• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "modules/audio_processing/vad/voice_activity_detector.h"
12 
13 #include <algorithm>
14 #include <vector>
15 
16 #include "test/gtest.h"
17 #include "test/testsupport/file_utils.h"
18 
19 namespace webrtc {
20 namespace {
21 
22 const int kStartTimeSec = 16;
23 const float kMeanSpeechProbability = 0.3f;
24 const float kMaxNoiseProbability = 0.1f;
25 const size_t kNumChunks = 300u;
26 const size_t kNumChunksPerIsacBlock = 3;
27 
GenerateNoise(std::vector<int16_t> * data)28 void GenerateNoise(std::vector<int16_t>* data) {
29   for (size_t i = 0; i < data->size(); ++i) {
30     // std::rand returns between 0 and RAND_MAX, but this will work because it
31     // wraps into some random place.
32     (*data)[i] = std::rand();
33   }
34 }
35 
36 }  // namespace
37 
TEST(VoiceActivityDetectorTest,ConstructorSetsDefaultValues)38 TEST(VoiceActivityDetectorTest, ConstructorSetsDefaultValues) {
39   const float kDefaultVoiceValue = 1.f;
40 
41   VoiceActivityDetector vad;
42 
43   std::vector<double> p = vad.chunkwise_voice_probabilities();
44   std::vector<double> rms = vad.chunkwise_rms();
45 
46   EXPECT_EQ(p.size(), 0u);
47   EXPECT_EQ(rms.size(), 0u);
48 
49   EXPECT_FLOAT_EQ(vad.last_voice_probability(), kDefaultVoiceValue);
50 }
51 
TEST(VoiceActivityDetectorTest,Speech16kHzHasHighVoiceProbabilities)52 TEST(VoiceActivityDetectorTest, Speech16kHzHasHighVoiceProbabilities) {
53   const int kSampleRateHz = 16000;
54   const int kLength10Ms = kSampleRateHz / 100;
55 
56   VoiceActivityDetector vad;
57 
58   std::vector<int16_t> data(kLength10Ms);
59   float mean_probability = 0.f;
60 
61   FILE* pcm_file =
62       fopen(test::ResourcePath("audio_processing/transient/audio16kHz", "pcm")
63                 .c_str(),
64             "rb");
65   ASSERT_TRUE(pcm_file != nullptr);
66   // The silences in the file are skipped to get a more robust voice probability
67   // for speech.
68   ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]),
69                   SEEK_SET),
70             0);
71 
72   size_t num_chunks = 0;
73   while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) ==
74          data.size()) {
75     vad.ProcessChunk(&data[0], data.size(), kSampleRateHz);
76 
77     mean_probability += vad.last_voice_probability();
78 
79     ++num_chunks;
80   }
81 
82   mean_probability /= num_chunks;
83 
84   EXPECT_GT(mean_probability, kMeanSpeechProbability);
85 }
86 
TEST(VoiceActivityDetectorTest,Speech32kHzHasHighVoiceProbabilities)87 TEST(VoiceActivityDetectorTest, Speech32kHzHasHighVoiceProbabilities) {
88   const int kSampleRateHz = 32000;
89   const int kLength10Ms = kSampleRateHz / 100;
90 
91   VoiceActivityDetector vad;
92 
93   std::vector<int16_t> data(kLength10Ms);
94   float mean_probability = 0.f;
95 
96   FILE* pcm_file =
97       fopen(test::ResourcePath("audio_processing/transient/audio32kHz", "pcm")
98                 .c_str(),
99             "rb");
100   ASSERT_TRUE(pcm_file != nullptr);
101   // The silences in the file are skipped to get a more robust voice probability
102   // for speech.
103   ASSERT_EQ(fseek(pcm_file, kStartTimeSec * kSampleRateHz * sizeof(data[0]),
104                   SEEK_SET),
105             0);
106 
107   size_t num_chunks = 0;
108   while (fread(&data[0], sizeof(data[0]), data.size(), pcm_file) ==
109          data.size()) {
110     vad.ProcessChunk(&data[0], data.size(), kSampleRateHz);
111 
112     mean_probability += vad.last_voice_probability();
113 
114     ++num_chunks;
115   }
116 
117   mean_probability /= num_chunks;
118 
119   EXPECT_GT(mean_probability, kMeanSpeechProbability);
120 }
121 
TEST(VoiceActivityDetectorTest,Noise16kHzHasLowVoiceProbabilities)122 TEST(VoiceActivityDetectorTest, Noise16kHzHasLowVoiceProbabilities) {
123   VoiceActivityDetector vad;
124 
125   std::vector<int16_t> data(kLength10Ms);
126   float max_probability = 0.f;
127 
128   std::srand(42);
129 
130   for (size_t i = 0; i < kNumChunks; ++i) {
131     GenerateNoise(&data);
132 
133     vad.ProcessChunk(&data[0], data.size(), kSampleRateHz);
134 
135     // Before the |vad has enough data to process an ISAC block it will return
136     // the default value, 1.f, which would ruin the |max_probability| value.
137     if (i > kNumChunksPerIsacBlock) {
138       max_probability = std::max(max_probability, vad.last_voice_probability());
139     }
140   }
141 
142   EXPECT_LT(max_probability, kMaxNoiseProbability);
143 }
144 
TEST(VoiceActivityDetectorTest,Noise32kHzHasLowVoiceProbabilities)145 TEST(VoiceActivityDetectorTest, Noise32kHzHasLowVoiceProbabilities) {
146   VoiceActivityDetector vad;
147 
148   std::vector<int16_t> data(2 * kLength10Ms);
149   float max_probability = 0.f;
150 
151   std::srand(42);
152 
153   for (size_t i = 0; i < kNumChunks; ++i) {
154     GenerateNoise(&data);
155 
156     vad.ProcessChunk(&data[0], data.size(), 2 * kSampleRateHz);
157 
158     // Before the |vad has enough data to process an ISAC block it will return
159     // the default value, 1.f, which would ruin the |max_probability| value.
160     if (i > kNumChunksPerIsacBlock) {
161       max_probability = std::max(max_probability, vad.last_voice_probability());
162     }
163   }
164 
165   EXPECT_LT(max_probability, kMaxNoiseProbability);
166 }
167 
168 }  // namespace webrtc
169