• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ANDROID_VECTOR_H
18 #define ANDROID_VECTOR_H
19 
20 #include <stdint.h>
21 #include <sys/types.h>
22 
23 #include <log/log.h>
24 #include <utils/TypeHelpers.h>
25 #include <utils/VectorImpl.h>
26 #ifndef __has_attribute
27 #define __has_attribute(x) 0
28 #endif
29 
30 /*
31  * Used to exclude some functions from CFI.
32  */
33 #if __has_attribute(no_sanitize)
34 #define UTILS_VECTOR_NO_CFI __attribute__((no_sanitize("cfi")))
35 #else
36 #define UTILS_VECTOR_NO_CFI
37 #endif
38 
39 // ---------------------------------------------------------------------------
40 
41 namespace android {
42 
43 template <typename TYPE>
44 class SortedVector;
45 
46 /*!
47  * The main templated vector class ensuring type safety
48  * while making use of VectorImpl.
49  * This is the class users want to use.
50  *
51  * DO NOT USE: please use std::vector
52  */
53 
54 template <class TYPE>
55 class Vector : private VectorImpl
56 {
57 public:
58             typedef TYPE    value_type;
59 
60     /*!
61      * Constructors and destructors
62      */
63 
64                             Vector();
65                             Vector(const Vector<TYPE>& rhs);
66     explicit                Vector(const SortedVector<TYPE>& rhs);
67     virtual                 ~Vector();
68 
69     /*! copy operator */
70             const Vector<TYPE>&     operator = (const Vector<TYPE>& rhs) const;
71             Vector<TYPE>&           operator = (const Vector<TYPE>& rhs);
72 
73             const Vector<TYPE>&     operator = (const SortedVector<TYPE>& rhs) const;
74             Vector<TYPE>&           operator = (const SortedVector<TYPE>& rhs);
75 
76             /*
77      * empty the vector
78      */
79 
clear()80     inline  void            clear()             { VectorImpl::clear(); }
81 
82     /*!
83      * vector stats
84      */
85 
86     //! returns number of items in the vector
size()87     inline  size_t          size() const                { return VectorImpl::size(); }
88     //! returns whether or not the vector is empty
isEmpty()89     inline  bool            isEmpty() const             { return VectorImpl::isEmpty(); }
90     //! returns how many items can be stored without reallocating the backing store
capacity()91     inline  size_t          capacity() const            { return VectorImpl::capacity(); }
92     //! sets the capacity. capacity can never be reduced less than size()
setCapacity(size_t size)93     inline  ssize_t         setCapacity(size_t size)    { return VectorImpl::setCapacity(size); }
94 
95     /*!
96      * set the size of the vector. items are appended with the default
97      * constructor, or removed from the end as needed.
98      */
resize(size_t size)99     inline  ssize_t         resize(size_t size)         { return VectorImpl::resize(size); }
100 
101     /*!
102      * C-style array access
103      */
104 
105     //! read-only C-style access
106     inline  const TYPE*     array() const;
107     //! read-write C-style access
108             TYPE*           editArray();
109 
110     /*!
111      * accessors
112      */
113 
114     //! read-only access to an item at a given index
115     inline  const TYPE&     operator [] (size_t index) const;
116     //! alternate name for operator []
117     inline  const TYPE&     itemAt(size_t index) const;
118     //! stack-usage of the vector. returns the top of the stack (last element)
119             const TYPE&     top() const;
120 
121     /*!
122      * modifying the array
123      */
124 
125     //! copy-on write support, grants write access to an item
126             TYPE&           editItemAt(size_t index);
127     //! grants right access to the top of the stack (last element)
128             TYPE&           editTop();
129 
130             /*!
131              * append/insert another vector
132              */
133 
134     //! insert another vector at a given index
135             ssize_t         insertVectorAt(const Vector<TYPE>& vector, size_t index);
136 
137     //! append another vector at the end of this one
138             ssize_t         appendVector(const Vector<TYPE>& vector);
139 
140 
141     //! insert an array at a given index
142             ssize_t         insertArrayAt(const TYPE* array, size_t index, size_t length);
143 
144     //! append an array at the end of this vector
145             ssize_t         appendArray(const TYPE* array, size_t length);
146 
147             /*!
148              * add/insert/replace items
149              */
150 
151     //! insert one or several items initialized with their default constructor
152     inline  ssize_t         insertAt(size_t index, size_t numItems = 1);
153     //! insert one or several items initialized from a prototype item
154             ssize_t         insertAt(const TYPE& prototype_item, size_t index, size_t numItems = 1);
155     //! pop the top of the stack (removes the last element). No-op if the stack's empty
156     inline  void            pop();
157     //! pushes an item initialized with its default constructor
158     inline  void            push();
159     //! pushes an item on the top of the stack
160             void            push(const TYPE& item);
161     //! same as push() but returns the index the item was added at (or an error)
162     inline  ssize_t         add();
163     //! same as push() but returns the index the item was added at (or an error)
164             ssize_t         add(const TYPE& item);
165     //! replace an item with a new one initialized with its default constructor
166     inline  ssize_t         replaceAt(size_t index);
167     //! replace an item with a new one
168             ssize_t         replaceAt(const TYPE& item, size_t index);
169 
170     /*!
171      * remove items
172      */
173 
174     //! remove several items
175     inline  ssize_t         removeItemsAt(size_t index, size_t count = 1);
176     //! remove one item
removeAt(size_t index)177     inline  ssize_t         removeAt(size_t index)  { return removeItemsAt(index); }
178 
179     /*!
180      * sort (stable) the array
181      */
182 
183      typedef int (*compar_t)(const TYPE* lhs, const TYPE* rhs);
184      typedef int (*compar_r_t)(const TYPE* lhs, const TYPE* rhs, void* state);
185 
186      inline status_t        sort(compar_t cmp);
187      inline status_t        sort(compar_r_t cmp, void* state);
188 
189      // for debugging only
getItemSize()190      inline size_t getItemSize() const { return itemSize(); }
191 
192 
193      /*
194       * these inlines add some level of compatibility with STL. eventually
195       * we should probably turn things around.
196       */
197      typedef TYPE* iterator;
198      typedef TYPE const* const_iterator;
199 
begin()200      inline iterator begin() { return editArray(); }
end()201      inline iterator end()   { return editArray() + size(); }
begin()202      inline const_iterator begin() const { return array(); }
end()203      inline const_iterator end() const   { return array() + size(); }
reserve(size_t n)204      inline void reserve(size_t n) { setCapacity(n); }
empty()205      inline bool empty() const{ return isEmpty(); }
push_back(const TYPE & item)206      inline void push_back(const TYPE& item)  { insertAt(item, size(), 1); }
push_front(const TYPE & item)207      inline void push_front(const TYPE& item) { insertAt(item, 0, 1); }
erase(iterator pos)208      inline iterator erase(iterator pos) {
209          ssize_t index = removeItemsAt(static_cast<size_t>(pos-array()));
210          return begin() + index;
211      }
212 
213 protected:
214     virtual void    do_construct(void* storage, size_t num) const;
215     virtual void    do_destroy(void* storage, size_t num) const;
216     virtual void    do_copy(void* dest, const void* from, size_t num) const;
217     virtual void    do_splat(void* dest, const void* item, size_t num) const;
218     virtual void    do_move_forward(void* dest, const void* from, size_t num) const;
219     virtual void    do_move_backward(void* dest, const void* from, size_t num) const;
220 };
221 
222 // ---------------------------------------------------------------------------
223 // No user serviceable parts from here...
224 // ---------------------------------------------------------------------------
225 
226 template<class TYPE> inline
Vector()227 Vector<TYPE>::Vector()
228     : VectorImpl(sizeof(TYPE),
229                 ((traits<TYPE>::has_trivial_ctor   ? HAS_TRIVIAL_CTOR   : 0)
230                 |(traits<TYPE>::has_trivial_dtor   ? HAS_TRIVIAL_DTOR   : 0)
231                 |(traits<TYPE>::has_trivial_copy   ? HAS_TRIVIAL_COPY   : 0))
232                 )
233 {
234 }
235 
236 template<class TYPE> inline
Vector(const Vector<TYPE> & rhs)237 Vector<TYPE>::Vector(const Vector<TYPE>& rhs)
238     : VectorImpl(rhs) {
239 }
240 
241 template<class TYPE> inline
Vector(const SortedVector<TYPE> & rhs)242 Vector<TYPE>::Vector(const SortedVector<TYPE>& rhs)
243     : VectorImpl(static_cast<const VectorImpl&>(rhs)) {
244 }
245 
246 template<class TYPE> inline
~Vector()247 Vector<TYPE>::~Vector() {
248     finish_vector();
249 }
250 
251 template<class TYPE> inline
252 Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) {
253     VectorImpl::operator = (rhs);
254     return *this;
255 }
256 
257 template<class TYPE> inline
258 const Vector<TYPE>& Vector<TYPE>::operator = (const Vector<TYPE>& rhs) const {
259     VectorImpl::operator = (static_cast<const VectorImpl&>(rhs));
260     return *this;
261 }
262 
263 template<class TYPE> inline
264 Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) {
265     VectorImpl::operator = (static_cast<const VectorImpl&>(rhs));
266     return *this;
267 }
268 
269 template<class TYPE> inline
270 const Vector<TYPE>& Vector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const {
271     VectorImpl::operator = (rhs);
272     return *this;
273 }
274 
275 template<class TYPE> inline
array()276 const TYPE* Vector<TYPE>::array() const {
277     return static_cast<const TYPE *>(arrayImpl());
278 }
279 
280 template<class TYPE> inline
editArray()281 TYPE* Vector<TYPE>::editArray() {
282     return static_cast<TYPE *>(editArrayImpl());
283 }
284 
285 
286 template<class TYPE> inline
287 const TYPE& Vector<TYPE>::operator[](size_t index) const {
288     LOG_FATAL_IF(index>=size(),
289             "%s: index=%u out of range (%u)", __PRETTY_FUNCTION__,
290             int(index), int(size()));
291     return *(array() + index);
292 }
293 
294 template<class TYPE> inline
itemAt(size_t index)295 const TYPE& Vector<TYPE>::itemAt(size_t index) const {
296     return operator[](index);
297 }
298 
299 template<class TYPE> inline
top()300 const TYPE& Vector<TYPE>::top() const {
301     return *(array() + size() - 1);
302 }
303 
304 template<class TYPE> inline
editItemAt(size_t index)305 TYPE& Vector<TYPE>::editItemAt(size_t index) {
306     return *( static_cast<TYPE *>(editItemLocation(index)) );
307 }
308 
309 template<class TYPE> inline
editTop()310 TYPE& Vector<TYPE>::editTop() {
311     return *( static_cast<TYPE *>(editItemLocation(size()-1)) );
312 }
313 
314 template<class TYPE> inline
insertVectorAt(const Vector<TYPE> & vector,size_t index)315 ssize_t Vector<TYPE>::insertVectorAt(const Vector<TYPE>& vector, size_t index) {
316     return VectorImpl::insertVectorAt(reinterpret_cast<const VectorImpl&>(vector), index);
317 }
318 
319 template<class TYPE> inline
appendVector(const Vector<TYPE> & vector)320 ssize_t Vector<TYPE>::appendVector(const Vector<TYPE>& vector) {
321     return VectorImpl::appendVector(reinterpret_cast<const VectorImpl&>(vector));
322 }
323 
324 template<class TYPE> inline
insertArrayAt(const TYPE * array,size_t index,size_t length)325 ssize_t Vector<TYPE>::insertArrayAt(const TYPE* array, size_t index, size_t length) {
326     return VectorImpl::insertArrayAt(array, index, length);
327 }
328 
329 template<class TYPE> inline
appendArray(const TYPE * array,size_t length)330 ssize_t Vector<TYPE>::appendArray(const TYPE* array, size_t length) {
331     return VectorImpl::appendArray(array, length);
332 }
333 
334 template<class TYPE> inline
insertAt(const TYPE & item,size_t index,size_t numItems)335 ssize_t Vector<TYPE>::insertAt(const TYPE& item, size_t index, size_t numItems) {
336     return VectorImpl::insertAt(&item, index, numItems);
337 }
338 
339 template<class TYPE> inline
push(const TYPE & item)340 void Vector<TYPE>::push(const TYPE& item) {
341     return VectorImpl::push(&item);
342 }
343 
344 template<class TYPE> inline
add(const TYPE & item)345 ssize_t Vector<TYPE>::add(const TYPE& item) {
346     return VectorImpl::add(&item);
347 }
348 
349 template<class TYPE> inline
replaceAt(const TYPE & item,size_t index)350 ssize_t Vector<TYPE>::replaceAt(const TYPE& item, size_t index) {
351     return VectorImpl::replaceAt(&item, index);
352 }
353 
354 template<class TYPE> inline
insertAt(size_t index,size_t numItems)355 ssize_t Vector<TYPE>::insertAt(size_t index, size_t numItems) {
356     return VectorImpl::insertAt(index, numItems);
357 }
358 
359 template<class TYPE> inline
pop()360 void Vector<TYPE>::pop() {
361     VectorImpl::pop();
362 }
363 
364 template<class TYPE> inline
push()365 void Vector<TYPE>::push() {
366     VectorImpl::push();
367 }
368 
369 template<class TYPE> inline
add()370 ssize_t Vector<TYPE>::add() {
371     return VectorImpl::add();
372 }
373 
374 template<class TYPE> inline
replaceAt(size_t index)375 ssize_t Vector<TYPE>::replaceAt(size_t index) {
376     return VectorImpl::replaceAt(index);
377 }
378 
379 template<class TYPE> inline
removeItemsAt(size_t index,size_t count)380 ssize_t Vector<TYPE>::removeItemsAt(size_t index, size_t count) {
381     return VectorImpl::removeItemsAt(index, count);
382 }
383 
384 template<class TYPE> inline
sort(Vector<TYPE>::compar_t cmp)385 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_t cmp) {
386     return VectorImpl::sort(reinterpret_cast<VectorImpl::compar_t>(cmp));
387 }
388 
389 template<class TYPE> inline
sort(Vector<TYPE>::compar_r_t cmp,void * state)390 status_t Vector<TYPE>::sort(Vector<TYPE>::compar_r_t cmp, void* state) {
391     return VectorImpl::sort(reinterpret_cast<VectorImpl::compar_r_t>(cmp), state);
392 }
393 
394 // ---------------------------------------------------------------------------
395 
396 template<class TYPE>
do_construct(void * storage,size_t num)397 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_construct(void* storage, size_t num) const {
398     construct_type( reinterpret_cast<TYPE*>(storage), num );
399 }
400 
401 template<class TYPE>
do_destroy(void * storage,size_t num)402 void Vector<TYPE>::do_destroy(void* storage, size_t num) const {
403     destroy_type( reinterpret_cast<TYPE*>(storage), num );
404 }
405 
406 template<class TYPE>
do_copy(void * dest,const void * from,size_t num)407 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_copy(void* dest, const void* from, size_t num) const {
408     copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
409 }
410 
411 template<class TYPE>
do_splat(void * dest,const void * item,size_t num)412 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_splat(void* dest, const void* item, size_t num) const {
413     splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num );
414 }
415 
416 template<class TYPE>
do_move_forward(void * dest,const void * from,size_t num)417 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const {
418     move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
419 }
420 
421 template<class TYPE>
do_move_backward(void * dest,const void * from,size_t num)422 UTILS_VECTOR_NO_CFI void Vector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const {
423     move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num );
424 }
425 
426 }  // namespace android
427 
428 // ---------------------------------------------------------------------------
429 
430 #endif // ANDROID_VECTOR_H
431