• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include "tensorflow/c/eager/unified_api_testutil.h"
16 
17 #include "absl/container/flat_hash_set.h"
18 #include "tensorflow/c/eager/c_api_experimental.h"
19 #include "tensorflow/c/eager/c_api_test_util.h"
20 #include "tensorflow/c/eager/c_api_unified_experimental.h"
21 #include "tensorflow/c/eager/c_api_unified_experimental_internal.h"
22 #include "tensorflow/c/tf_status.h"
23 #include "tensorflow/c/tf_status_helper.h"
24 #include "tensorflow/core/framework/tensor_shape.h"
25 #include "tensorflow/core/lib/llvm_rtti/llvm_rtti.h"
26 #include "tensorflow/core/platform/errors.h"
27 
28 namespace tensorflow {
29 
BuildFunction(const char * fn_name)30 AbstractContext* BuildFunction(const char* fn_name) {
31   std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
32       TF_NewStatus(), TF_DeleteStatus);
33   TF_ExecutionContext* graph_ctx = TF_CreateFunction(fn_name, status.get());
34   return unwrap(graph_ctx);
35 }
36 
CreateParamsForInputs(AbstractContext * ctx,absl::Span<AbstractTensorHandle * const> inputs,std::vector<AbstractTensorHandle * > * params)37 Status CreateParamsForInputs(AbstractContext* ctx,
38                              absl::Span<AbstractTensorHandle* const> inputs,
39                              std::vector<AbstractTensorHandle*>* params) {
40   tracing::TracingTensorHandle* handle = nullptr;
41   for (auto input : inputs) {
42     PartialTensorShape shape;
43     TF_RETURN_IF_ERROR(input->Shape(&shape));
44     TF_RETURN_IF_ERROR(dyn_cast<tracing::TracingContext>(ctx)->AddParameter(
45         input->DataType(), shape, &handle));
46     params->emplace_back(handle);
47   }
48   return Status::OK();
49 }
50 
51 // Runs `model` maybe wrapped in a function.
RunModel(Model model,AbstractContext * ctx,absl::Span<AbstractTensorHandle * const> inputs,absl::Span<AbstractTensorHandle * > outputs,bool use_function)52 Status RunModel(Model model, AbstractContext* ctx,
53                 absl::Span<AbstractTensorHandle* const> inputs,
54                 absl::Span<AbstractTensorHandle*> outputs, bool use_function) {
55   if (use_function) {
56     const char* fn_name = "test_fn";
57     std::unique_ptr<AbstractFunction> scoped_func;
58     // Returning null tensors from a tf.function is not supported, so we keep
59     // track of indices in the model's outputs are nullptr in this set.
60     // The FunctionDef only outputs the non-null tensors. We later pad the
61     // function op outputs to have nullptrs at the `null_indices`.
62     absl::flat_hash_set<int> null_indices;
63     {
64       AbstractContextPtr func_ctx(BuildFunction(fn_name));
65       std::vector<AbstractTensorHandle*> func_inputs;
66       func_inputs.reserve(inputs.size());
67       TF_RETURN_IF_ERROR(
68           CreateParamsForInputs(func_ctx.get(), inputs, &func_inputs));
69       std::vector<AbstractTensorHandle*> model_outputs;
70       model_outputs.resize(outputs.size());
71       TF_RETURN_IF_ERROR(model(func_ctx.get(), absl::MakeSpan(func_inputs),
72                                absl::MakeSpan(model_outputs)));
73       for (auto func_input : func_inputs) {
74         func_input->Unref();
75       }
76       AbstractFunction* func = nullptr;
77       OutputList output_list;
78       output_list.expected_num_outputs = 0;
79       output_list.outputs.reserve(outputs.size());
80       for (int i = 0; i < model_outputs.size(); i++) {
81         if (model_outputs[i]) {
82           output_list.outputs.emplace_back(model_outputs[i]);
83           output_list.expected_num_outputs += 1;
84         } else {
85           null_indices.insert(i);
86         }
87       }
88       TF_RETURN_IF_ERROR(dyn_cast<tracing::TracingContext>(func_ctx.get())
89                              ->Finalize(&output_list, &func));
90       scoped_func.reset(func);
91       for (auto output : output_list.outputs) {
92         output->Unref();
93       }
94       TF_RETURN_IF_ERROR(ctx->RegisterFunction(func));
95     }
96 
97     AbstractOperationPtr fn_op(ctx->CreateOperation());
98     TF_RETURN_IF_ERROR(fn_op->Reset(fn_name, /*raw_device_name=*/nullptr));
99     for (auto input : inputs) {
100       TF_RETURN_IF_ERROR(fn_op->AddInput(input));
101     }
102     int retvals = outputs.size() - null_indices.size();
103     std::vector<AbstractTensorHandle*> fn_outputs(retvals);
104     TF_RETURN_IF_ERROR(fn_op->Execute(
105         absl::Span<AbstractTensorHandle*>(fn_outputs.data(), fn_outputs.size()),
106         &retvals));
107     int skipped_indices = 0;
108     for (int i = 0; i < outputs.size(); i++) {
109       if (!null_indices.contains(i)) {
110         outputs[i] = fn_outputs[i - skipped_indices];
111       } else {
112         skipped_indices += 1;
113       }
114     }
115     TF_RETURN_IF_ERROR(ctx->RemoveFunction(fn_name));
116     return Status::OK();
117   } else {
118     return model(ctx, inputs, outputs);
119   }
120 }
121 
BuildImmediateExecutionContext(bool use_tfrt,AbstractContext ** ctx)122 Status BuildImmediateExecutionContext(bool use_tfrt, AbstractContext** ctx) {
123   std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
124       TF_NewStatus(), TF_DeleteStatus);
125   TFE_ContextOptions* opts = TFE_NewContextOptions();
126   TFE_ContextOptionsSetTfrt(opts, use_tfrt);
127   *ctx = unwrap(TF_NewEagerExecutionContext(opts, status.get()));
128   TF_RETURN_IF_ERROR(StatusFromTF_Status(status.get()));
129   TFE_DeleteContextOptions(opts);
130   return Status::OK();
131 }
132 
TestScalarTensorHandle(AbstractContext * ctx,float value,AbstractTensorHandle ** tensor)133 Status TestScalarTensorHandle(AbstractContext* ctx, float value,
134                               AbstractTensorHandle** tensor) {
135   std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
136       TF_NewStatus(), TF_DeleteStatus);
137   TFE_Context* eager_ctx =
138       TF_ExecutionContextGetTFEContext(wrap(ctx), status.get());
139   TF_RETURN_IF_ERROR(StatusFromTF_Status(status.get()));
140   TFE_TensorHandle* input_eager = TestScalarTensorHandle(eager_ctx, value);
141   *tensor =
142       unwrap(TF_CreateAbstractTensorFromEagerTensor(input_eager, status.get()));
143   return Status::OK();
144 }
145 
TestTensorHandleWithDimsFloat(AbstractContext * ctx,float * data,int64_t * dims,int num_dims,AbstractTensorHandle ** tensor)146 Status TestTensorHandleWithDimsFloat(AbstractContext* ctx, float* data,
147                                      int64_t* dims, int num_dims,
148                                      AbstractTensorHandle** tensor) {
149   std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
150       TF_NewStatus(), TF_DeleteStatus);
151   TFE_Context* eager_ctx =
152       TF_ExecutionContextGetTFEContext(wrap(ctx), status.get());
153   TF_RETURN_IF_ERROR(StatusFromTF_Status(status.get()));
154   TFE_TensorHandle* input_eager =
155       TestTensorHandleWithDimsFloat(eager_ctx, data, dims, num_dims);
156   *tensor =
157       unwrap(TF_CreateAbstractTensorFromEagerTensor(input_eager, status.get()));
158   return Status::OK();
159 }
160 
TestTensorHandleWithDimsInt(AbstractContext * ctx,int * data,int64_t * dims,int num_dims,AbstractTensorHandle ** tensor)161 Status TestTensorHandleWithDimsInt(AbstractContext* ctx, int* data,
162                                    int64_t* dims, int num_dims,
163                                    AbstractTensorHandle** tensor) {
164   std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
165       TF_NewStatus(), TF_DeleteStatus);
166   TFE_Context* eager_ctx =
167       TF_ExecutionContextGetTFEContext(wrap(ctx), status.get());
168   TF_RETURN_IF_ERROR(StatusFromTF_Status(status.get()));
169   TFE_TensorHandle* input_eager =
170       TestTensorHandleWithDimsInt(eager_ctx, data, dims, num_dims);
171   *tensor =
172       unwrap(TF_CreateAbstractTensorFromEagerTensor(input_eager, status.get()));
173   return Status::OK();
174 }
175 
GetValue(AbstractTensorHandle * t,TF_Tensor ** result_tensor)176 Status GetValue(AbstractTensorHandle* t, TF_Tensor** result_tensor) {
177   std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)> status(
178       TF_NewStatus(), TF_DeleteStatus);
179   TFE_TensorHandle* result_t =
180       TF_AbstractTensorGetEagerTensor(wrap(t), status.get());
181   TF_RETURN_IF_ERROR(StatusFromTF_Status(status.get()));
182   *result_tensor = TFE_TensorHandleResolve(result_t, status.get());
183   return StatusFromTF_Status(status.get());
184 }
185 
186 }  // namespace tensorflow
187