ///
2269 /// This function is the entry point of the DIE selection
2270 /// algorithm. It is expected to walk the DIE tree in file order and
2271 /// (though the mediation of its helper) call hasValidRelocation() on
2272 /// each DIE that might be a 'root DIE' (See DwarfLinker class
2273 /// comment).
2274 /// While walking the dependencies of root DIEs, this function is
2275 /// also called, but during these dependency walks the file order is
2276 /// not respected. The TF_DependencyWalk flag tells us which kind of
2277 /// traversal we are currently doing.
lookForDIEsToKeep(RelocationManager & RelocMgr,const DWARFDebugInfoEntryMinimal & Die,const DebugMapObject & DMO,CompileUnit & CU,unsigned Flags)2278 void DwarfLinker::lookForDIEsToKeep(RelocationManager &RelocMgr,
2279 const DWARFDebugInfoEntryMinimal &Die,
2280 const DebugMapObject &DMO, CompileUnit &CU,
2281 unsigned Flags) {
2282 unsigned Idx = CU.getOrigUnit().getDIEIndex(&Die);
2283 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Idx);
2284 bool AlreadyKept = MyInfo.Keep;
2285 if (MyInfo.Prune)
2286 return;
2287
2288 // If the Keep flag is set, we are marking a required DIE's
2289 // dependencies. If our target is already marked as kept, we're all
2290 // set.
2291 if ((Flags & TF_DependencyWalk) && AlreadyKept)
2292 return;
2293
2294 // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
2295 // because it would screw up the relocation finding logic.
2296 if (!(Flags & TF_DependencyWalk))
2297 Flags = shouldKeepDIE(RelocMgr, Die, CU, MyInfo, Flags);
2298
2299 // If it is a newly kept DIE mark it as well as all its dependencies as kept.
2300 if (!AlreadyKept && (Flags & TF_Keep)) {
2301 bool UseOdr = (Flags & TF_DependencyWalk) ? (Flags & TF_ODR) : CU.hasODR();
2302 keepDIEAndDependencies(RelocMgr, Die, MyInfo, DMO, CU, UseOdr);
2303 }
2304 // The TF_ParentWalk flag tells us that we are currently walking up
2305 // the parent chain of a required DIE, and we don't want to mark all
2306 // the children of the parents as kept (consider for example a
2307 // DW_TAG_namespace node in the parent chain). There are however a
2308 // set of DIE types for which we want to ignore that directive and still
2309 // walk their children.
2310 if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
2311 Flags &= ~TF_ParentWalk;
2312
2313 if (!Die.hasChildren() || (Flags & TF_ParentWalk))
2314 return;
2315
2316 for (auto *Child = Die.getFirstChild(); Child && !Child->isNULL();
2317 Child = Child->getSibling())
2318 lookForDIEsToKeep(RelocMgr, *Child, DMO, CU, Flags);
2319 }
2320
2321 /// \brief Assign an abbreviation numer to \p Abbrev.
2322 ///
2323 /// Our DIEs get freed after every DebugMapObject has been processed,
2324 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
2325 /// the instances hold by the DIEs. When we encounter an abbreviation
2326 /// that we don't know, we create a permanent copy of it.
AssignAbbrev(DIEAbbrev & Abbrev)2327 void DwarfLinker::AssignAbbrev(DIEAbbrev &Abbrev) {
2328 // Check the set for priors.
2329 FoldingSetNodeID ID;
2330 Abbrev.Profile(ID);
2331 void *InsertToken;
2332 DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
2333
2334 // If it's newly added.
2335 if (InSet) {
2336 // Assign existing abbreviation number.
2337 Abbrev.setNumber(InSet->getNumber());
2338 } else {
2339 // Add to abbreviation list.
2340 Abbreviations.push_back(
2341 llvm::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
2342 for (const auto &Attr : Abbrev.getData())
2343 Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
2344 AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
2345 // Assign the unique abbreviation number.
2346 Abbrev.setNumber(Abbreviations.size());
2347 Abbreviations.back()->setNumber(Abbreviations.size());
2348 }
2349 }
2350
cloneStringAttribute(DIE & Die,AttributeSpec AttrSpec,const DWARFFormValue & Val,const DWARFUnit & U)2351 unsigned DwarfLinker::DIECloner::cloneStringAttribute(DIE &Die,
2352 AttributeSpec AttrSpec,
2353 const DWARFFormValue &Val,
2354 const DWARFUnit &U) {
2355 // Switch everything to out of line strings.
2356 const char *String = *Val.getAsCString(&U);
2357 unsigned Offset = Linker.StringPool.getStringOffset(String);
2358 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
2359 DIEInteger(Offset));
2360 return 4;
2361 }
2362
cloneDieReferenceAttribute(DIE & Die,const DWARFDebugInfoEntryMinimal & InputDIE,AttributeSpec AttrSpec,unsigned AttrSize,const DWARFFormValue & Val,CompileUnit & Unit)2363 unsigned DwarfLinker::DIECloner::cloneDieReferenceAttribute(
2364 DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE,
2365 AttributeSpec AttrSpec, unsigned AttrSize, const DWARFFormValue &Val,
2366 CompileUnit &Unit) {
2367 const DWARFUnit &U = Unit.getOrigUnit();
2368 uint32_t Ref = *Val.getAsReference(&U);
2369 DIE *NewRefDie = nullptr;
2370 CompileUnit *RefUnit = nullptr;
2371 DeclContext *Ctxt = nullptr;
2372
2373 const DWARFDebugInfoEntryMinimal *RefDie =
2374 resolveDIEReference(Linker, CompileUnits, Val, U, InputDIE, RefUnit);
2375
2376 // If the referenced DIE is not found, drop the attribute.
2377 if (!RefDie)
2378 return 0;
2379
2380 unsigned Idx = RefUnit->getOrigUnit().getDIEIndex(RefDie);
2381 CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(Idx);
2382
2383 // If we already have emitted an equivalent DeclContext, just point
2384 // at it.
2385 if (isODRAttribute(AttrSpec.Attr)) {
2386 Ctxt = RefInfo.Ctxt;
2387 if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
2388 DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
2389 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
2390 dwarf::DW_FORM_ref_addr, Attr);
2391 return getRefAddrSize(U);
2392 }
2393 }
2394
2395 if (!RefInfo.Clone) {
2396 assert(Ref > InputDIE.getOffset());
2397 // We haven't cloned this DIE yet. Just create an empty one and
2398 // store it. It'll get really cloned when we process it.
2399 RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie->getTag()));
2400 }
2401 NewRefDie = RefInfo.Clone;
2402
2403 if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
2404 (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
2405 // We cannot currently rely on a DIEEntry to emit ref_addr
2406 // references, because the implementation calls back to DwarfDebug
2407 // to find the unit offset. (We don't have a DwarfDebug)
2408 // FIXME: we should be able to design DIEEntry reliance on
2409 // DwarfDebug away.
2410 uint64_t Attr;
2411 if (Ref < InputDIE.getOffset()) {
2412 // We must have already cloned that DIE.
2413 uint32_t NewRefOffset =
2414 RefUnit->getStartOffset() + NewRefDie->getOffset();
2415 Attr = NewRefOffset;
2416 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
2417 dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
2418 } else {
2419 // A forward reference. Note and fixup later.
2420 Attr = 0xBADDEF;
2421 Unit.noteForwardReference(
2422 NewRefDie, RefUnit, Ctxt,
2423 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
2424 dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
2425 }
2426 return getRefAddrSize(U);
2427 }
2428
2429 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
2430 dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
2431 return AttrSize;
2432 }
2433
cloneBlockAttribute(DIE & Die,AttributeSpec AttrSpec,const DWARFFormValue & Val,unsigned AttrSize)2434 unsigned DwarfLinker::DIECloner::cloneBlockAttribute(DIE &Die,
2435 AttributeSpec AttrSpec,
2436 const DWARFFormValue &Val,
2437 unsigned AttrSize) {
2438 DIEValueList *Attr;
2439 DIEValue Value;
2440 DIELoc *Loc = nullptr;
2441 DIEBlock *Block = nullptr;
2442 // Just copy the block data over.
2443 if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
2444 Loc = new (DIEAlloc) DIELoc;
2445 Linker.DIELocs.push_back(Loc);
2446 } else {
2447 Block = new (DIEAlloc) DIEBlock;
2448 Linker.DIEBlocks.push_back(Block);
2449 }
2450 Attr = Loc ? static_cast<DIEValueList *>(Loc)
2451 : static_cast<DIEValueList *>(Block);
2452
2453 if (Loc)
2454 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
2455 dwarf::Form(AttrSpec.Form), Loc);
2456 else
2457 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
2458 dwarf::Form(AttrSpec.Form), Block);
2459 ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
2460 for (auto Byte : Bytes)
2461 Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
2462 dwarf::DW_FORM_data1, DIEInteger(Byte));
2463 // FIXME: If DIEBlock and DIELoc just reuses the Size field of
2464 // the DIE class, this if could be replaced by
2465 // Attr->setSize(Bytes.size()).
2466 if (Linker.Streamer) {
2467 auto *AsmPrinter = &Linker.Streamer->getAsmPrinter();
2468 if (Loc)
2469 Loc->ComputeSize(AsmPrinter);
2470 else
2471 Block->ComputeSize(AsmPrinter);
2472 }
2473 Die.addValue(DIEAlloc, Value);
2474 return AttrSize;
2475 }
2476
cloneAddressAttribute(DIE & Die,AttributeSpec AttrSpec,const DWARFFormValue & Val,const CompileUnit & Unit,AttributesInfo & Info)2477 unsigned DwarfLinker::DIECloner::cloneAddressAttribute(
2478 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
2479 const CompileUnit &Unit, AttributesInfo &Info) {
2480 uint64_t Addr = *Val.getAsAddress(&Unit.getOrigUnit());
2481 if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
2482 if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
2483 Die.getTag() == dwarf::DW_TAG_lexical_block)
2484 // The low_pc of a block or inline subroutine might get
2485 // relocated because it happens to match the low_pc of the
2486 // enclosing subprogram. To prevent issues with that, always use
2487 // the low_pc from the input DIE if relocations have been applied.
2488 Addr = (Info.OrigLowPc != UINT64_MAX ? Info.OrigLowPc : Addr) +
2489 Info.PCOffset;
2490 else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
2491 Addr = Unit.getLowPc();
2492 if (Addr == UINT64_MAX)
2493 return 0;
2494 }
2495 Info.HasLowPc = true;
2496 } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
2497 if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
2498 if (uint64_t HighPc = Unit.getHighPc())
2499 Addr = HighPc;
2500 else
2501 return 0;
2502 } else
2503 // If we have a high_pc recorded for the input DIE, use
2504 // it. Otherwise (when no relocations where applied) just use the
2505 // one we just decoded.
2506 Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
2507 }
2508
2509 Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
2510 static_cast<dwarf::Form>(AttrSpec.Form), DIEInteger(Addr));
2511 return Unit.getOrigUnit().getAddressByteSize();
2512 }
2513
cloneScalarAttribute(DIE & Die,const DWARFDebugInfoEntryMinimal & InputDIE,CompileUnit & Unit,AttributeSpec AttrSpec,const DWARFFormValue & Val,unsigned AttrSize,AttributesInfo & Info)2514 unsigned DwarfLinker::DIECloner::cloneScalarAttribute(
2515 DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit,
2516 AttributeSpec AttrSpec, const DWARFFormValue &Val, unsigned AttrSize,
2517 AttributesInfo &Info) {
2518 uint64_t Value;
2519 if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
2520 Die.getTag() == dwarf::DW_TAG_compile_unit) {
2521 if (Unit.getLowPc() == -1ULL)
2522 return 0;
2523 // Dwarf >= 4 high_pc is an size, not an address.
2524 Value = Unit.getHighPc() - Unit.getLowPc();
2525 } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
2526 Value = *Val.getAsSectionOffset();
2527 else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
2528 Value = *Val.getAsSignedConstant();
2529 else if (auto OptionalValue = Val.getAsUnsignedConstant())
2530 Value = *OptionalValue;
2531 else {
2532 Linker.reportWarning(
2533 "Unsupported scalar attribute form. Dropping attribute.",
2534 &Unit.getOrigUnit(), &InputDIE);
2535 return 0;
2536 }
2537 PatchLocation Patch =
2538 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
2539 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
2540 if (AttrSpec.Attr == dwarf::DW_AT_ranges)
2541 Unit.noteRangeAttribute(Die, Patch);
2542
2543 // A more generic way to check for location attributes would be
2544 // nice, but it's very unlikely that any other attribute needs a
2545 // location list.
2546 else if (AttrSpec.Attr == dwarf::DW_AT_location ||
2547 AttrSpec.Attr == dwarf::DW_AT_frame_base)
2548 Unit.noteLocationAttribute(Patch, Info.PCOffset);
2549 else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
2550 Info.IsDeclaration = true;
2551
2552 return AttrSize;
2553 }
2554
2555 /// \brief Clone \p InputDIE's attribute described by \p AttrSpec with
2556 /// value \p Val, and add it to \p Die.
2557 /// \returns the size of the cloned attribute.
cloneAttribute(DIE & Die,const DWARFDebugInfoEntryMinimal & InputDIE,CompileUnit & Unit,const DWARFFormValue & Val,const AttributeSpec AttrSpec,unsigned AttrSize,AttributesInfo & Info)2558 unsigned DwarfLinker::DIECloner::cloneAttribute(
2559 DIE &Die, const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit,
2560 const DWARFFormValue &Val, const AttributeSpec AttrSpec, unsigned AttrSize,
2561 AttributesInfo &Info) {
2562 const DWARFUnit &U = Unit.getOrigUnit();
2563
2564 switch (AttrSpec.Form) {
2565 case dwarf::DW_FORM_strp:
2566 case dwarf::DW_FORM_string:
2567 return cloneStringAttribute(Die, AttrSpec, Val, U);
2568 case dwarf::DW_FORM_ref_addr:
2569 case dwarf::DW_FORM_ref1:
2570 case dwarf::DW_FORM_ref2:
2571 case dwarf::DW_FORM_ref4:
2572 case dwarf::DW_FORM_ref8:
2573 return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
2574 Unit);
2575 case dwarf::DW_FORM_block:
2576 case dwarf::DW_FORM_block1:
2577 case dwarf::DW_FORM_block2:
2578 case dwarf::DW_FORM_block4:
2579 case dwarf::DW_FORM_exprloc:
2580 return cloneBlockAttribute(Die, AttrSpec, Val, AttrSize);
2581 case dwarf::DW_FORM_addr:
2582 return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
2583 case dwarf::DW_FORM_data1:
2584 case dwarf::DW_FORM_data2:
2585 case dwarf::DW_FORM_data4:
2586 case dwarf::DW_FORM_data8:
2587 case dwarf::DW_FORM_udata:
2588 case dwarf::DW_FORM_sdata:
2589 case dwarf::DW_FORM_sec_offset:
2590 case dwarf::DW_FORM_flag:
2591 case dwarf::DW_FORM_flag_present:
2592 return cloneScalarAttribute(Die, InputDIE, Unit, AttrSpec, Val, AttrSize,
2593 Info);
2594 default:
2595 Linker.reportWarning(
2596 "Unsupported attribute form in cloneAttribute. Dropping.", &U,
2597 &InputDIE);
2598 }
2599
2600 return 0;
2601 }
2602
2603 /// \brief Apply the valid relocations found by findValidRelocs() to
2604 /// the buffer \p Data, taking into account that Data is at \p BaseOffset
2605 /// in the debug_info section.
2606 ///
2607 /// Like for findValidRelocs(), this function must be called with
2608 /// monotonic \p BaseOffset values.
2609 ///
2610 /// \returns wether any reloc has been applied.
2611 bool DwarfLinker::RelocationManager::
applyValidRelocs(MutableArrayRef<char> Data,uint32_t BaseOffset,bool isLittleEndian)2612 applyValidRelocs(MutableArrayRef<char> Data, uint32_t BaseOffset,
2613 bool isLittleEndian) {
2614 assert((NextValidReloc == 0 ||
2615 BaseOffset > ValidRelocs[NextValidReloc - 1].Offset) &&
2616 "BaseOffset should only be increasing.");
2617 if (NextValidReloc >= ValidRelocs.size())
2618 return false;
2619
2620 // Skip relocs that haven't been applied.
2621 while (NextValidReloc < ValidRelocs.size() &&
2622 ValidRelocs[NextValidReloc].Offset < BaseOffset)
2623 ++NextValidReloc;
2624
2625 bool Applied = false;
2626 uint64_t EndOffset = BaseOffset + Data.size();
2627 while (NextValidReloc < ValidRelocs.size() &&
2628 ValidRelocs[NextValidReloc].Offset >= BaseOffset &&
2629 ValidRelocs[NextValidReloc].Offset < EndOffset) {
2630 const auto &ValidReloc = ValidRelocs[NextValidReloc++];
2631 assert(ValidReloc.Offset - BaseOffset < Data.size());
2632 assert(ValidReloc.Offset - BaseOffset + ValidReloc.Size <= Data.size());
2633 char Buf[8];
2634 uint64_t Value = ValidReloc.Mapping->getValue().BinaryAddress;
2635 Value += ValidReloc.Addend;
2636 for (unsigned i = 0; i != ValidReloc.Size; ++i) {
2637 unsigned Index = isLittleEndian ? i : (ValidReloc.Size - i - 1);
2638 Buf[i] = uint8_t(Value >> (Index * 8));
2639 }
2640 assert(ValidReloc.Size <= sizeof(Buf));
2641 memcpy(&Data[ValidReloc.Offset - BaseOffset], Buf, ValidReloc.Size);
2642 Applied = true;
2643 }
2644
2645 return Applied;
2646 }
2647
isTypeTag(uint16_t Tag)2648 static bool isTypeTag(uint16_t Tag) {
2649 switch (Tag) {
2650 case dwarf::DW_TAG_array_type:
2651 case dwarf::DW_TAG_class_type:
2652 case dwarf::DW_TAG_enumeration_type:
2653 case dwarf::DW_TAG_pointer_type:
2654 case dwarf::DW_TAG_reference_type:
2655 case dwarf::DW_TAG_string_type:
2656 case dwarf::DW_TAG_structure_type:
2657 case dwarf::DW_TAG_subroutine_type:
2658 case dwarf::DW_TAG_typedef:
2659 case dwarf::DW_TAG_union_type:
2660 case dwarf::DW_TAG_ptr_to_member_type:
2661 case dwarf::DW_TAG_set_type:
2662 case dwarf::DW_TAG_subrange_type:
2663 case dwarf::DW_TAG_base_type:
2664 case dwarf::DW_TAG_const_type:
2665 case dwarf::DW_TAG_constant:
2666 case dwarf::DW_TAG_file_type:
2667 case dwarf::DW_TAG_namelist:
2668 case dwarf::DW_TAG_packed_type:
2669 case dwarf::DW_TAG_volatile_type:
2670 case dwarf::DW_TAG_restrict_type:
2671 case dwarf::DW_TAG_interface_type:
2672 case dwarf::DW_TAG_unspecified_type:
2673 case dwarf::DW_TAG_shared_type:
2674 return true;
2675 default:
2676 break;
2677 }
2678 return false;
2679 }
2680
2681 static bool
shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,uint16_t Tag,bool InDebugMap,bool SkipPC,bool InFunctionScope)2682 shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
2683 uint16_t Tag, bool InDebugMap, bool SkipPC,
2684 bool InFunctionScope) {
2685 switch (AttrSpec.Attr) {
2686 default:
2687 return false;
2688 case dwarf::DW_AT_low_pc:
2689 case dwarf::DW_AT_high_pc:
2690 case dwarf::DW_AT_ranges:
2691 return SkipPC;
2692 case dwarf::DW_AT_location:
2693 case dwarf::DW_AT_frame_base:
2694 // FIXME: for some reason dsymutil-classic keeps the location
2695 // attributes when they are of block type (ie. not location
2696 // lists). This is totally wrong for globals where we will keep a
2697 // wrong address. It is mostly harmless for locals, but there is
2698 // no point in keeping these anyway when the function wasn't linked.
2699 return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
2700 !InDebugMap)) &&
2701 !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
2702 }
2703 }
2704
cloneDIE(const DWARFDebugInfoEntryMinimal & InputDIE,CompileUnit & Unit,int64_t PCOffset,uint32_t OutOffset,unsigned Flags)2705 DIE *DwarfLinker::DIECloner::cloneDIE(
2706 const DWARFDebugInfoEntryMinimal &InputDIE, CompileUnit &Unit,
2707 int64_t PCOffset, uint32_t OutOffset, unsigned Flags) {
2708 DWARFUnit &U = Unit.getOrigUnit();
2709 unsigned Idx = U.getDIEIndex(&InputDIE);
2710 CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
2711
2712 // Should the DIE appear in the output?
2713 if (!Unit.getInfo(Idx).Keep)
2714 return nullptr;
2715
2716 uint32_t Offset = InputDIE.getOffset();
2717 // The DIE might have been already created by a forward reference
2718 // (see cloneDieReferenceAttribute()).
2719 DIE *Die = Info.Clone;
2720 if (!Die)
2721 Die = Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
2722 assert(Die->getTag() == InputDIE.getTag());
2723 Die->setOffset(OutOffset);
2724 if ((Unit.hasODR() || Unit.isClangModule()) &&
2725 Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
2726 Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
2727 !Info.Ctxt->getCanonicalDIEOffset()) {
2728 // We are about to emit a DIE that is the root of its own valid
2729 // DeclContext tree. Make the current offset the canonical offset
2730 // for this context.
2731 Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
2732 }
2733
2734 // Extract and clone every attribute.
2735 DataExtractor Data = U.getDebugInfoExtractor();
2736 // Point to the next DIE (generally there is always at least a NULL
2737 // entry after the current one). If this is a lone
2738 // DW_TAG_compile_unit without any children, point to the next unit.
2739 uint32_t NextOffset =
2740 (Idx + 1 < U.getNumDIEs())
2741 ? U.getDIEAtIndex(Idx + 1)->getOffset()
2742 : U.getNextUnitOffset();
2743 AttributesInfo AttrInfo;
2744
2745 // We could copy the data only if we need to aply a relocation to
2746 // it. After testing, it seems there is no performance downside to
2747 // doing the copy unconditionally, and it makes the code simpler.
2748 SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
2749 Data = DataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
2750 // Modify the copy with relocated addresses.
2751 if (RelocMgr.applyValidRelocs(DIECopy, Offset, Data.isLittleEndian())) {
2752 // If we applied relocations, we store the value of high_pc that was
2753 // potentially stored in the input DIE. If high_pc is an address
2754 // (Dwarf version == 2), then it might have been relocated to a
2755 // totally unrelated value (because the end address in the object
2756 // file might be start address of another function which got moved
2757 // independantly by the linker). The computation of the actual
2758 // high_pc value is done in cloneAddressAttribute().
2759 AttrInfo.OrigHighPc =
2760 InputDIE.getAttributeValueAsAddress(&U, dwarf::DW_AT_high_pc, 0);
2761 // Also store the low_pc. It might get relocated in an
2762 // inline_subprogram that happens at the beginning of its
2763 // inlining function.
2764 AttrInfo.OrigLowPc =
2765 InputDIE.getAttributeValueAsAddress(&U, dwarf::DW_AT_low_pc, UINT64_MAX);
2766 }
2767
2768 // Reset the Offset to 0 as we will be working on the local copy of
2769 // the data.
2770 Offset = 0;
2771
2772 const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
2773 Offset += getULEB128Size(Abbrev->getCode());
2774
2775 // We are entering a subprogram. Get and propagate the PCOffset.
2776 if (Die->getTag() == dwarf::DW_TAG_subprogram)
2777 PCOffset = Info.AddrAdjust;
2778 AttrInfo.PCOffset = PCOffset;
2779
2780 if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
2781 Flags |= TF_InFunctionScope;
2782 if (!Info.InDebugMap)
2783 Flags |= TF_SkipPC;
2784 }
2785
2786 bool Copied = false;
2787 for (const auto &AttrSpec : Abbrev->attributes()) {
2788 if (shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
2789 Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
2790 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset, &U);
2791 // FIXME: dsymutil-classic keeps the old abbreviation around
2792 // even if it's not used. We can remove this (and the copyAbbrev
2793 // helper) as soon as bit-for-bit compatibility is not a goal anymore.
2794 if (!Copied) {
2795 copyAbbrev(*InputDIE.getAbbreviationDeclarationPtr(), Unit.hasODR());
2796 Copied = true;
2797 }
2798 continue;
2799 }
2800
2801 DWARFFormValue Val(AttrSpec.Form);
2802 uint32_t AttrSize = Offset;
2803 Val.extractValue(Data, &Offset, &U);
2804 AttrSize = Offset - AttrSize;
2805
2806 OutOffset +=
2807 cloneAttribute(*Die, InputDIE, Unit, Val, AttrSpec, AttrSize, AttrInfo);
2808 }
2809
2810 // Look for accelerator entries.
2811 uint16_t Tag = InputDIE.getTag();
2812 // FIXME: This is slightly wrong. An inline_subroutine without a
2813 // low_pc, but with AT_ranges might be interesting to get into the
2814 // accelerator tables too. For now stick with dsymutil's behavior.
2815 if ((Info.InDebugMap || AttrInfo.HasLowPc) &&
2816 Tag != dwarf::DW_TAG_compile_unit &&
2817 getDIENames(InputDIE, Unit.getOrigUnit(), AttrInfo)) {
2818 if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
2819 Unit.addNameAccelerator(Die, AttrInfo.MangledName,
2820 AttrInfo.MangledNameOffset,
2821 Tag == dwarf::DW_TAG_inlined_subroutine);
2822 if (AttrInfo.Name)
2823 Unit.addNameAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset,
2824 Tag == dwarf::DW_TAG_inlined_subroutine);
2825 } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
2826 getDIENames(InputDIE, Unit.getOrigUnit(), AttrInfo)) {
2827 Unit.addTypeAccelerator(Die, AttrInfo.Name, AttrInfo.NameOffset);
2828 }
2829
2830 // Determine whether there are any children that we want to keep.
2831 bool HasChildren = false;
2832 for (auto *Child = InputDIE.getFirstChild(); Child && !Child->isNULL();
2833 Child = Child->getSibling()) {
2834 unsigned Idx = U.getDIEIndex(Child);
2835 if (Unit.getInfo(Idx).Keep) {
2836 HasChildren = true;
2837 break;
2838 }
2839 }
2840
2841 DIEAbbrev NewAbbrev = Die->generateAbbrev();
2842 if (HasChildren)
2843 NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
2844 // Assign a permanent abbrev number
2845 Linker.AssignAbbrev(NewAbbrev);
2846 Die->setAbbrevNumber(NewAbbrev.getNumber());
2847
2848 // Add the size of the abbreviation number to the output offset.
2849 OutOffset += getULEB128Size(Die->getAbbrevNumber());
2850
2851 if (!HasChildren) {
2852 // Update our size.
2853 Die->setSize(OutOffset - Die->getOffset());
2854 return Die;
2855 }
2856
2857 // Recursively clone children.
2858 for (auto *Child = InputDIE.getFirstChild(); Child && !Child->isNULL();
2859 Child = Child->getSibling()) {
2860 if (DIE *Clone = cloneDIE(*Child, Unit, PCOffset, OutOffset, Flags)) {
2861 Die->addChild(Clone);
2862 OutOffset = Clone->getOffset() + Clone->getSize();
2863 }
2864 }
2865
2866 // Account for the end of children marker.
2867 OutOffset += sizeof(int8_t);
2868 // Update our size.
2869 Die->setSize(OutOffset - Die->getOffset());
2870 return Die;
2871 }
2872
2873 /// \brief Patch the input object file relevant debug_ranges entries
2874 /// and emit them in the output file. Update the relevant attributes
2875 /// to point at the new entries.
patchRangesForUnit(const CompileUnit & Unit,DWARFContext & OrigDwarf) const2876 void DwarfLinker::patchRangesForUnit(const CompileUnit &Unit,
2877 DWARFContext &OrigDwarf) const {
2878 DWARFDebugRangeList RangeList;
2879 const auto &FunctionRanges = Unit.getFunctionRanges();
2880 unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
2881 DataExtractor RangeExtractor(OrigDwarf.getRangeSection(),
2882 OrigDwarf.isLittleEndian(), AddressSize);
2883 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
2884 DWARFUnit &OrigUnit = Unit.getOrigUnit();
2885 const auto *OrigUnitDie = OrigUnit.getUnitDIE(false);
2886 uint64_t OrigLowPc = OrigUnitDie->getAttributeValueAsAddress(
2887 &OrigUnit, dwarf::DW_AT_low_pc, -1ULL);
2888 // Ranges addresses are based on the unit's low_pc. Compute the
2889 // offset we need to apply to adapt to the new unit's low_pc.
2890 int64_t UnitPcOffset = 0;
2891 if (OrigLowPc != -1ULL)
2892 UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
2893
2894 for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
2895 uint32_t Offset = RangeAttribute.get();
2896 RangeAttribute.set(Streamer->getRangesSectionSize());
2897 RangeList.extract(RangeExtractor, &Offset);
2898 const auto &Entries = RangeList.getEntries();
2899 if (!Entries.empty()) {
2900 const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
2901
2902 if (CurrRange == InvalidRange ||
2903 First.StartAddress + OrigLowPc < CurrRange.start() ||
2904 First.StartAddress + OrigLowPc >= CurrRange.stop()) {
2905 CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
2906 if (CurrRange == InvalidRange ||
2907 CurrRange.start() > First.StartAddress + OrigLowPc) {
2908 reportWarning("no mapping for range.");
2909 continue;
2910 }
2911 }
2912 }
2913
2914 Streamer->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange, Entries,
2915 AddressSize);
2916 }
2917 }
2918
2919 /// \brief Generate the debug_aranges entries for \p Unit and if the
2920 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges
2921 /// contribution for this attribute.
2922 /// FIXME: this could actually be done right in patchRangesForUnit,
2923 /// but for the sake of initial bit-for-bit compatibility with legacy
2924 /// dsymutil, we have to do it in a delayed pass.
generateUnitRanges(CompileUnit & Unit) const2925 void DwarfLinker::generateUnitRanges(CompileUnit &Unit) const {
2926 auto Attr = Unit.getUnitRangesAttribute();
2927 if (Attr)
2928 Attr->set(Streamer->getRangesSectionSize());
2929 Streamer->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
2930 }
2931
2932 /// \brief Insert the new line info sequence \p Seq into the current
2933 /// set of already linked line info \p Rows.
insertLineSequence(std::vector<DWARFDebugLine::Row> & Seq,std::vector<DWARFDebugLine::Row> & Rows)2934 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
2935 std::vector<DWARFDebugLine::Row> &Rows) {
2936 if (Seq.empty())
2937 return;
2938
2939 if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
2940 Rows.insert(Rows.end(), Seq.begin(), Seq.end());
2941 Seq.clear();
2942 return;
2943 }
2944
2945 auto InsertPoint = std::lower_bound(
2946 Rows.begin(), Rows.end(), Seq.front(),
2947 [](const DWARFDebugLine::Row &LHS, const DWARFDebugLine::Row &RHS) {
2948 return LHS.Address < RHS.Address;
2949 });
2950
2951 // FIXME: this only removes the unneeded end_sequence if the
2952 // sequences have been inserted in order. using a global sort like
2953 // described in patchLineTableForUnit() and delaying the end_sequene
2954 // elimination to emitLineTableForUnit() we can get rid of all of them.
2955 if (InsertPoint != Rows.end() &&
2956 InsertPoint->Address == Seq.front().Address && InsertPoint->EndSequence) {
2957 *InsertPoint = Seq.front();
2958 Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
2959 } else {
2960 Rows.insert(InsertPoint, Seq.begin(), Seq.end());
2961 }
2962
2963 Seq.clear();
2964 }
2965
patchStmtList(DIE & Die,DIEInteger Offset)2966 static void patchStmtList(DIE &Die, DIEInteger Offset) {
2967 for (auto &V : Die.values())
2968 if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
2969 V = DIEValue(V.getAttribute(), V.getForm(), Offset);
2970 return;
2971 }
2972
2973 llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
2974 }
2975
2976 /// \brief Extract the line table for \p Unit from \p OrigDwarf, and
2977 /// recreate a relocated version of these for the address ranges that
2978 /// are present in the binary.
patchLineTableForUnit(CompileUnit & Unit,DWARFContext & OrigDwarf)2979 void DwarfLinker::patchLineTableForUnit(CompileUnit &Unit,
2980 DWARFContext &OrigDwarf) {
2981 const DWARFDebugInfoEntryMinimal *CUDie = Unit.getOrigUnit().getUnitDIE();
2982 uint64_t StmtList = CUDie->getAttributeValueAsSectionOffset(
2983 &Unit.getOrigUnit(), dwarf::DW_AT_stmt_list, -1ULL);
2984 if (StmtList == -1ULL)
2985 return;
2986
2987 // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
2988 if (auto *OutputDIE = Unit.getOutputUnitDIE())
2989 patchStmtList(*OutputDIE, DIEInteger(Streamer->getLineSectionSize()));
2990
2991 // Parse the original line info for the unit.
2992 DWARFDebugLine::LineTable LineTable;
2993 uint32_t StmtOffset = StmtList;
2994 StringRef LineData = OrigDwarf.getLineSection().Data;
2995 DataExtractor LineExtractor(LineData, OrigDwarf.isLittleEndian(),
2996 Unit.getOrigUnit().getAddressByteSize());
2997 LineTable.parse(LineExtractor, &OrigDwarf.getLineSection().Relocs,
2998 &StmtOffset);
2999
3000 // This vector is the output line table.
3001 std::vector<DWARFDebugLine::Row> NewRows;
3002 NewRows.reserve(LineTable.Rows.size());
3003
3004 // Current sequence of rows being extracted, before being inserted
3005 // in NewRows.
3006 std::vector<DWARFDebugLine::Row> Seq;
3007 const auto &FunctionRanges = Unit.getFunctionRanges();
3008 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
3009
3010 // FIXME: This logic is meant to generate exactly the same output as
3011 // Darwin's classic dsynutil. There is a nicer way to implement this
3012 // by simply putting all the relocated line info in NewRows and simply
3013 // sorting NewRows before passing it to emitLineTableForUnit. This
3014 // should be correct as sequences for a function should stay
3015 // together in the sorted output. There are a few corner cases that
3016 // look suspicious though, and that required to implement the logic
3017 // this way. Revisit that once initial validation is finished.
3018
3019 // Iterate over the object file line info and extract the sequences
3020 // that correspond to linked functions.
3021 for (auto &Row : LineTable.Rows) {
3022 // Check wether we stepped out of the range. The range is
3023 // half-open, but consider accept the end address of the range if
3024 // it is marked as end_sequence in the input (because in that
3025 // case, the relocation offset is accurate and that entry won't
3026 // serve as the start of another function).
3027 if (CurrRange == InvalidRange || Row.Address < CurrRange.start() ||
3028 Row.Address > CurrRange.stop() ||
3029 (Row.Address == CurrRange.stop() && !Row.EndSequence)) {
3030 // We just stepped out of a known range. Insert a end_sequence
3031 // corresponding to the end of the range.
3032 uint64_t StopAddress = CurrRange != InvalidRange
3033 ? CurrRange.stop() + CurrRange.value()
3034 : -1ULL;
3035 CurrRange = FunctionRanges.find(Row.Address);
3036 bool CurrRangeValid =
3037 CurrRange != InvalidRange && CurrRange.start() <= Row.Address;
3038 if (!CurrRangeValid) {
3039 CurrRange = InvalidRange;
3040 if (StopAddress != -1ULL) {
3041 // Try harder by looking in the DebugMapObject function
3042 // ranges map. There are corner cases where this finds a
3043 // valid entry. It's unclear if this is right or wrong, but
3044 // for now do as dsymutil.
3045 // FIXME: Understand exactly what cases this addresses and
3046 // potentially remove it along with the Ranges map.
3047 auto Range = Ranges.lower_bound(Row.Address);
3048 if (Range != Ranges.begin() && Range != Ranges.end())
3049 --Range;
3050
3051 if (Range != Ranges.end() && Range->first <= Row.Address &&
3052 Range->second.first >= Row.Address) {
3053 StopAddress = Row.Address + Range->second.second;
3054 }
3055 }
3056 }
3057 if (StopAddress != -1ULL && !Seq.empty()) {
3058 // Insert end sequence row with the computed end address, but
3059 // the same line as the previous one.
3060 auto NextLine = Seq.back();
3061 NextLine.Address = StopAddress;
3062 NextLine.EndSequence = 1;
3063 NextLine.PrologueEnd = 0;
3064 NextLine.BasicBlock = 0;
3065 NextLine.EpilogueBegin = 0;
3066 Seq.push_back(NextLine);
3067 insertLineSequence(Seq, NewRows);
3068 }
3069
3070 if (!CurrRangeValid)
3071 continue;
3072 }
3073
3074 // Ignore empty sequences.
3075 if (Row.EndSequence && Seq.empty())
3076 continue;
3077
3078 // Relocate row address and add it to the current sequence.
3079 Row.Address += CurrRange.value();
3080 Seq.emplace_back(Row);
3081
3082 if (Row.EndSequence)
3083 insertLineSequence(Seq, NewRows);
3084 }
3085
3086 // Finished extracting, now emit the line tables.
3087 uint32_t PrologueEnd = StmtList + 10 + LineTable.Prologue.PrologueLength;
3088 // FIXME: LLVM hardcodes it's prologue values. We just copy the
3089 // prologue over and that works because we act as both producer and
3090 // consumer. It would be nicer to have a real configurable line
3091 // table emitter.
3092 if (LineTable.Prologue.Version != 2 ||
3093 LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
3094 LineTable.Prologue.OpcodeBase > 13)
3095 reportWarning("line table paramters mismatch. Cannot emit.");
3096 else {
3097 MCDwarfLineTableParams Params;
3098 Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
3099 Params.DWARF2LineBase = LineTable.Prologue.LineBase;
3100 Params.DWARF2LineRange = LineTable.Prologue.LineRange;
3101 Streamer->emitLineTableForUnit(Params,
3102 LineData.slice(StmtList + 4, PrologueEnd),
3103 LineTable.Prologue.MinInstLength, NewRows,
3104 Unit.getOrigUnit().getAddressByteSize());
3105 }
3106 }
3107
emitAcceleratorEntriesForUnit(CompileUnit & Unit)3108 void DwarfLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
3109 Streamer->emitPubNamesForUnit(Unit);
3110 Streamer->emitPubTypesForUnit(Unit);
3111 }
3112
3113 /// \brief Read the frame info stored in the object, and emit the
3114 /// patched frame descriptions for the linked binary.
3115 ///
3116 /// This is actually pretty easy as the data of the CIEs and FDEs can
3117 /// be considered as black boxes and moved as is. The only thing to do
3118 /// is to patch the addresses in the headers.
patchFrameInfoForObject(const DebugMapObject & DMO,DWARFContext & OrigDwarf,unsigned AddrSize)3119 void DwarfLinker::patchFrameInfoForObject(const DebugMapObject &DMO,
3120 DWARFContext &OrigDwarf,
3121 unsigned AddrSize) {
3122 StringRef FrameData = OrigDwarf.getDebugFrameSection();
3123 if (FrameData.empty())
3124 return;
3125
3126 DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
3127 uint32_t InputOffset = 0;
3128
3129 // Store the data of the CIEs defined in this object, keyed by their
3130 // offsets.
3131 DenseMap<uint32_t, StringRef> LocalCIES;
3132
3133 while (Data.isValidOffset(InputOffset)) {
3134 uint32_t EntryOffset = InputOffset;
3135 uint32_t InitialLength = Data.getU32(&InputOffset);
3136 if (InitialLength == 0xFFFFFFFF)
3137 return reportWarning("Dwarf64 bits no supported");
3138
3139 uint32_t CIEId = Data.getU32(&InputOffset);
3140 if (CIEId == 0xFFFFFFFF) {
3141 // This is a CIE, store it.
3142 StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
3143 LocalCIES[EntryOffset] = CIEData;
3144 // The -4 is to account for the CIEId we just read.
3145 InputOffset += InitialLength - 4;
3146 continue;
3147 }
3148
3149 uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
3150
3151 // Some compilers seem to emit frame info that doesn't start at
3152 // the function entry point, thus we can't just lookup the address
3153 // in the debug map. Use the linker's range map to see if the FDE
3154 // describes something that we can relocate.
3155 auto Range = Ranges.upper_bound(Loc);
3156 if (Range != Ranges.begin())
3157 --Range;
3158 if (Range == Ranges.end() || Range->first > Loc ||
3159 Range->second.first <= Loc) {
3160 // The +4 is to account for the size of the InitialLength field itself.
3161 InputOffset = EntryOffset + InitialLength + 4;
3162 continue;
3163 }
3164
3165 // This is an FDE, and we have a mapping.
3166 // Have we already emitted a corresponding CIE?
3167 StringRef CIEData = LocalCIES[CIEId];
3168 if (CIEData.empty())
3169 return reportWarning("Inconsistent debug_frame content. Dropping.");
3170
3171 // Look if we already emitted a CIE that corresponds to the
3172 // referenced one (the CIE data is the key of that lookup).
3173 auto IteratorInserted = EmittedCIEs.insert(
3174 std::make_pair(CIEData, Streamer->getFrameSectionSize()));
3175 // If there is no CIE yet for this ID, emit it.
3176 if (IteratorInserted.second ||
3177 // FIXME: dsymutil-classic only caches the last used CIE for
3178 // reuse. Mimic that behavior for now. Just removing that
3179 // second half of the condition and the LastCIEOffset variable
3180 // makes the code DTRT.
3181 LastCIEOffset != IteratorInserted.first->getValue()) {
3182 LastCIEOffset = Streamer->getFrameSectionSize();
3183 IteratorInserted.first->getValue() = LastCIEOffset;
3184 Streamer->emitCIE(CIEData);
3185 }
3186
3187 // Emit the FDE with updated address and CIE pointer.
3188 // (4 + AddrSize) is the size of the CIEId + initial_location
3189 // fields that will get reconstructed by emitFDE().
3190 unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
3191 Streamer->emitFDE(IteratorInserted.first->getValue(), AddrSize,
3192 Loc + Range->second.second,
3193 FrameData.substr(InputOffset, FDERemainingBytes));
3194 InputOffset += FDERemainingBytes;
3195 }
3196 }
3197
copyAbbrev(const DWARFAbbreviationDeclaration & Abbrev,bool hasODR)3198 void DwarfLinker::DIECloner::copyAbbrev(
3199 const DWARFAbbreviationDeclaration &Abbrev, bool hasODR) {
3200 DIEAbbrev Copy(dwarf::Tag(Abbrev.getTag()),
3201 dwarf::Form(Abbrev.hasChildren()));
3202
3203 for (const auto &Attr : Abbrev.attributes()) {
3204 uint16_t Form = Attr.Form;
3205 if (hasODR && isODRAttribute(Attr.Attr))
3206 Form = dwarf::DW_FORM_ref_addr;
3207 Copy.AddAttribute(dwarf::Attribute(Attr.Attr), dwarf::Form(Form));
3208 }
3209
3210 Linker.AssignAbbrev(Copy);
3211 }
3212
getDwoId(const DWARFDebugInfoEntryMinimal & CUDie,const DWARFUnit & Unit)3213 static uint64_t getDwoId(const DWARFDebugInfoEntryMinimal &CUDie,
3214 const DWARFUnit &Unit) {
3215 uint64_t DwoId =
3216 CUDie.getAttributeValueAsUnsignedConstant(&Unit, dwarf::DW_AT_dwo_id, 0);
3217 if (!DwoId)
3218 DwoId = CUDie.getAttributeValueAsUnsignedConstant(&Unit,
3219 dwarf::DW_AT_GNU_dwo_id, 0);
3220 return DwoId;
3221 }
3222
registerModuleReference(const DWARFDebugInfoEntryMinimal & CUDie,const DWARFUnit & Unit,DebugMap & ModuleMap,unsigned Indent)3223 bool DwarfLinker::registerModuleReference(
3224 const DWARFDebugInfoEntryMinimal &CUDie, const DWARFUnit &Unit,
3225 DebugMap &ModuleMap, unsigned Indent) {
3226 std::string PCMfile =
3227 CUDie.getAttributeValueAsString(&Unit, dwarf::DW_AT_dwo_name, "");
3228 if (PCMfile.empty())
3229 PCMfile =
3230 CUDie.getAttributeValueAsString(&Unit, dwarf::DW_AT_GNU_dwo_name, "");
3231 if (PCMfile.empty())
3232 return false;
3233
3234 // Clang module DWARF skeleton CUs abuse this for the path to the module.
3235 std::string PCMpath =
3236 CUDie.getAttributeValueAsString(&Unit, dwarf::DW_AT_comp_dir, "");
3237 uint64_t DwoId = getDwoId(CUDie, Unit);
3238
3239 std::string Name =
3240 CUDie.getAttributeValueAsString(&Unit, dwarf::DW_AT_name, "");
3241 if (Name.empty()) {
3242 reportWarning("Anonymous module skeleton CU for " + PCMfile);
3243 return true;
3244 }
3245
3246 if (Options.Verbose) {
3247 outs().indent(Indent);
3248 outs() << "Found clang module reference " << PCMfile;
3249 }
3250
3251 auto Cached = ClangModules.find(PCMfile);
3252 if (Cached != ClangModules.end()) {
3253 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
3254 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
3255 // ASTFileSignatures will change randomly when a module is rebuilt.
3256 if (Options.Verbose && (Cached->second != DwoId))
3257 reportWarning(Twine("hash mismatch: this object file was built against a "
3258 "different version of the module ") + PCMfile);
3259 if (Options.Verbose)
3260 outs() << " [cached].\n";
3261 return true;
3262 }
3263 if (Options.Verbose)
3264 outs() << " ...\n";
3265
3266 // Cyclic dependencies are disallowed by Clang, but we still
3267 // shouldn't run into an infinite loop, so mark it as processed now.
3268 ClangModules.insert({PCMfile, DwoId});
3269 loadClangModule(PCMfile, PCMpath, Name, DwoId, ModuleMap, Indent + 2);
3270 return true;
3271 }
3272
3273 ErrorOr<const object::ObjectFile &>
loadObject(BinaryHolder & BinaryHolder,DebugMapObject & Obj,const DebugMap & Map)3274 DwarfLinker::loadObject(BinaryHolder &BinaryHolder, DebugMapObject &Obj,
3275 const DebugMap &Map) {
3276 auto ErrOrObjs =
3277 BinaryHolder.GetObjectFiles(Obj.getObjectFilename(), Obj.getTimestamp());
3278 if (std::error_code EC = ErrOrObjs.getError()) {
3279 reportWarning(Twine(Obj.getObjectFilename()) + ": " + EC.message());
3280 return EC;
3281 }
3282 auto ErrOrObj = BinaryHolder.Get(Map.getTriple());
3283 if (std::error_code EC = ErrOrObj.getError())
3284 reportWarning(Twine(Obj.getObjectFilename()) + ": " + EC.message());
3285 return ErrOrObj;
3286 }
3287
loadClangModule(StringRef Filename,StringRef ModulePath,StringRef ModuleName,uint64_t DwoId,DebugMap & ModuleMap,unsigned Indent)3288 void DwarfLinker::loadClangModule(StringRef Filename, StringRef ModulePath,
3289 StringRef ModuleName, uint64_t DwoId,
3290 DebugMap &ModuleMap, unsigned Indent) {
3291 SmallString<80> Path(Options.PrependPath);
3292 if (sys::path::is_relative(Filename))
3293 sys::path::append(Path, ModulePath, Filename);
3294 else
3295 sys::path::append(Path, Filename);
3296 BinaryHolder ObjHolder(Options.Verbose);
3297 auto &Obj =
3298 ModuleMap.addDebugMapObject(Path, sys::TimeValue::PosixZeroTime());
3299 auto ErrOrObj = loadObject(ObjHolder, Obj, ModuleMap);
3300 if (!ErrOrObj) {
3301 // Try and emit more helpful warnings by applying some heuristics.
3302 StringRef ObjFile = CurrentDebugObject->getObjectFilename();
3303 bool isClangModule = sys::path::extension(Filename).equals(".pcm");
3304 bool isArchive = ObjFile.endswith(")");
3305 if (isClangModule) {
3306 StringRef ModuleCacheDir = sys::path::parent_path(Path);
3307 if (sys::fs::exists(ModuleCacheDir)) {
3308 // If the module's parent directory exists, we assume that the module
3309 // cache has expired and was pruned by clang. A more adventurous
3310 // dsymutil would invoke clang to rebuild the module now.
3311 if (!ModuleCacheHintDisplayed) {
3312 errs() << "note: The clang module cache may have expired since this "
3313 "object file was built. Rebuilding the object file will "
3314 "rebuild the module cache.\n";
3315 ModuleCacheHintDisplayed = true;
3316 }
3317 } else if (isArchive) {
3318 // If the module cache directory doesn't exist at all and the object
3319 // file is inside a static library, we assume that the static library
3320 // was built on a different machine. We don't want to discourage module
3321 // debugging for convenience libraries within a project though.
3322 if (!ArchiveHintDisplayed) {
3323 errs() << "note: Linking a static library that was built with "
3324 "-gmodules, but the module cache was not found. "
3325 "Redistributable static libraries should never be built "
3326 "with module debugging enabled. The debug experience will "
3327 "be degraded due to incomplete debug information.\n";
3328 ArchiveHintDisplayed = true;
3329 }
3330 }
3331 }
3332 return;
3333 }
3334
3335 std::unique_ptr<CompileUnit> Unit;
3336
3337 // Setup access to the debug info.
3338 DWARFContextInMemory DwarfContext(*ErrOrObj);
3339 RelocationManager RelocMgr(*this);
3340 for (const auto &CU : DwarfContext.compile_units()) {
3341 auto *CUDie = CU->getUnitDIE(false);
3342 // Recursively get all modules imported by this one.
3343 if (!registerModuleReference(*CUDie, *CU, ModuleMap, Indent)) {
3344 if (Unit) {
3345 errs() << Filename << ": Clang modules are expected to have exactly"
3346 << " 1 compile unit.\n";
3347 exitDsymutil(1);
3348 }
3349 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
3350 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
3351 // ASTFileSignatures will change randomly when a module is rebuilt.
3352 uint64_t PCMDwoId = getDwoId(*CUDie, *CU);
3353 if (PCMDwoId != DwoId) {
3354 if (Options.Verbose)
3355 reportWarning(
3356 Twine("hash mismatch: this object file was built against a "
3357 "different version of the module ") + Filename);
3358 // Update the cache entry with the DwoId of the module loaded from disk.
3359 ClangModules[Filename] = PCMDwoId;
3360 }
3361
3362 // Add this module.
3363 Unit = llvm::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
3364 ModuleName);
3365 Unit->setHasInterestingContent();
3366 analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(), StringPool,
3367 ODRContexts);
3368 // Keep everything.
3369 Unit->markEverythingAsKept();
3370 }
3371 }
3372 if (Options.Verbose) {
3373 outs().indent(Indent);
3374 outs() << "cloning .debug_info from " << Filename << "\n";
3375 }
3376
3377 DIECloner(*this, RelocMgr, DIEAlloc, MutableArrayRef<CompileUnit>(*Unit),
3378 Options)
3379 .cloneAllCompileUnits(DwarfContext);
3380 }
3381
cloneAllCompileUnits(DWARFContextInMemory & DwarfContext)3382 void DwarfLinker::DIECloner::cloneAllCompileUnits(
3383 DWARFContextInMemory &DwarfContext) {
3384 if (!Linker.Streamer)
3385 return;
3386
3387 for (auto &CurrentUnit : CompileUnits) {
3388 const auto *InputDIE = CurrentUnit.getOrigUnit().getUnitDIE();
3389 CurrentUnit.setStartOffset(Linker.OutputDebugInfoSize);
3390 DIE *OutputDIE = cloneDIE(*InputDIE, CurrentUnit, 0 /* PC offset */,
3391 11 /* Unit Header size */, 0);
3392 CurrentUnit.setOutputUnitDIE(OutputDIE);
3393 Linker.OutputDebugInfoSize = CurrentUnit.computeNextUnitOffset();
3394 if (Linker.Options.NoOutput)
3395 continue;
3396 // FIXME: for compatibility with the classic dsymutil, we emit
3397 // an empty line table for the unit, even if the unit doesn't
3398 // actually exist in the DIE tree.
3399 Linker.patchLineTableForUnit(CurrentUnit, DwarfContext);
3400 if (!OutputDIE)
3401 continue;
3402 Linker.patchRangesForUnit(CurrentUnit, DwarfContext);
3403 Linker.Streamer->emitLocationsForUnit(CurrentUnit, DwarfContext);
3404 Linker.emitAcceleratorEntriesForUnit(CurrentUnit);
3405 }
3406
3407 if (Linker.Options.NoOutput)
3408 return;
3409
3410 // Emit all the compile unit's debug information.
3411 for (auto &CurrentUnit : CompileUnits) {
3412 Linker.generateUnitRanges(CurrentUnit);
3413 CurrentUnit.fixupForwardReferences();
3414 Linker.Streamer->emitCompileUnitHeader(CurrentUnit);
3415 if (!CurrentUnit.getOutputUnitDIE())
3416 continue;
3417 Linker.Streamer->emitDIE(*CurrentUnit.getOutputUnitDIE());
3418 }
3419 }
3420
link(const DebugMap & Map)3421 bool DwarfLinker::link(const DebugMap &Map) {
3422
3423 if (!createStreamer(Map.getTriple(), OutputFilename))
3424 return false;
3425
3426 // Size of the DIEs (and headers) generated for the linked output.
3427 OutputDebugInfoSize = 0;
3428 // A unique ID that identifies each compile unit.
3429 UnitID = 0;
3430 DebugMap ModuleMap(Map.getTriple(), Map.getBinaryPath());
3431
3432 for (const auto &Obj : Map.objects()) {
3433 CurrentDebugObject = Obj.get();
3434
3435 if (Options.Verbose)
3436 outs() << "DEBUG MAP OBJECT: " << Obj->getObjectFilename() << "\n";
3437 auto ErrOrObj = loadObject(BinHolder, *Obj, Map);
3438 if (!ErrOrObj)
3439 continue;
3440
3441 // Look for relocations that correspond to debug map entries.
3442 RelocationManager RelocMgr(*this);
3443 if (!RelocMgr.findValidRelocsInDebugInfo(*ErrOrObj, *Obj)) {
3444 if (Options.Verbose)
3445 outs() << "No valid relocations found. Skipping.\n";
3446 continue;
3447 }
3448
3449 // Setup access to the debug info.
3450 DWARFContextInMemory DwarfContext(*ErrOrObj);
3451 startDebugObject(DwarfContext, *Obj);
3452
3453 // In a first phase, just read in the debug info and load all clang modules.
3454 for (const auto &CU : DwarfContext.compile_units()) {
3455 auto *CUDie = CU->getUnitDIE(false);
3456 if (Options.Verbose) {
3457 outs() << "Input compilation unit:";
3458 CUDie->dump(outs(), CU.get(), 0);
3459 }
3460
3461 if (!registerModuleReference(*CUDie, *CU, ModuleMap))
3462 Units.emplace_back(*CU, UnitID++, !Options.NoODR, "");
3463 }
3464
3465 // Now build the DIE parent links that we will use during the next phase.
3466 for (auto &CurrentUnit : Units)
3467 analyzeContextInfo(CurrentUnit.getOrigUnit().getUnitDIE(), 0, CurrentUnit,
3468 &ODRContexts.getRoot(), StringPool, ODRContexts);
3469
3470 // Then mark all the DIEs that need to be present in the linked
3471 // output and collect some information about them. Note that this
3472 // loop can not be merged with the previous one becaue cross-cu
3473 // references require the ParentIdx to be setup for every CU in
3474 // the object file before calling this.
3475 for (auto &CurrentUnit : Units)
3476 lookForDIEsToKeep(RelocMgr, *CurrentUnit.getOrigUnit().getUnitDIE(), *Obj,
3477 CurrentUnit, 0);
3478
3479 // The calls to applyValidRelocs inside cloneDIE will walk the
3480 // reloc array again (in the same way findValidRelocsInDebugInfo()
3481 // did). We need to reset the NextValidReloc index to the beginning.
3482 RelocMgr.resetValidRelocs();
3483 if (RelocMgr.hasValidRelocs())
3484 DIECloner(*this, RelocMgr, DIEAlloc, Units, Options)
3485 .cloneAllCompileUnits(DwarfContext);
3486 if (!Options.NoOutput && !Units.empty())
3487 patchFrameInfoForObject(*Obj, DwarfContext,
3488 Units[0].getOrigUnit().getAddressByteSize());
3489
3490 // Clean-up before starting working on the next object.
3491 endDebugObject();
3492 }
3493
3494 // Emit everything that's global.
3495 if (!Options.NoOutput) {
3496 Streamer->emitAbbrevs(Abbreviations);
3497 Streamer->emitStrings(StringPool);
3498 }
3499
3500 return Options.NoOutput ? true : Streamer->finish(Map);
3501 }
3502 }
3503
3504 /// \brief Get the offset of string \p S in the string table. This
3505 /// can insert a new element or return the offset of a preexisitng
3506 /// one.
getStringOffset(StringRef S)3507 uint32_t NonRelocatableStringpool::getStringOffset(StringRef S) {
3508 if (S.empty() && !Strings.empty())
3509 return 0;
3510
3511 std::pair<uint32_t, StringMapEntryBase *> Entry(0, nullptr);
3512 MapTy::iterator It;
3513 bool Inserted;
3514
3515 // A non-empty string can't be at offset 0, so if we have an entry
3516 // with a 0 offset, it must be a previously interned string.
3517 std::tie(It, Inserted) = Strings.insert(std::make_pair(S, Entry));
3518 if (Inserted || It->getValue().first == 0) {
3519 // Set offset and chain at the end of the entries list.
3520 It->getValue().first = CurrentEndOffset;
3521 CurrentEndOffset += S.size() + 1; // +1 for the '\0'.
3522 Last->getValue().second = &*It;
3523 Last = &*It;
3524 }
3525 return It->getValue().first;
3526 }
3527
3528 /// \brief Put \p S into the StringMap so that it gets permanent
3529 /// storage, but do not actually link it in the chain of elements
3530 /// that go into the output section. A latter call to
3531 /// getStringOffset() with the same string will chain it though.
internString(StringRef S)3532 StringRef NonRelocatableStringpool::internString(StringRef S) {
3533 std::pair<uint32_t, StringMapEntryBase *> Entry(0, nullptr);
3534 auto InsertResult = Strings.insert(std::make_pair(S, Entry));
3535 return InsertResult.first->getKey();
3536 }
3537
warn(const Twine & Warning,const Twine & Context)3538 void warn(const Twine &Warning, const Twine &Context) {
3539 errs() << Twine("while processing ") + Context + ":\n";
3540 errs() << Twine("warning: ") + Warning + "\n";
3541 }
3542
error(const Twine & Error,const Twine & Context)3543 bool error(const Twine &Error, const Twine &Context) {
3544 errs() << Twine("while processing ") + Context + ":\n";
3545 errs() << Twine("error: ") + Error + "\n";
3546 return false;
3547 }
3548
linkDwarf(StringRef OutputFilename,const DebugMap & DM,const LinkOptions & Options)3549 bool linkDwarf(StringRef OutputFilename, const DebugMap &DM,
3550 const LinkOptions &Options) {
3551 DwarfLinker Linker(OutputFilename, Options);
3552 return Linker.link(DM);
3553 }
3554 }
3555 }
3556