• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* crc32.c -- output crc32 tables
2  * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016, 2018 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5 
6 #include <stdio.h>
7 #include <inttypes.h>
8 #include "zbuild.h"
9 #include "deflate.h"
10 #include "crc32_p.h"
11 
12 static uint32_t crc_table[8][256];
13 static uint32_t crc_comb[GF2_DIM][GF2_DIM];
14 
15 static void gf2_matrix_square(uint32_t *square, const uint32_t *mat);
16 static void make_crc_table(void);
17 static void print_crc32_tables();
18 static void write_table(const uint32_t *, int);
19 
20 
21 /* ========================================================================= */
gf2_matrix_square(uint32_t * square,const uint32_t * mat)22 static void gf2_matrix_square(uint32_t *square, const uint32_t *mat) {
23     int n;
24 
25     for (n = 0; n < GF2_DIM; n++)
26         square[n] = gf2_matrix_times(mat, mat[n]);
27 }
28 
29 /* =========================================================================
30   Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
31   x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
32 
33   Polynomials over GF(2) are represented in binary, one bit per coefficient,
34   with the lowest powers in the most significant bit.  Then adding polynomials
35   is just exclusive-or, and multiplying a polynomial by x is a right shift by
36   one.  If we call the above polynomial p, and represent a byte as the
37   polynomial q, also with the lowest power in the most significant bit (so the
38   byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
39   where a mod b means the remainder after dividing a by b.
40 
41   This calculation is done using the shift-register method of multiplying and
42   taking the remainder.  The register is initialized to zero, and for each
43   incoming bit, x^32 is added mod p to the register if the bit is a one (where
44   x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
45   x (which is shifting right by one and adding x^32 mod p if the bit shifted
46   out is a one).  We start with the highest power (least significant bit) of
47   q and repeat for all eight bits of q.
48 
49   The first table is simply the CRC of all possible eight bit values.  This is
50   all the information needed to generate CRCs on data a byte at a time for all
51   combinations of CRC register values and incoming bytes.  The remaining tables
52   allow for word-at-a-time CRC calculation for both big-endian and little-
53   endian machines, where a word is four bytes.
54 */
make_crc_table()55 static void make_crc_table() {
56     int n, k;
57     uint32_t c;
58     uint32_t poly;                       /* polynomial exclusive-or pattern */
59     /* terms of polynomial defining this crc (except x^32): */
60     static const unsigned char p[] = {0, 1, 2, 4, 5, 7, 8, 10, 11, 12, 16, 22, 23, 26};
61 
62     /* make exclusive-or pattern from polynomial (0xedb88320) */
63     poly = 0;
64     for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
65         poly |= (uint32_t)1 << (31 - p[n]);
66 
67     /* generate a crc for every 8-bit value */
68     for (n = 0; n < 256; n++) {
69         c = (uint32_t)n;
70         for (k = 0; k < 8; k++)
71             c = c & 1 ? poly ^ (c >> 1) : c >> 1;
72         crc_table[0][n] = c;
73     }
74 
75     /* generate crc for each value followed by one, two, and three zeros,
76        and then the byte reversal of those as well as the first table */
77     for (n = 0; n < 256; n++) {
78         c = crc_table[0][n];
79         crc_table[4][n] = ZSWAP32(c);
80         for (k = 1; k < 4; k++) {
81             c = crc_table[0][c & 0xff] ^ (c >> 8);
82             crc_table[k][n] = c;
83             crc_table[k + 4][n] = ZSWAP32(c);
84         }
85     }
86 
87     /* generate zero operators table for crc32_combine() */
88 
89     /* generate the operator to apply a single zero bit to a CRC -- the
90        first row adds the polynomial if the low bit is a 1, and the
91        remaining rows shift the CRC right one bit */
92     k = GF2_DIM - 3;
93     crc_comb[k][0] = 0xedb88320UL;      /* CRC-32 polynomial */
94     uint32_t row = 1;
95     for (n = 1; n < GF2_DIM; n++) {
96         crc_comb[k][n] = row;
97         row <<= 1;
98     }
99     /* generate operators that apply 2, 4, and 8 zeros to a CRC, putting
100        the last one, the operator for one zero byte, at the 0 position */
101     gf2_matrix_square(crc_comb[k + 1], crc_comb[k]);
102     gf2_matrix_square(crc_comb[k + 2], crc_comb[k + 1]);
103     gf2_matrix_square(crc_comb[0], crc_comb[k + 2]);
104 
105     /* generate operators for applying 2^n zero bytes to a CRC, filling out
106        the remainder of the table -- the operators repeat after GF2_DIM
107        values of n, so the table only needs GF2_DIM entries, regardless of
108        the size of the length being processed */
109     for (n = 1; n < k; n++)
110         gf2_matrix_square(crc_comb[n], crc_comb[n - 1]);
111 }
112 
print_crc32_tables()113 static void print_crc32_tables() {
114     int k;
115     printf("#ifndef CRC32_TBL_H_\n");
116     printf("#define CRC32_TBL_H_\n\n");
117     printf("/* crc32_tbl.h -- tables for rapid CRC calculation\n");
118     printf(" * Generated automatically by makecrct.c\n */\n\n");
119 
120     /* print CRC table */
121     printf("static const uint32_t ");
122     printf("crc_table[8][256] =\n{\n  {\n");
123     write_table(crc_table[0], 256);
124     for (k = 1; k < 8; k++) {
125         printf("  },\n  {\n");
126         write_table(crc_table[k], 256);
127     }
128     printf("  }\n};\n");
129 
130     /* print zero operator table */
131     printf("\nstatic const uint32_t ");
132     printf("crc_comb[%d][%d] =\n{\n  {\n", GF2_DIM, GF2_DIM);
133     write_table(crc_comb[0], GF2_DIM);
134     for (k = 1; k < GF2_DIM; k++) {
135         printf("  },\n  {\n");
136         write_table(crc_comb[k], GF2_DIM);
137     }
138     printf("  }\n};\n");
139     printf("#endif /* CRC32_TBL_H_ */\n");
140 }
141 
write_table(const uint32_t * table,int k)142 static void write_table(const uint32_t *table, int k) {
143     int n;
144 
145     for (n = 0; n < k; n++)
146         printf("%s0x%08" PRIx32 "%s", n % 5 ? "" : "    ",
147                 (uint32_t)(table[n]),
148                 n == k - 1 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
149 }
150 
151 // The output of this application can be piped out to recreate crc32.h
main()152 int main() {
153     make_crc_table();
154     print_crc32_tables();
155     return 0;
156 }
157